1
|
Haimson B, Mizrahi A. Integrating innate and learned behavior through brain circuits. Trends Neurosci 2025; 48:319-329. [PMID: 40169295 DOI: 10.1016/j.tins.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
Understanding how innate predispositions and learned experiences interact to shape behavior is a central question in systems neuroscience. Traditionally, innate behaviors, that is, those present without prior learning and governed by evolutionarily conserved neural circuits, have been studied separately from learned behaviors, which depend on experience and neural plasticity. This division has led to a compartmentalized view of behavior and neural circuit organization. Increasing evidence suggests that innate and learned behaviors are not independent, but rather deeply intertwined, with plasticity evident even in circuits classically considered 'innate'. In this opinion, we highlight examples across species that illustrate the dynamic interaction between these behavioral domains and discuss the implications for unifying theoretical and empirical frameworks. We argue that a more integrative approach, namely one that acknowledges the reciprocal influences of innate and learned processes, is essential for advancing our understanding of how neuronal activity drives complex behaviors.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Life Sciences, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
2
|
Song SC, Froemke RC. Lateralized local circuit tuning in female mouse auditory cortex. Neurosci Res 2025:S0168-0102(25)00068-9. [PMID: 40189152 DOI: 10.1016/j.neures.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 02/04/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Most offspring are born helpless, requiring intense caregiving from parents especially during the first few days of neonatal life. For many species, infant cries are a primary signal used by parents to provide caregiving. Previously we and others documented how maternal left auditory cortex rapidly becomes sensitized to pup calls over hours of parental experience, enabled by oxytocin. The speed and robustness of this maternal plasticity suggests cortical pre-tuning or initial bias for pup call stimulus features. Here we examine the circuit basis of left-lateralized tuning to vocalization features with whole-cell recordings in brain slices. We found that layer 2/3 pyramidal cells of female left auditory cortex show selective suppression of inhibitory inputs with repeated stimulation at the fundamental pup call rate (inter-stimulus interval ∼150 msec) in pup-naïve females and expanded with maternal experience. However, optogenetic stimulation of cortical inhibitory cells showed that inputs from somatostatin-positive and oxytocin-receptor-expressing interneurons were less suppressed at these rates. This suggested that disynaptic inhibition rather than monosynaptic depression was a major mechanism underlying pre-tuning of cortical excitatory neurons, confirmed with simulations. Thus cortical interneuron specializations can augment neuroplasticity mechanisms to ensure fast appropriate caregiving in response to infant cries.
Collapse
Affiliation(s)
- Soomin C Song
- Ion Laboratory, New York University Langone Health, New York, NY, USA; Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Robert C Froemke
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
3
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
4
|
Rupert DD, Pagliaro AH, Choe J, Shea SD. Selective Deletion of Methyl CpG Binding Protein 2 from Parvalbumin Interneurons in the Auditory Cortex Delays the Onset of Maternal Retrieval in Mice. J Neurosci 2023; 43:6745-6759. [PMID: 37625856 PMCID: PMC10552946 DOI: 10.1523/jneurosci.0838-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome. MECP2 codes for methyl CpG binding protein 2 (MECP2), a transcriptional regulator that activates genetic programs for experience-dependent plasticity. Many neural and behavioral symptoms of Rett syndrome may result from dysregulated timing and thresholds for plasticity. As a model of adult plasticity, we examine changes to auditory cortex inhibitory circuits in female mice when they are first exposed to pups; this plasticity facilitates behavioral responses to pups emitting distress calls. Brainwide deletion of Mecp2 alters expression of markers associated with GABAergic parvalbumin interneurons (PVins) and impairs the emergence of pup retrieval. We hypothesized that loss of Mecp2 in PVins disproportionately contributes to the phenotype. Here, we find that deletion of Mecp2 from PVins delayed the onset of maternal retrieval behavior and recapitulated the major molecular and neurophysiological features of brainwide deletion of Mecp2 We observed that when PVin-selective mutants were exposed to pups, auditory cortical expression of PVin markers increased relative to that in wild-type littermates. PVin-specific mutants also failed to show the inhibitory auditory cortex plasticity seen in wild-type mice on exposure to pups and their vocalizations. Finally, using an intersectional viral genetic strategy, we demonstrate that postdevelopmental loss of Mecp2 in PVins of the auditory cortex is sufficient to delay onset of maternal retrieval. Our results support a model in which PVins play a central role in adult cortical plasticity and may be particularly impaired by loss of Mecp2 SIGNIFICANCE STATEMENT Rett syndrome is a neurodevelopmental disorder that includes deficits in both communication and the ability to update brain connections and activity during learning (plasticity). This condition is caused by mutations in the gene MECP2 We use a maternal behavioral test in mice requiring both vocal perception and neural plasticity to probe the role of Mecp2 in social and sensory learning. Mecp2 is normally active in all brain cells, but here we remove it from a specific population (parvalbumin neurons). We find that this is sufficient to delay learned behavioral responses to pups and recreates many deficits seen in whole-brain Mecp2 deletion. Our findings suggest that parvalbumin neurons specifically are central to the consequences of loss of Mecp2 activity and yield clues as to possible mechanisms by which Rett syndrome impairs brain function.
