2
|
Chen S, Tang D, Deng L, Xu S. Asian-European differentiation of schizophrenia-associated genes driven by admixture and natural selection. iScience 2024; 27:109560. [PMID: 38638564 PMCID: PMC11024917 DOI: 10.1016/j.isci.2024.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/29/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The European-centered genome-wide association studies of schizophrenia (SCZ) may not be well applied to non-European populations. We analyzed 1,592 reported SCZ-associated genes using the public genome data and found an overall higher Asian-European differentiation on the SCZ-associated variants than at the genome-wide level. Notable examples included 15 missense variants, a regulatory variant SLC5A10-rs1624825, and a damaging variant TSPAN18-rs1001292. Independent local adaptations in recent 25,000 years, after the Asian-European divergence, could have contributed to such genetic differentiation, as were identified at a missense mutation LTN1-rs57646126-A in Asians, and a non-risk allele ZSWIM6-rs72761442-G in Europeans. Altai-Neanderthal-derived alleles may have opposite effects on SCZ susceptibility between ancestries. Furthermore, adaptive introgression was detected on the non-risk haplotype at 1q21.2 in Europeans, while in Asians it was observed on the SCZ risk haplotype at 3p21.31 which is also potentially ultra-violet protective. This study emphasizes the importance of including more representative Asian samples in future SCZ studies.
Collapse
Affiliation(s)
- Sihan Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Die Tang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Kriska J, Janeckova L, Kirdajova D, Honsa P, Knotek T, Dzamba D, Kolenicova D, Butenko O, Vojtechova M, Capek M, Kozmik Z, Taketo MM, Korinek V, Anderova M. Wnt/β-Catenin Signaling Promotes Differentiation of Ischemia-Activated Adult Neural Stem/Progenitor Cells to Neuronal Precursors. Front Neurosci 2021; 15:628983. [PMID: 33716653 PMCID: PMC7947698 DOI: 10.3389/fnins.2021.628983] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
Modulating endogenous regenerative processes may represent a suitable treatment for central nervous system (CNS) injuries, such as stroke or trauma. Neural stem/progenitor cells (NS/PCs), which naturally reside in the subventricular zone (SVZ) of the adult brain, proliferate and differentiate to other cell types, and therefore may compensate the negative consequences of ischemic injury. The fate of NS/PCs in the developing brain is largely influenced by Wingless/Integrated (Wnt) signaling; however, its role in the differentiation of adult NS/PCs under ischemic conditions is still enigmatic. In our previous study, we identified the Wnt/β-catenin signaling pathway as a factor promoting neurogenesis at the expense of gliogenesis in neonatal mice. In this study, we used adult transgenic mice in order to assess the impact of the canonical Wnt pathway modulation (inhibition or hyper-activation) on NS/PCs derived from the SVZ, and combined it with the middle cerebral artery occlusion (MCAO) to disclose the effect of focal cerebral ischemia (FCI). Based on the electrophysiological properties of cultured cells, we first identified three cell types that represented in vitro differentiated NS/PCs – astrocytes, neuron-like cells, and precursor cells. Following FCI, we detected fewer neuron-like cells after Wnt signaling inhibition. Furthermore, the immunohistochemical analysis revealed an overall higher expression of cell-type-specific proteins after FCI, indicating increased proliferation and differentiation rates of NS/PCs in the SVZ. Remarkably, Wnt signaling hyper-activation increased the abundance of proliferating and neuron-like cells, while Wnt pathway inhibition had the opposite effect. Finally, the expression profiling at the single cell level revealed an increased proportion of neural stem cells and neuroblasts after FCI. These observations indicate that Wnt signaling enhances NS/PCs-based regeneration in the adult mouse brain following FCI, and supports neuronal differentiation in the SVZ.
