1
|
Huang Y, Mai Y, Ye W, Lv S, Zhou Y, Wu P, Zhou L, Li Y, Zhong K. Brachial Plexus Root Avulsion Injury-Induced Endothelin-Converting Enzyme-Like 1 Overexpression Is Associated with Injured Motor Neurons Survival. Mol Neurobiol 2024; 61:5194-5205. [PMID: 38170441 DOI: 10.1007/s12035-023-03887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Brachial plexus root avulsion (BPRA) injury arises from challenging delivery during childbirth, sports-related incidents, or car accidents, leading to extensive loss of motor neurons (MNs) and subsequent paralysis, including both motor and sensory impairment. Surgical nerve re-implantation cannot effectively restore motor function, and the survival of injured MNs is vital for axon regeneration and re-innervating the target muscles. Therefore, identifying novel molecular targets to improve injured MNs survival is of great significance in the treatment of BPRA injuries. Endothelin-converting enzyme-like 1 (ECEL1), a membrane-bound metallopeptidase, was initially identified as a molecule associated with nerve injuries. Damaged neurons exhibit a significant increase in the expression of ECEL1 following various types of nerve injuries, such as optic nerve injury and sciatic nerve injury. This study aimed to investigate the relationship between ECEL1 overexpression and the survival of injured MNs following BPRA injury. Our results observed a significant elevation in ECEL1 expression in injured MNs and positively correlated with MNs survival following BPRA injury. The transcription of ECEL1 is regulated by the transcription factors c-Jun and ATF3 in the context of BPRA injury, which is consistent with previous other nerve injuries study. In addition, the expression of TrkA gradually decreases in ECEL1-positive MNs and ECEL1 possibly preserves the activity of downstream AKT-GSK3β pathway of TrkA in injured MNs. In conclusion, our results introduce a promising therapeutic molecular target to assist re-implantation surgery for the treatment of BPRA injury.
Collapse
Affiliation(s)
- Yu Huang
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shiqin Lv
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pingzhen Wu
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lihua Zhou
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingqin Li
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong, China.
| | - Ke Zhong
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
2
|
Lu F, Zhang G, Zhu Y, Liu Z. (-)-Epigallocatechin Gallate Attenuates Spinal Motoneuron Death Induced by Brachial Plexus Root Avulsion in Rats. Curr Med Chem 2022; 29:5139-5154. [PMID: 35579165 DOI: 10.2174/0929867329666220509204151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
Background:
Recent studies have indicated that epigallocatechin gallate (EGCG) benefits a variety of neurological insults. This study was performed to investigate the neuroprotective effect of EGCG after brachial plexus root avulsion in SD rats.
Methods:
One hundred twenty SD rats were randomized into the following three groups: an EGCG group, an Avulsion group, and a Sham group. There were 40 rats in each group. EGCG (100 mg/kg, i.p.) or normal saline was administered to rats immediately following the injuries. The treatment was continued from day 1 to day 7, and the animals were sacrificed on days 3, 7, 14 and 28 post-surgery for the harvesting of spinal cord samples for Nissl staining, immunohistochemistry (caspase-3, p-JNK, p-c-Jun) and western blot analysis (p-JNK, JNK, p-c-Jun, c-Jun).
Results:
EGCG treatment caused significant increases in the percentage of surviving motoneurons at days 14 and 28 (P<0.05) compared to the control animals. At days 3 and 7 after avulsion, the numbers of caspase-3-positive motoneurons in the EGCG-treated animals were significantly fewer than in the control animals (P<0.05). The numbers of p-JNK-positive motoneurons and the ratio of p-JNK/JNK were no significant differences between the Avulsion group and the EGCG-treated group after injury at any time point. The numbers of p-c-Jun-positive motoneurons and the ratio of p-c-Jun/c-Jun were significantly lower in EGCG-treated group compared with the Avulsion group at 3d and 7d after injury (p<0.05).
Conclusions:
Our results indicated that motoneurons were protected by EGCG against the cell death induced by brachial plexus root avulsion, and this effect was correlated with inhibiting c-Jun phosphorylation.