Collapse
Affiliation(s)
- Deborah D Rupert
- Department of Neurobiology and Behavior and Medical Scientist Training Program, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8434
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Alexa H Pagliaro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Jane Choe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Stephen D Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| |
Collapse
|
5
|
Lu K, Wong KT, Zhou LN, Shi YT, Yang CJ, Liu RC. Instinct to insight: Neural correlates of ethological strategy learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557240. [PMID: 37745495 PMCID: PMC10515821 DOI: 10.1101/2023.09.11.557240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In ethological behaviors like parenting, animals innately follow stereotyped patterns of choices to decide between uncertain outcomes but can learn to modify their strategies to incorporate new information. For example, female mice in a T-maze instinctively use spatial-memory to search for pups where they last found them but can learn more efficient strategies employing pup-associated acoustic cues. We uncovered neural correlates for transitioning between these innate and learned strategies. Auditory cortex (ACx) was required during learning. ACx firing at the nest increased with learning and correlated with subsequent search speed but not outcome. Surprisingly, ACx suppression rather than facilitation during search was more prognostic of correct sound-cued outcomes - even before adopting a sound-cued strategy. Meanwhile medial prefrontal cortex encoded the last pup location, but this decayed as the spatial-memory strategy declined. Our results suggest a neural competition between a weakening spatial-memory and strengthening sound-cued neural representation to mediate strategy switches.
Collapse
Affiliation(s)
- Kai Lu
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kelvin T. Wong
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Lin N. Zhou
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Yike T. Shi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Wilson KM, Arquilla AM, Saltzman W. The parental umwelt: Effects of parenthood on sensory processing in rodents. J Neuroendocrinol 2023; 35:e13237. [PMID: 36792373 DOI: 10.1111/jne.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
An animal's umwelt, comprising its perception of the sensory environment, which is inherently subjective, can change across the lifespan in accordance with major life events. In mammals, the onset of motherhood, in particular, is associated with a neural and sensory plasticity that alters a mother's detection and use of sensory information such as infant-related sensory stimuli. Although the literature surrounding mammalian mothers is well established, very few studies have addressed the effects of parenthood on sensory plasticity in mammalian fathers. In this review, we summarize the major findings on the effects of parenthood on behavioural and neural responses to sensory stimuli from pups in rodent mothers, with a focus on the olfactory, auditory, and somatosensory systems, as well as multisensory integration. We also review the available literature on sensory plasticity in rodent fathers. Finally, we discuss the importance of sensory plasticity for effective parental care, hormonal modulation of plasticity, and an exploration of temporal, ecological, and life-history considerations of sensory plasticity associated with parenthood. The changes in processing and/or perception of sensory stimuli associated with the onset of parental care may have both transient and long-lasting effects on parental behaviour and cognition in both mothers and fathers; as such, several promising areas of study, such as on the molecular/genetic, neurochemical, and experiential underpinnings of parenthood-related sensory plasticity, as well as determinants of interspecific variation, remain potential avenues for further exploration.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Department of Biology, Pomona College, Claremont, CA, USA
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
- Neuroscience Graduate Program, University of California, Riverside, CA, USA
| |
Collapse
|
7
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
8
|
Moreno A, Rajagopalan S, Tucker MJ, Lunsford P, Liu RC. Hearing Vocalizations during First Social Experience with Pups Increase Bdnf Transcription in Mouse Auditory Cortex. Neural Plast 2023; 2023:5225952. [PMID: 36845359 PMCID: PMC9946766 DOI: 10.1155/2023/5225952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
