1
|
Al-Qahtani Z, Al-Kuraishy HM, Ali NH, Elewa YHA, Batiha GES. Kynurenine pathway in type 2 diabetes: Role of metformin. Drug Dev Res 2024; 85:e22243. [PMID: 39129450 DOI: 10.1002/ddr.22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The Kynurenine pathway (KP) which is involved in the synthesis of nicotinamide adenine dinucleotide (NAD) from tryptophan (Trp) is intricate in the development of insulin resistance (IR) and type 2 diabetes (T2D). Inflammatory reactions in response to cardiometabolic disorders can induce the development of IR through the augmentation of KP. However, kynurenine (KYN), a precursor of kynurenic acid (KA) is increased following physical exercise and involved in the reduction of IR. Consequently, KP metabolites KA and KYN have anti-diabetogenic effects while other metabolites have diabetogenic effects. KP modulators, either inhibitors or activators, affect glucose homeostasis and insulin sensitivity in T2D in a bidirectional way, either protective or detrimental, that is not related to the KP effect. However, metformin through inhibition of inflammatory signaling pathways can reduce the activation of KP in T2D. These findings indicated a strong controversy regarding the role of KP in T2D. Therefore, the objectives of this mini review were to clarify how KP induces the development of IR and T2D. In addition, this review aimed to find the mechanistic role of antidiabetic drug metformin on the KP, and how KP modulators affect the pathogenesis of T2D.
Collapse
Affiliation(s)
- Zainah Al-Qahtani
- Internal Medicine Department, Neurology Section, College of Medicine, King Khaled university, Abha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of internal medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| |
Collapse
|
2
|
Moedas MF, Simões RJM, Silva MFB. Mitochondrial targets in hyperammonemia: Addressing urea cycle function to improve drug therapies. Biochem Pharmacol 2024; 222:116034. [PMID: 38307136 DOI: 10.1016/j.bcp.2024.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The urea cycle (UC) is a critically important metabolic process for the disposal of nitrogen (ammonia) produced by amino acids catabolism. The impairment of this liver-specific pathway induced either by primary genetic defects or by secondary causes, namely those associated with hepatic disease or drug administration, may result in serious clinical consequences. Urea cycle disorders (UCD) and certain organic acidurias are the major groups of inherited rare diseases manifested with hyperammonemia (HA) with UC dysregulation. Importantly, several commonly prescribed drugs, including antiepileptics in monotherapy or polytherapy from carbamazepine to valproic acid or specific antineoplastic agents such as asparaginase or 5-fluorouracil may be associated with HA by mechanisms not fully elucidated. HA, disclosing an imbalance between ammoniagenesis and ammonia disposal via the UC, can evolve to encephalopathy which may lead to significant morbidity and central nervous system damage. This review will focus on biochemical mechanisms related with HA emphasizing some poorly understood perspectives behind the disruption of the UC and mitochondrial energy metabolism, namely: i) changes in acetyl-CoA or NAD+ levels in subcellular compartments; ii) post-translational modifications of key UC-related enzymes, namely acetylation, potentially affecting their catalytic activity; iii) the mitochondrial sirtuins-mediated role in ureagenesis. Moreover, the main UCD associated with HA will be summarized to highlight the relevance of investigating possible genetic mutations to account for unexpected HA during certain pharmacological therapies. The ammonia-induced effects should be avoided or overcome as part of safer therapeutic strategies to protect patients under treatment with drugs that may be potentially associated with HA.
Collapse
Affiliation(s)
- Marco F Moedas
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ricardo J M Simões
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida F B Silva
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
3
|
Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Kołosowska K, Szyndler J, Skórzewska A, Maciejak P. The effect of valproate on the amino acids, monoamines, and kynurenic acid concentrations in brain structures involved in epileptogenesis in the pentylenetetrazol-kindled rats. Pharmacol Rep 2024; 76:348-367. [PMID: 38519733 DOI: 10.1007/s43440-024-00573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warszawa, Poland.