Collapse
Affiliation(s)
- Fatai Lu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| | - Guodong Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| | - Yingkang Zhu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshan Dong Street, Huanggu District, Shenyang 110032, Liaoning Province, PR China
| |
Collapse
|
3
|
Tang Y, Li Y, Yu G, Ling Z, Zhong K, Zilundu PLM, Li W, Fu R, Zhou LH. MicroRNA-137-3p Protects PC12 Cells Against Oxidative Stress by Downregulation of Calpain-2 and nNOS. Cell Mol Neurobiol 2021; 41:1373-1387. [PMID: 32594381 PMCID: PMC11448599 DOI: 10.1007/s10571-020-00908-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
The imbalance between excess reactive oxygen species (ROS) generation and insufficient antioxidant defenses contribute to a range of neurodegenerative diseases. High ROS levels damage cellular macromolecules such as DNA, proteins and lipids, leading to neuron vulnerability and eventual death. However, the underlying molecular mechanism of the ROS regulation is not fully elucidated. Recently, an increasing number of studies suggest that microRNAs (miRNAs) emerge as the targets in regulating oxidative stress. We recently reported the neuroprotective effect of miR-137-3p for brachial plexus avulsion-induced motoneuron death. The present study is sought to investigate whether miR-137-3p also could protect PC12 cells against hydrogen peroxide (H2O2) induced neurotoxicity. By using cell viability assay, ROS assay, gene and protein expression assay, we found that PC-12 cells exposed to H2O2 exhibited decreased cell viability, increased expression levels of calpain-2 and neuronal nitric oxide synthase (nNOS), whereas a decreased miR-137-3p expression. Importantly, restoring the miR-137-3p levels in H2O2 exposure robustly inhibited the elevated nNOS, calpain-2 and ROS expression levels, which subsequently improved the cell viability. Furthermore, the suppressive effect of miR-137-3p on the elevated ROS level under oxidative stress was considerably blunted when we mutated the binding site of calpain-2 targted by miR-137-3p, suggesting the critical role of calpain-2 involving the neuroprotective effect of miR-137-3p. Collectively, these findings highlight the neuroprotective role of miR-137-3p through down-regulating calpain and NOS activity, suggesting its potential role for combating oxidative stress insults in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yingqin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 51900, Guangdong, China
| | - Guangyin Yu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ke Zhong
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Prince L M Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Li-Hua Zhou
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Wang C, Guo X, Wang Y, Wang H. Silencing of miR-324-5p alleviates rat spinal cord injury by Sirt1. Neurosci Res 2021; 173:34-43. [PMID: 34051279 DOI: 10.1016/j.neures.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/24/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are implicated in the pathogenesis of spinal cord injury (SCI) as primary regulators. Previous studies have reported that miR-324-5p is involved in the modulation of neural injury, while the underlying mechanisms of miR-324-5p in SCI remain unclear. In a SCI rat model, miR-324-5p was significantly upregulated in the spinal cord tissues after SCI. Downregulation of miR-324-5p via injection of adeno-associated viruses (AAV) expressing miR-324-5p inhibitor relieved animal motor deficits and pathological changes in the tissues. Furthermore, downregulation of miR-324-5p significantly altered the expression of genes regulating neural growth, apoptosis, and the inflammatory and antioxidant response, which are implicated in SCI pathogenesis. In a H2O2-induced cell injury model, miR-324-5p silencing rescued the elevated apoptosis of PC12 cells. Finally, miR-324-5p directly targeted the 3'-untranslated region of NAD-dependent protein deacetylase sirtuin-1 (Sirt1) and negatively regulated the levels of Sirt1, an anti-inflammatory protein involved in SCI. Silencing of Sirt1 aggravated SCI and rescued the effects of miR-324-5p downregulation in rats. Overall, our findings indicated that silencing of miR-324-5p alleviates the loss of animal locomotion and concurrently mediates several degenerative processes relevant to the pathogenesis of SCI by Sirt1, which may provide clues for SCI treatment.
Collapse
Affiliation(s)
- Chuanbao Wang
- Department of Orthopedics, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China.
| | - Xiuli Guo
- Department of Gerontology, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China
| | - Ying Wang
- Department of Neurology, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China
| | - Hai Wang
- Department of Orthopedics, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China
| |
Collapse
|
5
|
Zhong K, Li Y, Tang Y, Yu G, Zilundu PLM, Wang Y, Zhou Y, Xu X, Fu R, Zhou L. Cytokine profile and glial activation following brachial plexus roots avulsion injury in mice. J Neuroimmunol 2021; 353:577517. [PMID: 33582398 DOI: 10.1016/j.jneuroim.2021.577517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Inflammation and tissue infiltration by various immune cells play a significant role in the pathogenesis of neurons suffering the central nervous systems diseases. Although brachial plexus root avulsion (BPRA) leads to dramatic motoneurons (MNs) death and permanent loss of function, however, the knowledge gap on cytokines and glial reaction in the spinal cord injury is still existing. The current study is sought to investigate the alteration of specific cytokine expression patterns of the BPRA injured spinal cord during an acute and subacute period. The cytokine assay, transmission electron microscopy, and histological staining were utilized to assess cytokine network alteration, ultrastructure morphology, and glial activation and MNs loss within two weeks post-injury on a mouse unilateral BPRA model. The BPRA injury caused a progressively spinal MNs loss, reduced the alpha-(α) MNs synaptic inputs, whereas enhanced glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule-1 (IBA-1), F4/80 expression in ipsilateral but not the contralateral spinal segments. Additionally, cytokine assays revealed BPRA significantly altered the level of CXCL1, ICAM1, IP10, MCP-5, MIP1-α, and CD93. Notably, the elevated MIP1-α was mainly expressed in the injured spinal MNs. While the re-distribution of CD93 expression, from the cytoplasm to the nucleus, occasionally occurred at neurons of the ipsilateral spinal segment after injury. Overall, these findings suggest that the inflammatory cytokines associated with glial cell activation might contribute to the pathophysiology of the MNs death caused by nerve roots injury.
Collapse
Affiliation(s)
- Ke Zhong
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Yingqin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 51900, China.
