1
|
Duran M, Willis JR, Dalvi N, Fokakis Z, Virkus SA, Hardaway JA. Integration of Glucagon-Like Peptide 1 Receptor Actions Through the Central Amygdala. Endocrinology 2025; 166:bqaf019. [PMID: 39888375 PMCID: PMC11850305 DOI: 10.1210/endocr/bqaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Understanding the detailed mechanism of action of glucagon-like peptide 1 receptor (GLP-1R) agonists on distinct topographic and genetically defined brain circuits is critical for improving the efficacy and mitigating adverse side effects of these compounds. In this mini-review, we propose that the central nucleus of the amygdala (CeA) is a critical mediator of GLP-1R agonist-driven hypophagia. Here, we review the extant literature demonstrating CeA activation via GLP-1R agonists across multiple species and through multiple routes of administration. The precise role of GLP-1Rs within the CeA is unclear but the site-specific GLP-1Rs may mediate distinct behavioral and physiological hallmarks of GLP-1R agonists on food intake. Thus, we propose important novel directions and methods to test the role of the CeA in mediating GLP-1R actions.
Collapse
Affiliation(s)
- Miguel Duran
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer R Willis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nilay Dalvi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zoe Fokakis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sonja A Virkus
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Bello NT, Yeh CY, James MH. Reduced Sensory-Evoked Locus Coeruleus-Norepinephrine Neural Activity in Female Rats With a History of Dietary-Induced Binge Eating. Front Psychol 2019; 10:1966. [PMID: 31551861 PMCID: PMC6737582 DOI: 10.3389/fpsyg.2019.01966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Noradrenergic pathways have been implicated in eating pathologies. These experiments sought to examine how dietary-induced binge eating influences the neuronal activity of the locus coeruleus (LC)-norepinephrine (NE) system. Young adult female Sprague Dawley rats (7-8 weeks old) were exposed to a repeated intermittent (twice weekly) cycle of 30-min access to a highly palatable sweetened fat (i.e., vegetable shortening with 10% sucrose) with or without intermittent (24 h) calorie restriction (Restrict Binge or Binge groups, respectively). Age- and weight-matched female control rats were exposed to standard chow feeding (Naive group) or intermittent chow feeding (Restrict group). The Binge and Restrict Binge groups demonstrated an escalation in sweet-fat food intake after 2.5 weeks. On week 3, in vivo single-unit LC electrophysiological activity was recorded under isoflurane anesthesia. Restrict Binge (20 cells from six rats) and Binge (27 cells from six rats) had significantly reduced (approximate 20% and 26%, respectively) evoked LC discharge rates compared with naive rats (22 cells, seven rats). Spontaneous and tonic discharge rates were not different among the groups. Signal-to-noise ratio was reduced in the groups with intermittent sweetened fat exposure. In order to investigate the neuropeptide alterations as a consequence of dietary binge eating, relative gene expression of neuropeptide Y (NPY), glucagon-like peptide 1 receptor (GLP-1r), prodynorphin, and related genes were measured in LC and hypothalamic arcuate (Arc) regions. Glp-1r, Npy2r, and Pdyn in LC region were reduced with repeated intermittent restriction. Npy1r was reduced by approximately 27% in ARC of Restrict compared with Naive group. Such data indicate that dietary-induced binge eating alters the neural response of LC neurons to sensory stimuli and dampens the neural stress response.
Collapse
Affiliation(s)
- Nicholas T. Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Chung-Yang Yeh
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Morgan H. James
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
- Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
3
|
Combined ∆ 9-tetrahydrocannabinol and moderate alcohol administration: effects on ingestive behaviors in adolescent male rats. Psychopharmacology (Berl) 2019; 236:671-684. [PMID: 30415276 PMCID: PMC6401297 DOI: 10.1007/s00213-018-5093-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
RATIONALE Whereas co-use of alcohol and marijuana is prevalent in adolescents, the effects of such drug co-exposure on ingestive and cognitive behaviors remain largely unexplored. We hypothesized that co-exposure to alcohol and ∆9-tetrahydrocannabinol (THC), the main psychoactive constitute of marijuana, alters feeding behavior and cognition differently from either drug alone. METHODS Male rats received daily THC (3-20 mg/kg/day) or oil vehicle through subcutaneous injection or consumption of a cookie with access to saccharin or saccharin-sweetened alcohol during adolescence (P30-45). Barnes maze and sucrose preference tests were applied to assess spatial memory and behavioral flexibility and abstinence-related anhedonia, respectively. RESULTS Subcutaneous THC did not affect alcohol intake but dose-dependently increased acute (3 h) chow intake and reduced weight gain. Moderate alcohol consumption reduced the acute hyperphagic effect of subcutaneous THC. By contrast, oral THC at a dose > 5 mg/kg robustly reduced alcohol intake without affecting 3-h chow intake. At this dose, some rats stopped consuming the THC-laced cookies. Furthermore, oral THC reduced weight gain, and co-exposure to alcohol alleviated this effect. Chronic subcutaneous, but not oral, THC reduced sucrose intake during abstinence. Neither treatment impaired cognitive behaviors in the Barnes maze. CONCLUSION Moderate alcohol and THC consumption can interact to elicit unique outcomes on ingestive behaviors and energy balance. Importantly, this study established a novel model of voluntary alcohol and THC consumption for studying mechanisms underlying the consequences of adolescent onset co-use of the two drugs.