| | - Danuta Turzyńska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warszawa, Poland
| | - Alicja Sobolewska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warszawa, Poland
| | - Karolina Kołosowska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warszawa, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warszawa, Poland
| | - Anna Skórzewska
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warszawa, Poland
| | - Piotr Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097, Warszawa, Poland
- Department of Experimental and Clinical Neuroscience, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warszawa, Poland
| |
Collapse
|
4
|
Peng Y, Chiu ATG, Li VWY, Zhang X, Yeung WL, Chan SHS, Tun HM. The role of the gut-microbiome-brain axis in metabolic remodeling amongst children with cerebral palsy and epilepsy. Front Neurol 2023; 14:1109469. [PMID: 36923492 PMCID: PMC10009533 DOI: 10.3389/fneur.2023.1109469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Epilepsy-associated dysbiosis in gut microbiota has been previously described, but the mechanistic roles of the gut microbiome in epileptogenesis among children with cerebral palsy (CP) have yet to be illustrated. METHODS Using shotgun metagenomic sequencing coupled with untargeted metabolomics analysis, this observational study compared the gut microbiome and metabolome of eight children with non-epileptic cerebral palsy (NECP) to those of 13 children with cerebral palsy with epilepsy (CPE). Among children with CPE, 8 had drug-sensitive epilepsy (DSE) and five had drug-resistant epilepsy (DRE). Characteristics at enrollment, medication history, and 7-day dietary intake were compared between groups. RESULTS At the species level, CPE subjects had significantly lower abundances of Bacteroides fragilis and Dialister invisus but higher abundances of Phascolarctobacterium faecium and Eubacterium limosum. By contrast, DRE subjects had a significantly higher colonization of Veillonella parvula. Regarding microbial functional pathways, CPE subjects had decreased abundances of pathways for serine degradation, quinolinic acid degradation, glutamate degradation I, glycerol degradation, sulfate reduction, and nitrate reduction but increased abundances of pathways related to ethanol production. As for metabolites, CPE subjects had higher concentrations of kynurenic acid, 2-oxindole, dopamine, 2-hydroxyphenyalanine, 3,4-dihydroxyphenylglycol, L-tartaric acid, and D-saccharic acid; DRE subjects had increased concentrations of indole and homovanilic acid. CONCLUSIONS In this study, we found evidence of gut dysbiosis amongst children with cerebral palsy and epilepsy in terms of gut microbiota species, functional pathways, and metabolites. The combined metagenomic and metabolomic analyses have shed insights on the potential roles of B. fragilis and D. invisus in neuroprotection. The combined analyses have also provided evidence for the involvement of GMBA in the epilepsy-related dysbiosis of kynurenine, serotonin, and dopamine pathways and their complex interplay with neuroimmune and neuroendocrinological pathways.
Collapse
Affiliation(s)
- Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Annie T. G. Chiu
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon City, Hong Kong SAR, China
| | - Vivien W. Y. Li
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital and Duchess of Kent Children's Hospital, Pokfulam, Hong Kong SAR, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai L. Yeung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon City, Hong Kong SAR, China
| | - Sophelia H. S. Chan
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon City, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital and Duchess of Kent Children's Hospital, Pokfulam, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hein M. Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
5
|
Savitz J, Ford BN, Kuplicki R, Khalsa S, Teague TK, Paulus MP. Acute administration of ibuprofen increases serum concentration of the neuroprotective kynurenine pathway metabolite, kynurenic acid: a pilot randomized, placebo-controlled, crossover study. Psychopharmacology (Berl) 2022; 239:3919-3927. [PMID: 36271950 PMCID: PMC10040216 DOI: 10.1007/s00213-022-06263-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE At least six different types of antidepressant treatments have been shown to either increase the neuroprotective kynurenine pathway (KP) metabolite, kynurenic acid (KynA), or decrease the neurotoxic KP metabolite, quinolinic acid (QA). Nonsteroidal anti-inflammatory drugs (NSAIDs) including ibuprofen have shown some efficacy in the treatment of depression but their effects on the KP have not been studied in humans. OBJECTIVES To evaluate the effect of ibuprofen on circulating KP metabolites. METHODS In a randomized, placebo-controlled, crossover study, 20 healthy adults (10 women) received a single oral dose of 200-mg ibuprofen, 600-mg ibuprofen, or placebo in a counterbalanced order (NCT02507219). Serum samples were drawn in the mid-afternoon, 5 h after ibuprofen/placebo administration. KP metabolites were measured blind to visit by tandem mass spectrometry. Data were analyzed with linear mixed effect models. The primary outcome was KynA/QA and the secondary outcome was KynA. RESULTS After Bonferroni correction, there was a significant effect of treatment on KynA/QA. The effect was driven by an increase in KynA concentration after the 600-mg dose but not the 200-mg dose relative to placebo (Cohen's d = 1.71). In contrast, both the 200-mg (d = 1.03) and 600-mg (d = 2.05) doses of ibuprofen decreased tryptophan concentrations relative to placebo. CONCLUSIONS Given its KynA-elevating effects, ibuprofen could have neuroprotective effects in the context of depression as well as other neuroinflammatory disorders that are characterized by a reduction in KynA.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| | - Bart N Ford