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Guangyin Yu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Prince Last Mudenda Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yaqiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510089, China.
| | - Yingying Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Xiaoying Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Rao Fu
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510089, China.
| | - Lihua Zhou
- Department of Anatomy, School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510089, China.
| |
Collapse
|
6
|
Yu G, Zilundu PLM, Xu X, Li Y, Zhou Y, Zhong K, Fu R, Zhou LH. The temporal pattern of brachial plexus root avulsion-induced lncRNA and mRNA expression prior to the motoneuron loss in the injured spinal cord segments. Neurochem Int 2020; 132:104611. [DOI: 10.1016/j.neuint.2019.104611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/08/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
|
7
|
Cheng X, Yeung PKK, Zhong K, Zilundu PLM, Zhou L, Chung SK. Astrocytic endothelin-1 overexpression promotes neural progenitor cells proliferation and differentiation into astrocytes via the Jak2/Stat3 pathway after stroke. J Neuroinflammation 2019; 16:227. [PMID: 31733648 PMCID: PMC6858703 DOI: 10.1186/s12974-019-1597-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Endothelin-1 (ET-1) is synthesized and upregulated in astrocytes under stroke. We previously demonstrated that transgenic mice over-expressing astrocytic ET-1 (GET-1) displayed more severe neurological deficits characterized by a larger infarct after transient middle cerebral artery occlusion (tMCAO). ET-1 is a known vasoconstrictor, mitogenic, and a survival factor. However, it is unclear whether the observed severe brain damage in GET-1 mice post stroke is due to ET-1 dysregulation of neurogenesis by altering the stem cell niche. Methods Non-transgenic (Ntg) and GET-1 mice were subjected to tMCAO with 1 h occlusion followed by long-term reperfusion (from day 1 to day 28). Neurological function was assessed using a four-point scale method. Infarct area and volume were determined by 2,3,5-triphenyltetra-zolium chloride staining. Neural stem cell (NSC) proliferation and migration in subventricular zone (SVZ) were evaluated by immunofluorescence double labeling of bromodeoxyuridine (BrdU), Ki67 and Sox2, Nestin, and Doublecortin (DCX). NSC differentiation in SVZ was evaluated using the following immunofluorescence double immunostaining: BrdU and neuron-specific nuclear protein (NeuN), BrdU and glial fibrillary acidic protein (GFAP). Phospho-Stat3 (p-Stat3) expression detected by Western-blot and immunofluorescence staining. Results GET-1 mice displayed a more severe neurological deficit and larger infarct area after tMCAO injury. There was a significant increase of BrdU-labeled progenitor cell proliferation, which co-expressed with GFAP, at SVZ in the ipsilateral side of the GET-1 brain at 28 days after tMCAO. p-Stat3 expression was increased in both Ntg and GET-1 mice in the ischemia brain at 7 days after tMCAO. p-Stat3 expression was significantly upregulated in the ipsilateral side in the GET-1 brain than that in the Ntg brain at 7 days after tMCAO. Furthermore, GET-1 mice treated with AG490 (a JAK2/Stat3 inhibitor) sh owed a significant reduction in neurological deficit along with reduced infarct area and dwarfed astrocytic differentiation in the ipsilateral brain after tMCAO. Conclusions The data indicate that astrocytic endothelin-1 overexpression promotes progenitor stem cell proliferation and astr ocytic differentiation via the Jak2/Stat3 pathway.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, 111 Dade Road, Guangzhou, 510120, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China. .,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China. .,Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, 510120, China. .,State Key Laboratory of Dampness Syndrome of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Patrick K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, HKSAR, China
| | - Ke Zhong
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Prince L M Zilundu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Sookja K Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China.
| |
Collapse
|
8
|
Park J, Yi D, Jang J, Hong J. The Value of MicroRNAs as an Indicator of the Severity and the Acute Phase of Spinal Cord Injury. Ann Rehabil Med 2019; 43:328-334. [PMID: 31311255 PMCID: PMC6637055 DOI: 10.5535/arm.2019.43.3.328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/25/2018] [Indexed: 11/26/2022] Open
Abstract
Objective To assess the role of miRNA-21 and miRNA-223 in a balloon-compression model of spinal cord injury (SCI). Methods A total of 50 male Wistar rats (n=50) were divided into the three groups: the group A (n=15, insertion of the unflated Fogarty balloon catheter), the group B (n=15, insertion of the Fogarty balloon catheter at a volume of 20 μL) and the group C (n=15, insertion of the Fogarty balloon catheter at a volume of 50 μL). After the behavioral test, RNA isolation, microRNA expression profiling using microarrays and quantitative polymerase chain reaction, measurements were compared between the three groups. Results Despite a lack of significant differences in time-dependent changes in miRNA-21 expression levels between the three groups at 4 hours, there were significant differences in them at 1, 3, and 7 days (p<0.05). Moreover, there were significant differences in time-dependent changes in miRNA-223 expression levels between the three groups at 4 hours and 1, 3, and 7 days (p<0.05). Furthermore, miRNA-223 expression levels reached the highest at 1 day but were decreased with time thereafter in all the three groups. Conclusion Expression levels of miRNA-21 and miRNA-223 might be associated with the severity and acute phase of SCI, respectively. It is mandatory, however, to analyze changes in levels of inflammatory markers and the relevant biological pathways.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Rehabilitation Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Dongsoo Yi