Collapse
|
4
|
Wheeler DS, Ebben AL, Kurtoglu B, Lovell ME, Bohn AT, Jasek IA, Baker DA, Mantsch JR, Gasser PJ, Wheeler RA. Corticosterone regulates both naturally occurring and cocaine-induced dopamine signaling by selectively decreasing dopamine uptake. Eur J Neurosci 2017; 46:2638-2646. [PMID: 28965353 DOI: 10.1111/ejn.13730] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/22/2023]
Abstract
Stressful and aversive events promote maladaptive reward-seeking behaviors such as drug addiction by acting, in part, on the mesolimbic dopamine system. Using animal models, data from our laboratory and others show that stress and cocaine can interact to produce a synergistic effect on reward circuitry. This effect is also observed when the stress hormone corticosterone is administered directly into the nucleus accumbens (NAc), indicating that glucocorticoids act locally in dopamine terminal regions to enhance cocaine's effects on dopamine signaling. However, prior studies in behaving animals have not provided mechanistic insight. Using fast-scan cyclic voltammetry, we examined the effect of systemic corticosterone on spontaneous dopamine release events (transients) in the NAc core and shell in behaving rats. A physiologically relevant systemic injection of corticosterone (2 mg/kg i.p.) induced an increase in dopamine transient amplitude and duration (both voltammetric measures sensitive to decreases in dopamine clearance), but had no effect on the frequency of transient release events. This effect was compounded by cocaine (2.5 mg/kg i.p.). However, a second experiment indicated that the same injection of corticosterone had no detectable effect on the dopaminergic encoding of a palatable natural reward (saccharin). Taken together, these results suggest that corticosterone interferes with naturally occurring dopamine uptake locally, and this effect is a critical determinant of dopamine concentration specifically in situations in which the dopamine transporter is pharmacologically blocked by cocaine.
Collapse
Affiliation(s)
- Daniel S Wheeler
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Amanda L Ebben
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Beliz Kurtoglu
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Marissa E Lovell
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Austin T Bohn
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Isabella A Jasek
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Paul J Gasser
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| | - Robert A Wheeler
- Department of Biomedical Sciences, Marquette University, 560 N. 16th St SC 446, Milwaukee, WI, 53233, USA
| |
Collapse
|
5
|
Nelson NG, Suhaidi FA, DeAngelis RS, Liang NC. Appetite and weight gain suppression effects of alcohol depend on the route and pattern of administration in Long Evans rats. Pharmacol Biochem Behav 2016; 150-151:124-133. [DOI: 10.1016/j.pbb.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
6
|
Vargas-Caraveo A, Pérez-Ishiwara DG, Martínez-Martínez A. Chronic Psychological Distress as an Inducer of Microglial Activation and Leukocyte Recruitment into the Area Postrema. Neuroimmunomodulation 2015; 22:311-21. [PMID: 25765708 DOI: 10.1159/000369350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic psychological distress can cause neuroinflammation, but the involvement of leukocytes in this inflammatory response remains unclear. The area postrema (AP) is considered a neural-immune interface because it lacks a blood-brain barrier and a site for leukocyte recruitment in neuroinflammatory conditions induced by immunological insults, but its role in chronic psychological distress has not been explored. OBJECTIVE To determine leukocyte recruitment to the AP after chronic psychological distress. METHODS Rats were exposed to cat odor for 5 consecutive days to induce distress, and, on the 6th day, their brains were dissected to perform immunohistofluorescence studies of the AP. Immune cells were identified and quantified with CD45 and CD11b markers. The distribution of neurons and immune cells was determined using TrkA and CD45 markers, respectively. RESULTS Distress induced a significant increase in CD45(+) and CD11b(+) cells in the AP. Three immunophenotypes were determined in the control and distress groups: CD45(+)/CD11b(-), CD45(+)/CD11b(+) and CD45(-)/CD11b(+). CD expression, morphology and fluorescence intensity enabled the identification of different immune cell types: starting from longitudinal ramified microglia (mainly in the control group) to amoeboid microglia, monocytes and lymphocytes (mostly in the distressed group). TrkA and CD45 expression in the AP revealed the proximity between soma neurons and leukocytes. Interestingly, some CD45(+) cells expressed TrkA, with increased expression in the distressed group. CONCLUSIONS The identification of microglial activation, leukocyte recruitment and the close proximity between neurons and leukocytes in the AP after chronic psychological distress exposure suggests the AP as a site for distress-induced immune responses and engraftment of leukocytes infiltrating the CNS.