While infant cues are often assumed to innately motivate maternal response, recent research highlights how the neural coding of infant cues is altered through maternal care. Infant vocalizations are important social signals for caregivers, and evidence from mice suggests that experience caring for mouse pups induces inhibitory plasticity in the auditory cortex (AC), though the molecular mediators for such AC plasticity during the initial pup experience are not well delineated. Here, we used the maternal mouse communication model to explore whether transcription in AC of a specific, inhibition-linked, memory-associated gene, brain-derived neurotrophic factor (Bdnf) changes due to the very first pup caring experience hearing vocalizations, while controlling for the systemic influence of the hormone estrogen. Ovariectomized and estradiol or blank-implanted virgin female mice hearing pup calls with pups present had significantly higher AC exon IV Bdnf mRNA compared to females without pups present, suggesting that the social context of vocalizations induces immediate molecular changes at the site of auditory cortical processing. E2 influenced the rate of maternal behavior but did not significantly affect Bdnf mRNA transcription in the AC. To our knowledge, this is the first time Bdnf has been associated with processing social vocalizations in the AC, and our results suggest that it is a potential molecular component responsible for enhancing future recognition of infant cues by contributing to AC plasticity.
Collapse
Affiliation(s)
- Amielle Moreno
- Neuroscience Graduate Program, Emory University, Atlanta, Georgia 30332, USA
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | - Matthew J. Tucker
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Parker Lunsford
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- College of Science Undergraduate Neuroscience Program, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
9
|
Rupert DD, Pagliaro A, Choe J, Shea SD. Selective deletion of Methyl CpG binding protein 2 from parvalbumin interneurons in the auditory cortex delays the onset of maternal retrieval in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526321. [PMID: 36778467 PMCID: PMC9915474 DOI: 10.1101/2023.01.30.526321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome. MECP2 codes for methyl CpG binding protein 2 (MECP2), a transcriptional regulator that activates genetic programs for experience-dependent plasticity. Many neural and behavioral symptoms of Rett syndrome may result from dysregulated timing and threshold for plasticity. As a model of adult plasticity, we examine changes to auditory cortex inhibitory circuits in female mice when they are first exposed to pups; this plasticity facilitates behavioral responses to pups emitting distress calls. Brain-wide deletion of Mecp2 alters expression of markers associated with GABAergic parvalbumin interneurons (PVin) and impairs the emergence of pup retrieval. We hypothesized that loss of Mecp2 in PVin disproportionately contributes to the phenotype. Here we find that deletion of Mecp2 from PVin delayed the onset of maternal retrieval behavior and recapitulated the major molecular and neurophysiological features of brain-wide deletion of Mecp2 . We observed that when PVin-selective mutants were exposed to pups, auditory cortical expression of PVin markers increased relative to that in wild type littermates. PVin-specific mutants also failed to show the inhibitory auditory cortex plasticity seen in wild type mice upon exposure to pups and their vocalizations. Finally, using an intersectional viral genetic strategy, we demonstrate that post-developmental loss of Mecp2 in PVin of the auditory cortex is sufficient to delay onset of maternal retrieval. Our results support a model in which PVin play a central role in adult cortical plasticity and may be particularly impaired by loss of Mecp2 . SIGNIFICANCE STATEMENT Rett syndrome is a neurodevelopmental disorder that includes deficits in both communication and the ability to update brain connections and activity during learning ('plasticity'). This condition is caused by mutations in the gene MECP2 . We use a maternal behavioral test in mice requiring both vocal perception and neural plasticity to probe Mecp2' s role in social and sensory learning. Mecp2 is normally active in all brain cells, but here we remove it from a specific population ('parvalbumin neurons'). We find that this is sufficient to delay learned behavioral responses to pups and recreates many deficits seen in whole brain Mecp2 deletion. Our findings suggest that parvalbumin neurons specifically are central to the consequences of loss of Mecp2 activity and yield clues as to possible mechanisms by which Rett syndrome impairs brain function.