- Department of Rehabilitation Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jiyoon Jang
- Department of Rehabilitation Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jiseon Hong
- Department of Rehabilitation Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
9
|
Li YQ, Song FH, Zhong K, Yu GY, Zilundu PLM, Zhou YY, Fu R, Tang Y, Ling ZM, Xu X, Zhou LH. Pre-Injection of Small Interfering RNA (siRNA) Promotes c-Jun Gene Silencing and Decreases the Survival Rate of Axotomy-Injured Spinal Motoneurons in Adult Mice. J Mol Neurosci 2018; 65:400-410. [PMID: 29992498 DOI: 10.1007/s12031-018-1098-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022]
Abstract
Brachial plexus injury is a common clinical peripheral nerve trauma. A series of genes in motoneurons were activated in the corresponding segments of the spinal cord after brachial plexus roots axotomy. The spatial and temporal expression of these genes directly affects the speed of motoneuron axon regeneration and precise target organ reinnervation. In a previous study, we observed the overexpression of c-Jun in motoneurons of the spinal cord ventral horn after brachial plexus injury in rats. However, the relevance of c-Jun expression with respect to the fate of axotomy-induced branchial plexus injury in adult mice remains unknown. In the present study, we explored the function of c-Jun in motoneuron recovery after axotomy. We pre-injected small interfering RNA (siRNA) to knockdown c-Jun expression in mice and examined the effects of the overexpression of c-Jun in motoneurons after the axotomy of the brachial plexus in vivo. Axotomy induced c-Jun overexpression in the ventral horn motoneurons of adult mice from 3 to 14 days after injury. In addition, the pre-injection of siRNA transiently inhibited c-Jun expression and decreased the survival rate of axotomy-injured motoneurons. These findings indicate that the axotomy-induced overexpression of c-Jun plays an important role in the survival of ventral horn motoneurons in adult mice. In addition, the pre-injection of c-Jun siRNA through the brachial plexus stem effectively adjusts c-Jun gene expression at the ipsilateral side.
Collapse
Affiliation(s)
- Ying-Qin Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, People's Republic of China
| | - Fa-Huan Song
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Ke Zhong
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Guang-Yin Yu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Prince Last Mudenda Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Ying-Ying Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Rao Fu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Ze-Min Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Xiaoying Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
10
|
Sun JB, Li Y, Cai YF, Huang Y, Liu S, Yeung PK, Deng MZ, Sun GS, Zilundu PL, Hu QS, An RX, Zhou LH, Wang LX, Cheng X. Scutellarin protects oxygen/glucose-deprived astrocytes and reduces focal cerebral ischemic injury. Neural Regen Res 2018; 13:1396-1407. [PMID: 30106052 PMCID: PMC6108207 DOI: 10.4103/1673-5374.235293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Scutellarin, a bioactive flavone isolated from Scutellaria baicalensis, has anti-inflammatory, anti-neurotoxic, anti-apoptotic and anti-oxidative effects and has been used to treat cardiovascular and cerebrovascular diseases in China. However, the mechanisms by which scutellarin mediates neuroprotection in cerebral ischemia remain unclear. The interaction between scutellarin and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) was assessed by molecular docking study, which showed that scutellarin selectively binds to NOX2 with high affinity. Cultures of primary astrocytes isolated from the cerebral cortex of neonatal Sprague-Dawley rats were pretreated with 2, 10 or 50 μM scutellarin for 30 minutes. The astrocytes were then subjected to oxygen/glucose deprivation by incubation for 2 hours in glucose-free Dulbecco's modified Eagle's medium in a 95% N2/5% CO2 incubator, followed by simulated reperfusion for 22 hours. Cell viability was assessed by cell counting kit-8 assay. Expression levels of NOX2, connexin 43 and caspase-3 were assessed by western blot assay. Reactive oxygen species were measured spectrophotometrically. Pretreatment with 10 or 50 μM scutellarin substantially increased viability, reduced the expression of NOX2 and caspase-3, increased the expression of connexin 43, and diminished the levels of reactive oxygen species in astrocytes subjected to ischemia-reperfusion. We also assessed the effects of scutellarin in vivo in the rat transient middle cerebral artery occlusion model of cerebral ischemia-reperfusion injury. Rats were given intraperitoneal injection of 100 mg/kg scutellarin 2 hours before surgery. The Bederson scale was used to assess neurological deficit, and 2,3,5-triphenyltetrazolium chloride staining was used to measure infarct size. Western blot assay was used to assess expression of NOX2 and connexin 43 in brain tissue. Enzyme-linked immunosorbent assay was used to detect 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosin (3-NT) in brain tissue. Immunofluorescence double staining was used to determine the co-expression of caspase-3 and NeuN. Pretreatment with scutellarin improved the neurological function of rats with focal cerebral ischemia, reduced infarct size, diminished the expression of NOX2, reduced levels of 8-OHdG, 4-HNE and 3-NT, and reduced the number of cells co-expressing caspase-3 and NeuN in the injured brain tissue. Furthermore, we examined the effect of the NOX2 inhibitor apocynin. Apocynin substantially increased connexin 43 expression in vivo and in vitro. Collectively, our findings suggest that scutellarin protects against ischemic injury in vitro and in vivo by downregulating NOX2, upregulating connexin 43, decreasing oxidative damage, and reducing apoptotic cell death.