Collapse
Affiliation(s)
- Alejandra Vargas-Caraveo
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, and Centro de Investigación en Biotecnologia Aplicada del IPN, México, México
| | | | | |
Collapse
|
7
|
Yang Y, Moghadam AA, Cordner ZA, Liang NC, Moran TH. Long term exendin-4 treatment reduces food intake and body weight and alters expression of brain homeostatic and reward markers. Endocrinology 2014; 155:3473-83. [PMID: 24949661 PMCID: PMC4138563 DOI: 10.1210/en.2014-1052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/10/2014] [Indexed: 12/19/2022]
Abstract
Repeated administration of the long-acting glucagon-like peptide 1 receptor agonist exendin-4 (EX-4) has been shown to reduce food intake and body weight and do so without a rebound increase in food intake after treatment termination. The current study examines the neural mechanisms underlying these actions. After 6 weeks of maintenance on a standard chow or a high-fat (HF) diet, male Sprague Dawley rats were treated with EX-4 (3.2 μg/kg, i.p., twice a day) or vehicle for 9 consecutive days. Food intake and body weight (BW) were monitored daily. Expression of the genes for the hypothalamic arcuate nucleus (ARC) peptides proopiomelanocortin (POMC), neuropeptide Y (NPY), and agouti gene-related protein was determined. Expression of the dopamine precursor tyrosine hydroxylase (TH) gene in the ventral tegmental area and genes for dopamine receptors 1 (D1R) and dopamine receptor 2 in the nucleus accumbens were also determined. Pair-fed groups were included to control for the effects of reduced food intake and BW. Treatment with EX-4 significantly decreased food intake and BW over the 9-day period in both the standard chow and HF groups. HF feeding decreased POMC without changing NPY/agouti gene-related protein gene expression in the ARC. Treatment with EX-4 increased POMC and decreased NPY expression independent of the reduction of food intake and BW. Mesolimbic TH and D1R gene expression were decreased significantly in chronic HF diet-fed rats, and these changes were reversed in both EX-4 and pair-fed conditions. These results suggest a role for increased POMC and decreased NPY expression in the ARC in the effects of EX-4 on food intake and BW. Our findings also suggest that EX-4 induced the recovery of mesolimbic TH and D1R expression in HF diet-fed rats may be secondary to HF intake reduction and/or weight loss.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology (Y.Y.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Psychiatry and Behavioral Sciences (Y.Y., A.A.M., Z.A.C., T.H.M.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; and Department of Psychology (N.C.L.), University of Illinois-Urbana Champaign, Champaign, Illinois 61820
| | | | | | | | | |
Collapse
|
8
|
Davis C. A narrative review of binge eating and addictive behaviors: shared associations with seasonality and personality factors. Front Psychiatry 2013; 4:183. [PMID: 24409156 PMCID: PMC3873524 DOI: 10.3389/fpsyt.2013.00183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/14/2013] [Indexed: 12/27/2022] Open
Abstract
Binge-eating disorder and seasonal affective disorder were first described as clinically relevant conditions in very close temporal proximity a few decades ago. Both disorders have a higher prevalence rate in woman than in men, are characterized by a high proneness-to-stress and manifest heightened responsiveness to high-calorie, hyper-palatable foods. In recent years, a compelling body of evidence suggests that foods high in sugar and fat have the potential to alter brain reward circuitry in a manner similar to that seen when addictive drugs like alcohol and heroin are consumed in excess. These findings have led to suggestions that some cases of compulsive overeating may be understood as an addiction to sweet, fatty, and salty foods. In this paper, it is proposed that high seasonality is a risk factor for binge eating, especially in those characterized by anxious and impulsive personality traits - associations that could only occur in an environment with a superfluity of, and easy access to, rich and tasty foods. Given the well-established links between binge eating and addiction disorders [Ref. (1-3) for reviews], it is also suggested that seasonality, together with the same high-risk psychological profile, exacerbates the likelihood of engaging in a broad range of addictive behaviors. Data from a community sample (n = 412) of adults tested these models using linear regression procedures. Results confirmed that symptoms of binge eating and other addictive behaviors were significantly inter-correlated, and that seasonality, gender, and addictive personality traits were strong statistical predictors of the variance in binge-eating scores. Seasonality and addictive personality traits also accounted for a significant proportion of the variance in the measure of addictive behaviors. Conclusions are discussed in the context of brain reward mechanisms, motivational alternations in response to chronic over-consumption, and their relevance for the treatment of excessive appetitive behaviors.
Collapse
Affiliation(s)
- Caroline Davis
- Kinesiology and Health Sciences, York University , Toronto, ON , Canada
| |
Collapse
|