- Department of Pharmacology & Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | | | - Sahib Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
6
|
Abd El-Fattah EE. IDO/kynurenine pathway in cancer: possible therapeutic approaches. Lab Invest 2022; 20:347. [PMID: 35918736 PMCID: PMC9344609 DOI: 10.1186/s12967-022-03554-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Cancer is one of the leading causes of death in both men and women worldwide. One of the main changes associated with cancer progression, metastasis, recurrence, and chemoresistance is the change in the tumor immune microenvironment, especially immunosuppression. Cancer immunosuppression appears in multiple forms, such as inhibition of immuno-stimulant cells with downregulation of immuno-stimulant mediators or through stimulation of immuno-suppressive cells with upregulation of immunosuppressive mediators. One of the most immunosuppressive mediators that approved potency in lung cancer progression is indoleamine 2,3-dioxygenase (IDO) and its metabolite kynurenine (Kyn). The current review tries to elucidate the role of IDO/Kyn on cancer proliferation, apoptosis, angiogenesis, oxidative stress, and cancer stemness. Besides, our review investigates the new therapeutic modalities that target IDO/Kyn pathway and thus as drug candidates for targeting lung cancer and drugs that potentiate IDO/Kyn pathway and thus can be cancer-promoting agents.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| |
Collapse
|
7
|
Bifidobacterium longum CCFM1077 Ameliorated Neurotransmitter Disorder and Neuroinflammation Closely Linked to Regulation in the Kynurenine Pathway of Autistic-like Rats. Nutrients 2022; 14:nu14081615. [PMID: 35458177 PMCID: PMC9031594 DOI: 10.3390/nu14081615] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
The kynurenine pathway (KP) is abnormal in autistic patients and model animals. According to studies on the brain–gut axis, probiotics can help ameliorate the metabolic abnormalities of the KP in patients and model animals with neurological diseases. This study was aimed at evaluating the ability of Bifidobacterium longum (B. longum) CCFM077 to enhance the gut microbiome and KP metabolism and regulate the neurotransmitter levels and neuroinflammation of autistic rats. The KP metabolism of autistic rats was significantly disordered and significantly related to the regulation of neurotransmitter (excitation and inhibition) and neuroglia states. B. longum CCFM1077 could effectively alleviate autistic-like behaviours (repetitive stereotyped behaviour, learning and memory ability, and despair mood) and regulate the KP metabolism in the periphery system (gut and blood) and brain. In particular, B. longum CCFM1077 could significant regulate the quinolinic acid (QUIN) level in the brain and markedly regulate glutamic acid (Glu) and Glu/γ-aminobutyric acid (GABA) levels in the brain while alleviating microglia activity in the cerebellum. Through a correlation analysis, the QUIN level in the brain was strongly related with autistic-like behaviours and neurotransmitter levels (GABA and Glu). The QUIN level may thus be a potential therapeutic marker for treating autism through the intestinal and neural pathways.
Collapse
|
8
|
The kynurenine pathway in bipolar disorder: a meta-analysis on the peripheral blood levels of tryptophan and related metabolites. Mol Psychiatry 2021; 26:3419-3429. [PMID: 33077852 DOI: 10.1038/s41380-020-00913-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
Abstract
Growing evidence suggests that a dysregulation of the kynurenine pathway (KP) occurs in bipolar disorder (BD). This systematic review and meta-analysis aimed at assessing the possible differences in peripheral blood levels of KP metabolites between individuals with BD and healthy controls. We searched Medline, Embase, and PsycInfo electronic databases for articles indexed up to February 2020. We included any observational study comparing the peripheral blood levels of at least one KP metabolite between adults with BD and healthy controls. Random-effects meta-analyses were carried out generating pooled standardized mean differences (SMDs). Heterogeneity between studies was estimated using the I2 index. Meta-regression and sensitivity analyses were conducted. Sixteen studies met inclusion criteria and were included in our study. Meta-analyses showed that individuals with BD have lower peripheral blood levels of tryptophan (SMD = -0.29), kynurenine (SMD = -0.28), kynurenic acid (SMD = -0.30), and xanthurenic acid (SMD = -0.55), along with lower kynurenic acid to kynurenine (SMD = -0.60) and kynurenic acid to quinolinic acid (SMD = -0.37) ratios, than healthy controls. Individuals with a manic episode showed the greatest reductions in tryptophan levels (SMD = -0.51), whereas kynurenic acid levels were more reduced among subjects in a depressive phase (SMD = -0.70). Meta-regression and sensitivity analyses confirmed our results. The findings of the present meta-analysis support the hypothesis of an abnormality of the KP in BD. Considering the partial inconsistency of the findings and the small-to-medium magnitude of the estimated effect sizes, additional research assessing possible mediators or confounders is needed.