Collapse
Affiliation(s)
- Jing-Bo Sun
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Li
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Ye-Feng Cai
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Yan Huang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Shu Liu
- Department of Anatomy, An Hui Medical University, Hefei, Anhui Province, China
| | - Patrick Kk Yeung
- Department of Biomedical Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Min-Zhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Guang-Shun Sun
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Prince Lm Zilundu
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qian-Sheng Hu
- Department of Preventive Medicine, School of Public Health, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rui-Xin An
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Hua Zhou
- Guangzhou Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li-Xin Wang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| | - Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine; Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences; Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Downregulations of TRPM8 expression and membrane trafficking in dorsal root ganglion mediate the attenuation of cold hyperalgesia in CCI rats induced by GFRα3 knockdown. Brain Res Bull 2017; 135:8-24. [PMID: 28867384 DOI: 10.1016/j.brainresbull.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/07/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cold hyperalgesia is an intractable sensory abnormality commonly seen in peripheral neuropathies. Although glial cell line-derived neurotrophic factor family receptor alpha3 (GFRα3) is required for the formation of pathological cold pain has been revealed, potential transduction mechanism is poorly elucidated. We have previously demonstrated the contribution of enhanced activity of transient receptor potential melastatin 8 (TRPM8) to cold hyperalgesia in neuropathic pain using a rat model of chronic constriction injury (CCI) to the sciatic nerve. Recently, the enhancement of TRPM8 activity is attributed to the increased TRPM8 plasma membrane trafficking. In addition, TRPM8 can be sensitized by the activation of GFRα3, leading to increased cold responses in vivo. The aim of this study was to investigate whether GFRα3 could influence cold hyperalgesia of CCI rats via modulating TRPM8 expression and plasma membrane trafficking in dorsal root ganglion (DRG). METHODS Mechanical allodynia, cold and heat hyperalgesia were measured on 1day before CCI and the 1st, 4th, 7th, 10th and 14th day after CCI. TRPM8 total expression and membrane trafficking as well as GFRα3 expression in DRG were detected by immunofluorescence and western blot. Furthermore, GFRα3 small interfering RNA (siRNA) was intrathecally administrated to reduce GFRα3 expression in DRG, and the effects of GFRα3 knockdown on CCI-induced behavioral sensitization as well as TRPM8 total expression and membrane trafficking in both mRNA and protein levels were investigated, and the change in coexpression of TRPM8 with GFRα3 was also evaluated. Then, the effect of GFRα3 activation with artemin on pain behavior of CCI rats pretreated with the selective TRPM8 antagonist RQ-00203078 was observed. RESULTS Here we found that TRPM8 total expression and plasma membrane trafficking as well as GFRα3 expression in DRG were initially increased on the 4th day after CCI, and maintained at the peak level from the 10th to the 14th day, which entirely conformed with the induction and maintenance of behavioral-reflex facilitation following CCI. The coexpression of TRPM8 with GFRα3, which was mainly located in peptidergic C-fibers DRG neurons, was also increased after CCI. Downregulation of GFRα3 protein in DRG attenuated CCI-induced cold hyperalgesia without affecting mechanical allodynia and heat hyperalgesia, and reduced the upregulations of TRPM8 total expression and plasma membrane trafficking as well as coexpression of TRPM8 with GFRα3 induced by CCI. Additionally, the inhibition of TRPM8 abolished the influence of GFRα3 activation on cold hyperalgesia after CCI. CONCLUSION Our results demonstrate that GFRα3 knockdown specially inhibits cold hyperalgesia following CCI via decreasing the expression level and plasma membrane trafficking of TRPM8 in DRG. GFRα3 and its downstream mediator, TRPM8, represent a new analgesia axis which can be further exploited in sensitized cold reflex under the condition of chronic pain.
Collapse
|
12
|
Enhanced Autophagy Contributes to Protective Effects of GM1 Ganglioside Against Aβ1-42-Induced Neurotoxicity and Cognitive Deficits. Neurochem Res 2017; 42:2417-2426. [PMID: 28497346 DOI: 10.1007/s11064-017-2266-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/18/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The aggregation of Aβ peptides, Aβ1-42 in particular, is thought to be a fundamental pathogenic mechanism leading to the neuronal damage in AD. Recently, monosialoganglioside GM1 is reported to possess pivotal neuroprotection in neurodegenerative diseases. Previous studies have focused on the conformational dynamics and the biochemical interaction of the amyloid-peptide with the GM1 ganglioside, as well as the protective effect of GM1 on cognition. However, the phenomenon of autophagy with regard to neuronal dysfunction in AD is less investigated. In the present study, GM1 treatment were investigated in an AD mouse model and cultured PC12 dells to examine cognition-protective and neuroprotective effects of GM1. Furthermore, GM1 was found to induce autophagy via testing light chain 3 (LC3), Beclin1, neighbor of BRCA1 gene 1 protein and p62 (a substrate of LC3). Chloroquine, an inhibitor of lysosomal, was used to exclude the interference of lysosome, which could fuse with autophagosome and then clear it. In the presence of the inhibitor of autophagy (3-methyladenine; 3-MA), the protective effect of GM1 on PC12 cells in Aβ (1-42) induced toxic conditions was diminished. Interestingly, the expression of histone deacetylase 1 was increased in PC12 cells when treated with GM1, indicating that autophagy might be activated by GM1 through a pathway integrates protein acetylation. This study provides a novel insight into the protective role of GM1 against Aβ (1-42)-induced neurotoxicity via enhancing autophagy.