Collapse
Affiliation(s)
- Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Honsa
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Tomas Knotek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - David Dzamba
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Olena Butenko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Martina Vojtechova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Martin Capek
- Service Laboratory of Light Microscopy, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Pivonkova H, Hermanova Z, Kirdajova D, Awadova T, Malinsky J, Valihrach L, Zucha D, Kubista M, Galisova A, Jirak D, Anderova M. The Contribution of TRPV4 Channels to Astrocyte Volume Regulation and Brain Edema Formation. Neuroscience 2018; 394:127-143. [PMID: 30367945 DOI: 10.1016/j.neuroscience.2018.10.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/01/2022]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) channels are involved in astrocyte volume regulation; however, only limited data exist about its mechanism in astrocytes in situ. We performed middle cerebral artery occlusion in adult mice, where we found twice larger edema 1 day after the insult in trpv4-/- mice compared to the controls, which was quantified using magnetic resonance imaging. This result suggests disrupted volume regulation in the brain cells in trpv4-/- mice leading to increased edema formation. The aim of our study was to elucidate whether TRPV4 channel-based volume regulation occurs in astrocytes in situ and whether the disrupted volume regulation in trpv4-/- mice might lead to higher edema formation after brain ischemia. For our experiments, we used trpv4-/- mice crossed with transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the glial fibrillary acidic protein promoter, which leads to astrocyte visualization by EGFP expression. For quantification of astrocyte volume changes, we used two-dimensional (2D) and three-dimensional (3D) morphometrical approaches and a quantification algorithm based on fluorescence intensity changes during volume alterations induced by hypotonicity or by oxygen-glucose deprivation. In contrast to in vitro experiments, we found little evidence of the contribution of TRPV4 channels to volume regulation in astrocytes in situ in adult mice. Moreover, we only found a rare expression of TRPV4 channels in adult mouse astrocytes. Our data suggest that TRPV4 channels are not involved in astrocyte volume regulation in situ; however, they play a protective role during the ischemia-induced brain edema formation.
Collapse
Affiliation(s)
- Helena Pivonkova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Thuraya Awadova
- Department of Microscopy, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Malinsky
- Department of Microscopy, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic; TATAA Biocenter AB, Gothenburg 411 03, Sweden
| | - Andrea Galisova
- Department of Radiodiagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Daniel Jirak
- Department of Radiodiagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic; Institute of Biophysics and Informatics, 1st Medicine Faculty, Charles University, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic.
| |
Collapse
|
5
|
Schormair B, Zhao C, Bell S, Tilch E, Salminen AV, Pütz B, Dauvilliers Y, Stefani A, Högl B, Poewe W, Kemlink D, Sonka K, Bachmann CG, Paulus W, Trenkwalder C, Oertel WH, Hornyak M, Teder-Laving M, Metspalu A, Hadjigeorgiou GM, Polo O, Fietze I, Ross OA, Wszolek Z, Butterworth AS, Soranzo N, Ouwehand WH, Roberts DJ, Danesh J, Allen RP, Earley CJ, Ondo WG, Xiong L, Montplaisir J, Gan-Or Z, Perola M, Vodicka P, Dina C, Franke A, Tittmann L, Stewart AFR, Shah SH, Gieger C, Peters A, Rouleau GA, Berger K, Oexle K, Di Angelantonio E, Hinds DA, Müller-Myhsok B, Winkelmann J. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol 2017; 16:898-907. [PMID: 29029846 PMCID: PMC5755468 DOI: 10.1016/s1474-4422(17)30327-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Restless legs syndrome is a prevalent chronic neurological disorder with potentially severe mental and physical health consequences. Clearer understanding of the underlying pathophysiology is needed to improve treatment options. We did a meta-analysis of genome-wide association studies (GWASs) to identify potential molecular targets. METHODS In the discovery stage, we combined three GWAS datasets (EU-RLS GENE, INTERVAL, and 23andMe) with diagnosis data collected from 2003 to 2017, in face-to-face interviews or via questionnaires, and involving 15 126 cases and 95 725 controls of European ancestry. We identified common variants by fixed-effect inverse-variance meta-analysis. Significant genome-wide signals (p≤5 × 10-8) were tested for replication in an independent GWAS of 30 770 cases and 286 913 controls, followed by a joint analysis of the discovery and replication stages. We did gene annotation, pathway, and gene-set-enrichment analyses and studied the genetic correlations between restless legs syndrome and traits of interest. FINDINGS We identified and replicated 13 new risk loci for restless legs syndrome and confirmed the previously identified six risk loci. MEIS1 was confirmed as the strongest genetic risk