Collapse
Affiliation(s)
- Deborah D. Rupert
- Dept of Neurobiology and Behavior, Stony Brook University, and Medical Scientist Training Program, School of Medicine, Stony Brook University, Stony Brook, NY
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | - Jane Choe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | |
Collapse
|
10
|
Rupert DD, Shea SD. Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms. Front Neural Circuits 2022; 16:886629. [PMID: 35601529 PMCID: PMC9120417 DOI: 10.3389/fncir.2022.886629] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin-positive neurons are the largest class of GABAergic, inhibitory neurons in the central nervous system. In the cortex, these fast-spiking cells provide feedforward and feedback synaptic inhibition onto a diverse set of cell types, including pyramidal cells, other inhibitory interneurons, and themselves. Cortical inhibitory networks broadly, and cortical parvalbumin-expressing interneurons (cPVins) specifically, are crucial for regulating sensory plasticity during both development and adulthood. Here we review the functional properties of cPVins that enable plasticity in the cortex of adult mammals and the influence of cPVins on sensory activity at four spatiotemporal scales. First, cPVins regulate developmental critical periods and adult plasticity through molecular and structural interactions with the extracellular matrix. Second, they activate in precise sequence following feedforward excitation to enforce strict temporal limits in response to the presentation of sensory stimuli. Third, they implement gain control to normalize sensory inputs and compress the dynamic range of output. Fourth, they synchronize broad network activity patterns in response to behavioral events and state changes. Much of the evidence for the contribution of cPVins to plasticity comes from classic models that rely on sensory deprivation methods to probe experience-dependent changes in the brain. We support investigating naturally occurring, adaptive cortical plasticity to study cPVin circuits in an ethologically relevant framework, and discuss recent insights from our work on maternal experience-induced auditory cortical plasticity.
Collapse
Affiliation(s)
- Deborah D. Rupert
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, United States
| | - Stephen D. Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
11
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
12
|
Pawluski JL, Hoekzema E, Leuner B, Lonstein JS. Less can be more: Fine tuning the maternal brain. Neurosci Biobehav Rev 2022; 133:104475. [PMID: 34864004 PMCID: PMC8807930 DOI: 10.1016/j.neubiorev.2021.11.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
PAWLUSKI, J.L., Hoekzema, E., Leuner, B., and Lonstein, J.S. Less can be more: Fine tuning the maternal brain. NEUROSCI BIOBEHAV REV (129) XXX-XXX, 2022. Plasticity in the female brain across the lifespan has recently become a growing field of scientific inquiry. This has led to the understanding that the transition to motherhood is marked by some of the most significant changes in brain plasticity in the adult female brain. Perhaps unexpectedly, plasticity occurring in the maternal brain often involves a decrease in brain volume, neurogenesis and glial cell density that presumably optimizes caregiving and other postpartum behaviors. This review summarizes what we know of the 'fine-tuning' of the female brain that accompanies motherhood and highlights the implications of these changes for maternal neurobehavioral health. The first part of the review summarizes structural and functional brain changes in humans during pregnancy and postpartum period with the remainder of the review focusing on neural and glial plasticity during the peripartum period in animal models. The aim of this review is to provide a clear understanding of when 'less is more' in maternal brain plasticity and where future research can focus to improve our understanding of the unique brain plasticity occurring during matrescence.