Collapse
|
9
|
Bilgiç A, Abuşoğlu S, Sadıç Çelikkol Ç, Oflaz MB, Akça ÖF, Sivrikaya A, Baysal T, Ünlü A. Altered kynurenine pathway metabolite levels in toddlers and preschool children with autism spectrum disorder. Int J Neurosci 2020; 132:826-834. [DOI: 10.1080/00207454.2020.1841187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ayhan Bilgiç
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sedat Abuşoğlu
- Department of Biochemistry, School of Medicine, Selcuk University, Konya, Turkey
| | - Çağla Sadıç Çelikkol
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Burhan Oflaz
- Department of Pediatric Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ömer Faruk Akça
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, School of Medicine, Selcuk University, Konya, Turkey
| | - Tamer Baysal
- Department of Pediatric Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ali Ünlü
- Department of Biochemistry, School of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
10
|
Klausing AD, Fukuwatari T, Bucci DJ, Schwarcz R. Stress-induced impairment in fear discrimination is causally related to increased kynurenic acid formation in the prefrontal cortex. Psychopharmacology (Berl) 2020; 237:1931-1941. [PMID: 32215686 PMCID: PMC7308198 DOI: 10.1007/s00213-020-05507-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE Stress is related to cognitive impairments which are observed in most major brain diseases. Prior studies showed that the brain concentration of the tryptophan metabolite kynurenic acid (KYNA) is modulated by stress, and that changes in cerebral KYNA levels impact cognition. However, the link between these phenomena has not been tested directly so far. OBJECTIVES To investigate a possible causal relationship between acute stress, KYNA, and fear discrimination. METHODS Adult rats were exposed to one of three acute stressors-predator odor, restraint, or inescapable foot shocks (ISS)-and KYNA in the prefrontal cortex was measured using microdialysis. Corticosterone was analyzed in a subset of rats. Another cohort underwent a fear discrimination procedure immediately after experiencing stress. Different auditory conditioned stimuli (CSs) were either paired with foot shock (CS+) or were non-reinforced (CS-). One week later, fear was assessed by re-exposing rats to each CS. Finally, to test whether stress-induced changes in KYNA causally impacted fear discrimination, a group of rats that received ISS were pre-treated with the selective KYNA synthesis inhibitor PF-04859989. RESULTS ISS caused the greatest increase in circulating corticosterone levels and raised extracellular KYNA levels by ~ 85%. The two other stressors affected KYNA much less (< 25% increase). Moreover, only rats that received ISS were unable to discriminate between CS+ and CS-. PF-04859989 abolished the stress-induced KYNA increase and also prevented the impairment in fear discrimination in animals that experienced ISS. CONCLUSIONS These findings demonstrate a causal connection between stress-induced KYNA increases and cognitive deficits. Pharmacological manipulation of KYNA synthesis therefore offers a novel approach to modulate cognitive processes in stress-related disorders.
Collapse
Affiliation(s)
- Alex D Klausing
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Baltimore, MD, 21228, USA
| | - Tsutomu Fukuwatari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Baltimore, MD, 21228, USA
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga, 522-8533, Japan
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Baltimore, MD, 21228, USA.
| |
Collapse
|
11
|
Abstract
The kynurenine pathway (KP) plays a critical role in generating cellular energy in the form of nicotinamide adenine dinucleotide (NAD+). Because energy requirements are substantially increased during an immune response, the KP is a key regulator of the immune system. Perhaps more importantly in the context of psychiatry, many kynurenines are neuroactive, modulating neuroplasticity and/or exerting neurotoxic effects in part through their effects on NMDA receptor signaling and glutamatergic neurotransmission. As such, it is not surprising that the kynurenines have been implicated in psychiatric illness in the context of inflammation. However, because of their neuromodulatory properties, the kynurenines are not just additional members of a list of inflammatory mediators linked with psychiatric illness, but in preclinical studies have been shown to be necessary components of the behavioral analogs of depression and schizophrenia-like cognitive deficits. Further, as the title suggests, the KP is regulated by, and in turn regulates multiple other physiological systems that are commonly disrupted in psychiatric disorders, including endocrine, metabolic, and hormonal systems. This review provides a broad overview of the mechanistic pathways through which the kynurenines interact with these systems, thus impacting emotion, cognition, pain, metabolic function, and aging, and in so doing potentially increasing the risk of developing psychiatric disorders. Novel therapeutic approaches targeting the KP are discussed. Moreover, electroconvulsive therapy, ketamine, physical exercise, and certain non-steroidal anti-inflammatories have been shown to alter kynurenine metabolism, raising the possibility that kynurenine metabolites may have utility as treatment response or therapeutic monitoring biomarkers.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA.