Collapse
|
13
|
Cheng X, Hou Z, Sun J, Huang Y, Wang L, Zhou Z, Zhou LH, Cai Y. Protective effects of Tongxinluo on cerebral ischemia/reperfusion injury related to Connexin 43/Calpain II/Bax/Caspase-3 pathway in rat. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:148-157. [PMID: 28065778 DOI: 10.1016/j.jep.2017.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongxinluo (TXL) is a multifunctional traditional Chinese medicine and has been widely used in the treatment of cardiovascular and cerebrovascular diseases. Numerous studies demonstrate that TXL is a novel neuroprotective drug, however, the mechanisms are largely unknown. AIM OF THE STUDY we aimed to demonstrate the protective effect of TXL on cerebral ischemia/reperfusion (I/R) injury and provide the evidence for the involvement of Connexin 43/Calpain II/ Bax/Caspase-3 pathway in TXL-mediated neuroprotection. METHODS Focal cerebral I/R injury were induced by transient middle cerebral artery occlusion (MCAO, for 90min) in adult male Sprague-Dawley rats. We estimated the effects of TXL on I/R injury including neurological deficit assessment and cerebral infarct volume measurement via TTC staining, and detected the protein expression of Connexin 43 (Cx43) by western blot. Furthermore, after the intracerebroventricular injection of carbenoxolone (CBX, the inhibitor of Cx43) at 30min before MCAO surgery, Calpain II, Bax and cleaved Caspased-3 immunoreactivity in ischemic penumbra region was detected by immunofluorescent staining, and cell apoptosis was detected by TUNEL staining. RESULTS TXL treatment greatly improved neurological deficit and reduced the infarction volume compared to MCAO with buffer treatment (P<0.05), and TXL pre-post treatment showed better results than TXL pre-treatment. TXL pre-post treatment significantly up-regulated Cx43 protein expression at 3d, 7d and 14d post-injury compared to MCAO with buffer treatment (P<0.05). Meanwhile, the immunoreactivity of Calpain II, Bax and cleaved Caspase-3 in ischemic penumbra region was obviously decreased by TXL pre-post treatment compared to MCAO group (P<0.05). However, with the treatment of the Cx43 inhibitor, CBX, the down-regulated effect of TXL on Calpain II, Bax and cleaved Caspase-3 immunoreactivity was abolished (P<0.05). Moreover, the protective effect of TXL against neuron apoptosis in penumbra region was conteracted by CBX (P<0.05). CONCLUSIONS TXL could effectively protect against I/R injury and reduced cell death via Cx43/Calpain II/Bax/Caspase-3 pathway, which contribute to I/R injury prevention and therapy.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Zijun Hou
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Medical Experimental Center, Nanyang Institute of Technology, Nanyang 473004, P.R. China.
| | - Jingbo Sun
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Yan Huang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Lixin Wang
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Ziyi Zhou
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Li-Hua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yefeng Cai
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
14
|
Gwak SJ, Macks C, Jeong DU, Kindy M, Lynn M, Webb K, Lee JS. RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials 2017; 121:155-166. [PMID: 28088077 DOI: 10.1016/j.biomaterials.2017.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/22/2016] [Accepted: 01/02/2017] [Indexed: 01/06/2023]
Abstract
Spinal cord injury (SCI) results in permanent loss of motor and sensory function due to developmentally-related and injured-induced changes in the extrinsic microenvironment and intrinsic neuronal biochemistry that limit plasticity and axonal regeneration. Our long term goal is to develop cationic, amphiphilic copolymers (poly (lactide-co-glycolide)-g-polyethylenimine, PgP) for combinatorial delivery of therapeutic nucleic acids (TNAs) and drugs targeting these different barriers. In this study, we evaluated the ability of PgP to deliver siRNA targeting RhoA, a critical signaling pathway activated by multiple extracellular inhibitors of axonal regeneration. After generation of rat compression SCI model, PgP/siRhoA polyplexes were locally injected into the lesion site. Relative to untreated injury only, PgP/siRhoA polyplexes significantly reduced RhoA mRNA and protein expression for up to 4 weeks post-injury. Histological analysis at 4 weeks post-injury showed that RhoA knockdown was accompanied by reduced apoptosis, cavity size, and astrogliosis and increased axonal regeneration within the lesion site. These studies demonstrate that PgP is an efficient non-viral delivery carrier for therapeutic siRhoA to the injured spinal cord and may be a promising platform for the development of combinatorial TNA/drug therapy.