factor for restless legs syndrome (odds ratio 1·92, 95% CI 1·85-1·99). Gene prioritisation, enrichment, and genetic correlation analyses showed that identified pathways were related to neurodevelopment and highlighted genes linked to axon guidance (associated with SEMA6D), synapse formation (NTNG1), and neuronal specification (HOXB cluster family and MYT1). INTERPRETATION Identification of new candidate genes and associated pathways will inform future functional research. Advances in understanding of the molecular mechanisms that underlie restless legs syndrome could lead to new treatment options. We focused on common variants; thus, additional studies are needed to dissect the roles of rare and structural variations. FUNDING Deutsche Forschungsgemeinschaft, Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, National Research Institutions, NHS Blood and Transplant, National Institute for Health Research, British Heart Foundation, European Commission, European Research Council, National Institutes of Health, National Institute of Neurological Disorders and Stroke, NIH Research Cambridge Biomedical Research Centre, and UK Medical Research Council.
Collapse
Affiliation(s)
- Barbara Schormair
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Steven Bell
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Erik Tilch
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Aaro V Salminen
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Yves Dauvilliers
- Sleep-Wake Disorders Centre, Department of Neurology, Hôpital Gui-de-Chauliac, INSERM U1061, CHU Montpellier, France
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - David Kemlink
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Karel Sonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | | | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Centre, Georg August University Göttingen, Göttingen, Germany
| | - Claudia Trenkwalder
- Clinic for Neurosurgery, University Medical Centre, Georg August University Göttingen, Göttingen, Germany; Paracelsus-Elena Hospital, Centre of Parkinsonism and Movement Disorders, Kassel, Germany
| | - Wolfgang H Oertel
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Magdolna Hornyak
- Department of Neurology, University of Ulm, Ulm, Germany; Neuropsychiatry Centre Erding/München, Erding, Germany
| | - Maris Teder-Laving
- Estonian Genome Centre, University of Tartu and Estonian Biocentre, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, University of Tartu and Estonian Biocentre, Tartu, Estonia
| | - Georgios M Hadjigeorgiou
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Larissa, Greece
| | - Olli Polo
- Unesta Research Centre, Tampere, Finland; Department of Pulmonary Diseases, Tampere University Hospital, Tampere, Finland
| | - Ingo Fietze
- Department of Cardiology and Angiology, Centre of Sleep Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Adam S Butterworth
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Nicole Soranzo
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Willem H Ouwehand
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; NHS Blood and Transplant, Cambridge, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK; Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford, UK; Radcliffe Department of Medicine, BRC Haematology Theme and NHS Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, UK; Department of Haematology and BRC Haematology Theme, Churchill Hospital, Oxford, UK
| | - John Danesh
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK; Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Richard P Allen
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher J Earley
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - William G Ondo
- Department of Neurology, Methodist Neurological Institute, Houston, TX, USA
| | - Lan Xiong
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montréal, QC, Canada; Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jacques Montplaisir
- Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada; Hôpital du Sacré-Coeur de Montréal, 67120, Center for Advanced Research in Sleep Medicine, Montréal, QC, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland; Institute of Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of Czech Republic, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Christian Dina
- Inserm UMR1087, CNRS UMR 6291, Institut du Thorax, Nantes, France; Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, France
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Lukas Tittmann
- PopGen Biobank and Institute of Epidemiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Alexandre F R Stewart
- John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Svati H Shah
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; German Centre for Diabetes Research (DZD), Neuherberg, Germany; German Centre for Cardiovascular Disease Research (DZHK), Berlin, Germany
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Emanuele Di Angelantonio
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; NHS Blood and Transplant, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany; Neurologische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
| |
Collapse
|