| |
Collapse
|
12
|
Castillo MFR, Murata S, Schwarz M, Schütze G, Moll N, Martin B, Burger B, Weidinger E, Mueller N, Halaris A. Celecoxib augmentation of escitalopram in treatment-resistant bipolar depression and the effects on Quinolinic Acid. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.npbr.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Metabolic perturbations associated with the consumption of a ketogenic medium-chain TAG diet in dogs with idiopathic epilepsy. Br J Nutr 2018; 120:484-490. [PMID: 30001753 PMCID: PMC6137430 DOI: 10.1017/s0007114518001617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Consumption of diets containing medium-chain TAG (MCT) has been shown to confer neuroprotective effects. We aim to identify the global metabolic perturbations associated with consumption of a ketogenic diet (medium-chain TAG diet (MCTD)) in dogs with idiopathic epilepsy. We used ultra-performance liquid chromatography-MS (UPLC-MS) to generate metabolic and lipidomic profiles of fasted canine serum and made comparisons between the MCTD and standardised placebo diet phases. We identified metabolites that differed significantly between diet phases using metabolite fragmentation profiles generated by tandem MS (UPLC-MS/MS). Consumption of the MCTD resulted in significant differences in serum metabolic profiles when compared with the placebo diet, where sixteen altered lipid metabolites were identified. Consumption of the MCTD resulted in reduced abundances of palmitoylcarnitine, octadecenoylcarnitine, stearoylcarnitine and significant changes, both reduced and increased abundances, of phosphatidylcholine (PC) metabolites. There was a significant increase in abundance of the saturated C17 : 0 fatty acyl moieties during the MCTD phase. Lysophosphatidylcholine (17 : 0) (P=0·01) and PC (17:0/20:4) (P=0·03) were both significantly higher in abundance during the MCTD. The data presented in this study highlight global changes in lipid metabolism, and, of particular interest, in the C17 : 0 moieties, as a result of MCT consumption. Elucidating the global metabolic response of MCT consumption will not only improve the administration of current ketogenic diets for neurological disease models but also provides new avenues for research to develop better diet therapies with improved neuroprotective efficacies. Future studies should clarify the involvement and importance of C17 : 0 moieties in endogenous MCT metabolic pathways.
Collapse
|
14
|
Chiappelli J, Notarangelo FM, Pocivavsek A, Thomas MAR, Rowland LM, Schwarcz R, Hong LE. Influence of plasma cytokines on kynurenine and kynurenic acid in schizophrenia. Neuropsychopharmacology 2018; 43. [PMID: 29520060 PMCID: PMC6006321 DOI: 10.1038/s41386-018-0038-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abnormalities in the kynurenine pathway (KP) of tryptophan degradation, leading to the dysfunction of neuroactive KP metabolites in the brain, have been implicated in the pathophysiology of schizophrenia (SZ). One plausible mechanism involves dysregulation of various pro-inflammatory cytokines associated with the disease, which affect indoleamine-2,3-dioxygenase (IDO), a key enzyme for tryptophan to kynurenine conversion. In order to test this hypothesis directly, we measured plasma levels of the major KP metabolites kynurenine and kynurenic acid (KYNA), as well as four major cytokines, in a sample of 106 SZ patients and 104 control participants. In contrast to the replicable findings of elevation of KYNA in the central nervous system in SZ, plasma levels of KYNA were significantly lower in SZ compared to controls (p = .004). Kynurenine levels were significantly correlated with levels of interferon-γ (p < .001), which is involved in the regulation of IDO, in both patients and controls. However, although patients had higher levels of interleukin-6 (IL-6) compared to controls (p = .012), IL-6 levels were not correlated with kynurenine or KYNA, and did not explain group differences in KYNA. Based on the lack of evidence that pro-inflammatory cytokines were significantly related to the KP abnormality in SZ despite an adequate sample size, further studies must consider alternative hypotheses to identify the origins of the KP abnormalities in SZ.
Collapse
Affiliation(s)
- Joshua Chiappelli
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Francesca M. Notarangelo
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ana Pocivavsek
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Marian A. R. Thomas
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Laura M. Rowland
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Robert Schwarcz
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - L. Elliot Hong
- 0000 0001 2175 4264grid.411024.2Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
15
|
Valproic Acid Attenuates Postoperative Psychosis Following Aggressive Resection of an Intracardiac Carcinoid Neuroendocrine Tumor: A Case Report. PSYCHOSOMATICS 2018; 59:607-611. [PMID: 29703550 DOI: 10.1016/j.psym.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 11/21/2022]
|
16
|
Valproic acid malabsorption in 30 year-old female patient - Case study. Neurol Neurochir Pol 2017; 51:259-262. [PMID: 28341336 DOI: 10.1016/j.pjnns.2017.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/23/2017] [Indexed: 11/21/2022]
Abstract
AIM Valproic acid (VPA) is used in epilepsy treatment and as a stabilizer in bipolar affective disorder for over 40 years. Although, the pharmacokinetic properties of valproic acid are well known, it is often forgotten that the formulation of the drug significantly influences its gastrointestinal absorption. CASE We are describing the case of 30 year-old female patient, diagnosed at the age of 13 with juvenile myoclonic epilepsy. Complete ineffectiveness of the treatment was caused by malabsorption of sodium valproate and valproic acid in the patient. The change of the drug formulation resulted in a several times higher bioavailability of the drug and a partial improvement of the patient's clinical condition. COMMENTARY Low concentration of valproic acid after administration the slow-released tablets are usually observed. However, a low bioavailability beside the bad compliance should be considered when the minimal level is extremely low during therapy. It is known that form of the drug, beside presence of food and its components, as well as gastrointestinal tract condition or interactions with other drugs can influence the drug level. Modification of the formulation of the drug may lead to improvement of absorption and increase its effectiveness.