Collapse
Affiliation(s)
- So-Jung Gwak
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Christian Macks
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Da Un Jeong
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Mark Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Michael Lynn
- Department of Neurosurgery, Greenville Health System, Greenville, SC 29615, USA
| | - Ken Webb
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
15
|
Eggers R, Tannemaat MR, De Winter F, Malessy MJA, Verhaagen J. Clinical and neurobiological advances in promoting regeneration of the ventral root avulsion lesion. Eur J Neurosci 2015; 43:318-35. [PMID: 26415525 DOI: 10.1111/ejn.13089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022]
Abstract
Root avulsions due to traction to the brachial plexus causes complete and permanent loss of function. Until fairly recent, such lesions were considered impossible to repair. Here we review clinical repair strategies and current progress in experimental ventral root avulsion lesions. The current gold standard in patients with a root avulsion is nerve transfer, whereas reimplantation of the avulsed root into the spinal cord has been performed in a limited number of cases. These neurosurgical repair strategies have significant benefit for the patient but functional recovery remains incomplete. Developing new ways to improve the functional outcome of neurosurgical repair is therefore essential. In the laboratory, the molecular and cellular changes following ventral root avulsion and the efficacy of intervention strategies have been studied at the level of spinal motoneurons, the ventral spinal root and peripheral nerve, and the skeletal muscle. We present an overview of cell-based pharmacological and neurotrophic factor treatment approaches that have been applied in combination with surgical reimplantation. These interventions all demonstrate neuroprotective effects on avulsed motoneurons, often accompanied with various degrees of axonal regeneration. However, effects on survival are usually transient and robust axon regeneration over long distances has as yet not been achieved. Key future areas of research include finding ways to further extend the post-lesion survival period of motoneurons, the identification of neuron-intrinsic factors which can promote persistent and long-distance axon regeneration, and finally prolonging the pro-regenerative state of Schwann cells in the distal nerve.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn J A Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Identification of the Avulsion-Injured Spinal Motoneurons. J Mol Neurosci 2015; 57:142-51. [PMID: 26025326 PMCID: PMC4543425 DOI: 10.1007/s12031-015-0588-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Abstract
In laboratory studies, counting the spinal motoneurons that survived axonal injury is a major method to estimate the severity and regenerative capacity of the injured motoneurons after the axonal injury and rehabilitation surgery. However, the typical motoneuron marker, the choline acetyltransferase (ChAT), could not be detected in the injured motoneurons within the first 3–4 weeks postinjury. It is necessary to explore the useful and reliable specific phenotypic markers to assess the fate of injured motoneurons in axonal injury. Here, we used the fluorogold to retrograde trace the injured motoneurons in the spinal cord and studied the expression patterns of the alpha-motoneuron marker, the neuronal nuclei DNA-binding protein (NeuN) and the peripheral nerve injury marker, the activating transcriptional factor (ATF-3), and the oxidative stress marker, the neuronal nitric oxide synthase (nNOS) within the first 4 weeks of the root avulsion of the right brachial plexus (BPRA) in the adult male Sprague-Dawley rats. Our results showed that ATF-3 was rapidly induced and sustained to express only in the nuclei of the fluorogold-labeled injured motoneurons but none in the unaffected motoneurons from the 24 h of the injury; meanwhile, the NeuN almost disappeared in the avulsion-affected motoneurons within the first 4 weeks. The nNOS was not detected in the motoneurons until the second week of the injury. On the basis of the present data, we suggest that ATF-3 labels avulsion-injured motoneurons while NeuN and nNOS are poor markers within the first 4 weeks of BPRA.
Collapse
|
17
|
Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes. BMC Neurosci 2014; 15:92. [PMID: 25055855 PMCID: PMC4121484 DOI: 10.1186/1471-2202-15-92] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/16/2014] [Indexed: 01/08/2023] Open
Abstract
Background Spinal root avulsion induces multiple pathophysiological events consisting of altered levels of specific genes and proteins related to inflammation, apoptosis, and oxidative stress, which collectively result in the death of the affected motoneurons. Recent studies have demonstrated that the gene changes involved in spinal cord injury can be regulated by microRNAs, which are a class of short non-coding RNA molecules that repress target mRNAs post-transcriptionally. With consideration for the time course of the avulsion-induced gene expression patterns within dying motoneurons, we employed microarray analysis to determine whether and how microRNAs are involved in the changes of gene expression induced by pathophysiological events in spinal cord motoneurons. Results The expression of a total of 3,361 miRNAs in the spinal cord of adult rats was identified. Unilateral root-avulsion resulted in significant alterations in miRNA expression. In the ipsilateral half compared to the contralateral half of the spinal cord, on the 3rd day after the injury, 55 miRNAs were upregulated, and 24 were downregulated, and on the 14th day after the injury, 36 miRNAs were upregulated, and 23 were downregulated. The upregulation of miR-146b-5p and miR-31a-3p and the downregulation of miR-324-3p and miR-484 were observed. Eleven of the miRNAs, including miR-21-5p, demonstrated a sustained increase; however, only