Collapse
|
17
|
van Woerkom AE. A fully integrated new paradigm for lithium's mode of action - lithium utilizes latent cellular fail-safe mechanisms. Neuropsychiatr Dis Treat 2017; 13:275-302. [PMID: 28203080 PMCID: PMC5293501 DOI: 10.2147/ndt.s123612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is proposed that lithium's therapeutic effects occur indirectly by augmenting a cascade of protective "fail-safe" pathways pre-configured to activate in response to a dangerous low cell [Mg++] situation, eg, posttraumatic brain injury, alongside relative cell adenosine triphosphate depletion. Lithium activates cell protection, as it neatly mimics a lowered intracellular [Mg++] level.
Collapse
Affiliation(s)
- Arthur Ernst van Woerkom
- South Birmingham and Solihull Mental Health NHS Foundation Trust, Longbridge CMHT, Rubery, Birmingham, UK
| |
Collapse
|
18
|
Singh T, Goel RK. Adjuvant neuronal nitric oxide synthase inhibition for combined treatment of epilepsy and comorbid depression. Pharmacol Rep 2016; 69:143-149. [PMID: 27923157 DOI: 10.1016/j.pharep.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elevated nitric oxide (NO) levels in the brain have been apparently associated with depression in kindled animals. Owing to the major role of neuronal nitric oxide synthase (nNOS) in brain and ineffectiveness of antiepileptic drugs (AEDs) in restoring nitrosative stress, the present study was envisaged to evaluate the adjuvant nNOS inhibitor, 7-nitroindazole (7-NI) with valproic acid for combined treatment of epilepsy and associated depression. METHODS Pentylenetetrazole kindled animals associated with depression were treated with vehicle, valproate (300mg/kg/day ip), valproate with 7-NI (10mg/kg; 20mg/kg; 40mg/kg)/day ip and 7-NI (40mg/kg/day ip) for 15days. Except naïve, all groups were challenged with pentylenetetrazole (35mg/kg ip) on days 5, 10, and 15 to evaluate seizure severity. Depression was evaluated in all experimental groups using the tail suspension and forced swim test on days 1, 5, 10 and 15. On day 15, biochemical (corticosterone levels) and neurochemical (serotonin, kynurenine, tryptophan, glutamate, GABA, nitrite levels) estimations were carried out in cortical and hippocampal area of mice brain. RESULTS Vehicle treated kindled animals were significantly associated with depression. Chronic valproate treatment in kindled animals significantly reduced seizure severity, but could not reverse associated depression. 7-NI per se treatment in kindled animals was also reported unable to restore the associated depression completely. However, 7-NI supplementation with valproate significantly reduced seizure severity score and completely ameliorated depression with restoration of altered biochemical and neurochemical milieu. CONCLUSION Adjuvant nNOS inhibition can be previewed as safe therapy with AEDs for the combined management of epilepsy and associated depression.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
19
|
Evidence in support of using a neurochemistry approach to identify therapy for both epilepsy and associated depression. Epilepsy Behav 2016; 61:248-257. [PMID: 27423076 DOI: 10.1016/j.yebeh.2016.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
The present study aimed to develop a neurochemistry-based single or adjuvant therapy approach for comprehensive management of epilepsy and associated depression employing pentylenetetrazole-kindled animals. Kindling was induced in two-month-old male Swiss albino mice by administering a subconvulsant pentylenetetrazole dose (35mg/kg, i.p.) at an interval of 48±2h. These kindled animals were treated with saline and sodium valproate (300mg/kg/day, i.p.) for 15days. Except for the naïve group, all other groups were challenged with pentylenetetrazole (35mg/kg, i.p.) on days 5, 10, and 15 to evaluate the seizure severity. Depression was evaluated in all experimental groups after normalization of locomotor activity, using tail suspension and forced swim test on days 1, 5, 10, and 15. Four hours after behavioral evaluations on day 15, all animals were euthanized to collect their serum and discrete brain parts. Corticosterone levels were estimated in all the experimental groups as a marker of a dysregulated hypothalamus pituitary adrenal axis. Neurochemical alterations (norepinephrine, dopamine, tryptophan, kynurenine, serotonin, glutamate, GABA, and total nitrate levels) were also estimated in the cortical and hippocampal areas of the mouse brain. Results revealed that saline-treated kindled animals were associated with significant depression and altered neurochemical milieu in comparison with naïve animals. Chronic valproate treatment in kindled animals significantly reduced seizure severity score bud did not ameliorate associated depression or completely restore altered biochemical and neurochemical milieu. Based on the observation of neurochemical changes in all the groups, we propose that restoration of altered neurochemical milieu, elevated indoleamine 2,3-dioxygenase enzyme activity, and corticosterone levels using pharmacological tools with/out valproic acid may be explored for management of both epilepsy and comorbid depression.
Collapse
|
20
|
Singh T, Goel RK. Adjuvant indoleamine 2,3-dioxygenase enzyme inhibition for comprehensive management of epilepsy and comorbid depression. Eur J Pharmacol 2016; 784:111-20. [PMID: 27189423 DOI: 10.1016/j.ejphar.2016.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the major neurological disorders frequently associated with psychiatric disorders such as depression. Alteration of tryptophan metabolism towards kynurenine pathway may be one of the plausible reasons for association of depression in epilepsy. Hence, this study was envisaged to evaluate the dose dependent inhibition of indoleamine 2,3-dioxygenase (IDO) enzyme (responsible for shifting tryptophan metabolism) employing minocycline with valproic acid for comprehensive management of epilepsy and comorbid depression. Kindling was induced in male swiss albino mice by administration of pentylenetetrazole subconvulsive dose (35mg/kg, i.p.) at an interval of 48±2h. Kindled animals were treated with saline, valproate (300mg/kg/day i.p.), valproate in combination with different doses of minocycline (10mg/kg; 20mg/kg; 40mg/kg)/day i.p. and minocycline per se (40mg/kg/day i.p.) for 15 days. Except naïve, all the groups were challenged with pentylenetetrazole (35mg/kg i.p.) on day 5, 10, and 15 to evaluate the seizure severity score. Depression was evaluated in all experimental groups using tail suspension and forced swim test on days 1, 5, 10 and 15, 2h after pentylenetetrazole challenge. Results suggested that saline treated kindled animals were significantly associated with depression. Chronic valproate treatment significantly reduced seizure severity score but unable to ameliorate the associated depression. Minocycline supplementation with valproic acid dose dependently ameliorated depression associated with epilepsy. Neurochemical and biochemical findings also supported the behavioural findings of the study. Thus, our results suggested that supplementation of IDO enzyme inhibitors with valproic acid could be explored further for comprehensive management of epilepsy and associated depression.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
21
|
Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Kołosowska K, Krząścik P, Płaźnik A. Is the interaction between fatty acids and tryptophan responsible for the efficacy of a ketogenic diet in epilepsy? The new hypothesis of action. Neuroscience 2016; 313:130-48. [DOI: 10.1016/j.neuroscience.2015.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 01/09/2023]
|
22
|
Sher Y, Miller Cramer AC, Ament A, Lolak S, Maldonado JR. Valproic Acid for Treatment of Hyperactive or Mixed Delirium: Rationale and Literature Review. PSYCHOSOMATICS 2015; 56:615-25. [PMID: 26674479 DOI: 10.1016/j.psym.2015.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Delirium is the most often encountered psychiatric diagnosis in the general hospital, with an incidence of up to 82% in the intensive care unit setting and with significant detrimental effects on patients' morbidity and mortality. Antipsychotics are often considered the first-line pharmacological treatment of delirium, but their use may be limited by lack of efficacy, existing contraindications (e.g., prolonged QTc intervals), or resulting side effects (e.g., akathisia). Valproic acid (VPA) is a potential alternative or adjunct treatment. It has multiple mechanisms of action, including effects on neurotransmitter modulation, neuroinflammation, oxidative stress, and transcription, all of which are implicated in the pathophysiology of delirium. Yet, data on the use of this agent in delirium are limited. OBJECTIVE/METHODS In this article, we discuss postulated mechanisms of VPA action that provide a theoretical basis for its use in the treatment of hyperactive and mixed type delirium, based on the known and theorized pathophysiology of delirium. We also discuss potential side effects and considerations with use of VPA. CONCLUSIONS VPA has multiple modulatory effects on neurotransmitter systems, inflammation, oxidative stress, and transcriptional changes implicated in pathophysiology of delirium. When carefully chosen, VPA can be an effective and well-tolerated treatment option for the management of hyperactive and mixed type delirium. Randomized controlled trials are needed to establish tolerability and efficacy of VPA for treatment of delirium.