miR-466c-3p presented a sustained decrease 3 and 14 days after the injury. More interestingly, 4 of the miRNAs, including miR-18a, were upregulated on the 3rd day but were downregulated on the 14th day after injury. Some of these miRNAs target inflammatory-response genes in the early stage of injury, and others target neurotransmitter transport genes in the intermediate stages of injury. The altered miRNA expression pattern suggests that the MAPK and calcium signaling pathways are consistently involved in the injury response. Conclusions This analysis may facilitate the understanding of the time-specific altered expression of a large set of microRNAs in the spinal cord after brachial root avulsion. Electronic supplementary material The online version of this article (doi:10.1186/1471-2202-15-92) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Cheng X, Luo H, Hou Z, Huang Y, Sun J, Zhou L. Neuronal nitric oxide synthase, as a downstream signaling molecule of c‑jun, regulates the survival of differentiated PC12 cells. Mol Med Rep 2014; 10:1881-6. [PMID: 25069402 DOI: 10.3892/mmr.2014.2415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 05/09/2014] [Indexed: 11/05/2022] Open
Abstract
The high expression of c-jun and neuronal nitric oxide synthase (nNOS) generally occurs in neurons following the generation of various animal models of central neuronal diseases. However, the mechanism between them in neuronal disease remains to be elucidated. Our previous studies demonstrated that the expression of c‑jun always occurs prior to expression of nNOS in motoneuron injuries and suppression of c‑jun expression by c‑jun siRNA decreased nNOS expression in differentiated PC12 cells. The present study aimed to examine whether there was an association of up and downstream regulation or crosstalk between c‑jun and nNOS in neurons. Using a culture of differentiated PC12 cells in vitro, the expression of nNOS and c-jun in cells was investigated by immunofluorescence. The nNOS inhibitor 7‑nitroindazole (7‑NI) was used in differentiated PC12 cells to downregulate the expression of nNOS. The optimal concentration of 7‑NI on the viability and survival of cultured differentiated PC12 cells was selected using a 3‑(4,5-dimethylthiazol-2-yl)‑2,5-diphenyltetrazolium assay and the effects of 7‑NI on the activity of constitutive nitric oxide synthase (cNOS) in differentiated PC12 cells were determined using a NOS Activity Detection kit. The effects of 7‑NI on the gene expression of nNOS and c‑jun were detected by western blot analysis. The results from the immunofluorescence demonstrated that the c‑jun and nNOS protein were constantly expressed in PC12 cells. The cell viability of differentiated PC12 cells were significantly inhibited by treatment with 200 and 400 µmol/l 7‑NI, and the expression levels of the nNOS protein were significantly inhibited by treatment with 200 µmol/l 7‑NI. However, 7‑NI had no significant effect on the protein expression level of c‑jun and the total activities of cNOS. Based on our previous studies, which revealed that the nNOS gene was a downstream signaling molecule of the JNK/c‑jun signaling pathway in cultured neurons, the expression of nNOS downstream was able to be regulated by c‑jun which was the upstream molecule. Therefore, these results indicated that the association between them involved up and downregulation instead of crosstalk.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Encephalopathy, Encephalopathy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Haoxuan Luo
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zijun Hou
- Department of Encephalopathy, Encephalopathy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Yan Huang
- Department of Encephalopathy, Encephalopathy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Jingbo Sun
- Department of Encephalopathy, Encephalopathy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Lihua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
19
|
Lithium enhances survival and regrowth of spinal motoneurons after ventral root avulsion. BMC Neurosci 2014; 15:84. [PMID: 24985061 PMCID: PMC4226960 DOI: 10.1186/1471-2202-15-84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/26/2014] [Indexed: 12/20/2022] Open
Abstract
Background During the clinical treatment of the brachial plexus root avulsion (BPRA), reimplantation surgery can not completely repair the motor function of the hand because the axonal growth velocity of the spinal motoneurons (MNs) is too slow to re-innervate the intrinsic hand muscles before muscle atrophy. Here, we investigated whether lithium can enhance the regenerative capacity of the spinal MNs in a rat model of BPRA. Results The avulsion and immediate reimplantation of the C7 and C8 ventral roots were performed and followed with daily intraperitoneal administration of a therapeutic concentrationof LiCl. After a 20 week long-term rehabilitation, the motor function recovery of the injured forepaw was studied by a grasping test. The survival and regeneration of MNs were checked by choline acetyltransferase (ChAT) immunofluorescence and by Fluoro-Gold (FG) retrograde labeling through the median and ulnar nerves of the ventral horn MNs. The number and diameter of the nerve fibers in the median nerve were assessed by toluidine blue staining. Our results showed that lithium plus reimplantation therapy resulted in a significantly higher grasping strength of the digits of the injured forepaw. Lithium plus reimplantation allowed 45.1% ± 8.11% of ChAT-positive MNs to survive the injury and increased the number and diameter of nerve fibers in the median nerve. The number of FG-labeled regenerative MNs was significantly elevated in all of the reimplantation animals. Our present data proved that lithium can enhance the regenerative capacity of spinal MNs. Conclusions These results suggest that immediate administration of lithium could be used to assist reimplantation surgery in repairing BPRA injuries in clinical treatment.
Collapse
|