Collapse
Affiliation(s)
- Yelizaveta Sher
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA.
| | | | - Andrea Ament
- Medicine and Surgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Sermsak Lolak
- Department of Internal Medicine, George Washington University, Washington, DC
| | - José R Maldonado
- Medicine and Surgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
23
|
Neuroprotective kynurenine metabolite indices are abnormally reduced and positively associated with hippocampal and amygdalar volume in bipolar disorder. Psychoneuroendocrinology 2015; 52:200-11. [PMID: 25486577 PMCID: PMC4297593 DOI: 10.1016/j.psyneuen.2014.11.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 12/12/2022]
Abstract
Inflammation-related changes in the concentrations of kynurenine-pathway metabolites occur in depression secondary to medical conditions but have not been well characterized in primary bipolar disorder (BD), with contradictory results potentially attributable to the presence or absence of psychosis and/or medication effects. In contrast, reductions in hippocampal and amygdalar volume that theoretically reflect dendritic atrophy occurring in the context of a neurotoxic process are commonly reported in unmedicated BD patients. Here we tested whether the concentrations of putatively neuroprotective (kynurenic acid, KynA) and neurotoxic (3-hydroxy-kynurenine, 3HK and quinolinic acid, QA) kynurenine-pathway metabolites were altered in primary BD and whether these metabolites were associated with hippocampal and amygdalar volume. Twenty-five moderately-to-severely depressed unmedicated subjects and 38 moderately-to-severely depressed medicated subjects who met DSM-IV-TR criteria for BD, as well as 48 healthy controls (HCs) completed a structural MRI scan and provided a blood sample for kynurenine metabolite analysis, performed using high performance liquid chromatography with tandem mass spectrometry. Gray matter volumes were measured with the automated segmentation software, FreeSurfer. A putative neuroprotective index, KynA/QA, was significantly lower in the BD subjects relative to the HCs, a finding that was unrelated to current treatment with medication or a prior history of psychosis. Further, another putative neuroprotective index, KynA/3HK was positively associated with hippocampal volume in the BD group after controlling for age, sex, body mass index (BMI), and intracranial volume (ICV). Kyn/3HK was significantly associated with total amygdalar volume in the BD group, but after controlling for age, sex, BMI, but not ICV, this association was reduced to a trend. In addition, Kyn/3HK was positively associated with amygdalar volume in the HCs although the association was no longer significant after accounting for the effects of age, sex, and BMI. The results raise the possibility that BD-associated abnormalities in kynurenine metabolism may impact the structure of the hippocampus and amygdala, highlighting a pathway through which inflammation may exert neuropathological effects in the context of depression.
Collapse
|
24
|
Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder. Neuropsychopharmacology 2015; 40:463-71. [PMID: 25074636 PMCID: PMC4443961 DOI: 10.1038/npp.2014.194] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/17/2014] [Accepted: 07/07/2014] [Indexed: 12/27/2022]
Abstract
Inflammation-related changes in the concentrations of kynurenine pathway metabolites occur in depression secondary to medical conditions but are not firmly established in primary mood disorders. Reductions in hippocampal and amygdalar volume that putatively reflect dendritic atrophy are widely reported in major depressive disorder (MDD). Here we tested whether the relative serum concentrations of putatively neuroprotective (kynurenic acid (KA)) and neurotoxic (3-hydroxykynurenine (3HK) and quinolinic acid (QA)) kynurenine pathway metabolites were altered in primary MDD and whether these metabolites were associated with hippocampal and amygdalar volume. A total of 29 moderately to severely depressed unmedicated subjects who met DSM-IV criteria for MDD and 20 healthy controls (HCs) completed a structural MRI scan and provided blood sample for kynurenine metabolite analysis, performed using high-performance liquid chromatography with tandem mass spectrometry. Cytokine concentrations were measured with ELISA and gray matter volumes were measured with the automated segmentation software, FreeSurfer. An a priori defined variable of interest, the KA/QA ratio, a putative neuroprotective index, trended lower in the MDD versus the HC group and correlated negatively with anhedonia but positively with the total hippocampal and amygdala volume in the MDD subjects. The post hoc data reduction methods yielded three principal components. Component 1 (interleukin-1 receptor antagonist, QA, and kynurenine) was significantly elevated in MDD participants versus the HCs, whereas component 2 (KA, tryptophan, and kynurenine) was positively correlated with hippocampal and amygdala volume within the MDD group. Our results raise the possibility that an immune-related imbalance in the relative metabolism of KA and QA predisposes to depression-associated dendritic atrophy and anhedonia.
Collapse
|
25
|
Valproate Disturbs the Balance Between Branched and Aromatic Amino Acids in Rats. Neurotox Res 2013; 25:358-68. [DOI: 10.1007/s12640-013-9441-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
|