Collapse
Affiliation(s)
- Jodi L. Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.,Corresponding author: Jodi L. Pawluski, University of Rennes 1, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| | - Elseline Hoekzema
- Brain and Development Laboratory, Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Hoekzema Lab, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology & Department of Neuroscience Columbus, OH, USA
| | - Joseph S. Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Dunlap AG, Besosa C, Pascual LM, Chong KK, Walum H, Kacsoh DB, Tankeu BB, Lu K, Liu RC. Becoming a better parent: Mice learn sounds that improve a stereotyped maternal behavior. Horm Behav 2020; 124:104779. [PMID: 32502487 PMCID: PMC7487030 DOI: 10.1016/j.yhbeh.2020.104779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
While mothering is often instinctive and stereotyped in species-specific ways, evolution can favor genetically "open" behavior programs that allow experience to shape infant care. Among experience-dependent maternal behavioral mechanisms, sensory learning about infants has been hard to separate from motivational changes arising from sensitization with infants. We developed a paradigm in which sensory learning of an infant-associated cue improves a stereotypical maternal behavior in female mice. Mice instinctively employed a spatial memory-based strategy when engaged repetitively in a pup search and retrieval task. However, by playing a sound from a T-maze arm to signal where a pup will be delivered for retrieval, mice learned within 7 days and retained for at least 2 weeks the ability to use this specific cue to guide a more efficient search strategy. The motivation to retrieve pups also increased with learning on average, but their correlation did not explain performance at the trial level. Bilaterally silencing auditory cortical activity significantly impaired the utilization of new strategy without changing the motivation to retrieve pups. Finally, motherhood as compared to infant-care experience alone accelerated how quickly the new sensory-based strategy was acquired, suggesting a role for the maternal hormonal state. By rigorously establishing that newly formed sensory associations can improve the performance of a natural maternal behavior, this work facilitates future studies into the neurochemical and circuit mechanisms that mediate novel sensory learning in the maternal context, as well as more learning-based mechanisms of parental behavior in rodents.
Collapse
Affiliation(s)
- Alexander G Dunlap
- Bioengineering Interdisciplinary Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA; Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Leila M Pascual
- Neuroscience Graduate Program, Emory University, Atlanta, GA, USA
| | - Kelly K Chong
- Department of Biology, Emory University, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hasse Walum
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Brenda B Tankeu
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA; Emory College Summer Undergraduate Research Experience Program, Atlanta, GA, USA
| | - Kai Lu
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, GA, USA; Silvio O. Conte Center for Oxytocin and Social Cognition and Center for Translational Social Neuroscience, Atlanta, GA, USA.
| |
Collapse
|
14
|
Kato R, Machida A, Nomoto K, Kang G, Hiramoto T, Tanigaki K, Mogi K, Hiroi N, Kikusui T. Maternal approach behaviors toward neonatal calls are impaired by mother's experiences of raising pups with a risk gene variant for autism. Dev Psychobiol 2020; 63:108-113. [PMID: 32573780 DOI: 10.1002/dev.22006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 06/01/2020] [Indexed: 11/06/2022]
Abstract
How the intrinsic sequence structure of neonatal mouse pup ultrasonic vocalization (USV) and maternal experiences determine maternal behaviors in mice is poorly understood. Our previous work showed that pups with a Tbx1 heterozygous (HT) mutation, a genetic risk for autism spectrum disorder (ASD), emit altered call sequences that do not induce maternal approach behaviors in C57BL6/J mothers. Here, we tested how maternal approach behaviors induced by wild-type and HT USVs are influenced by the mother's experience in raising pups of these two genotypes. The results showed that wild-type USVs were effective in inducing maternal approach behaviors when mothers raised wild-type but not HT pups. The USVs of HT pups were ineffective regardless of whether mothers raised HT or wild-type pups. However, the sequence structure of pup USVs had no effect on the general, non-directional incentive motivation of maternal behaviors. Our data show how the mother's experience with a pup with a genetic risk for ASD alters the intrinsic incentive values of USV sequences in maternal approach behaviors.
Collapse
Affiliation(s)
- Risa Kato
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan
| | - Akihiro Machida
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan
| | - Kensaku Nomoto
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kenji Tanigaki
- Shiga Medical Center Research Institute, Moriyama-shi, Shiga, Japan
| | - Kazutaka Mogi
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara-shi, Kanagawa, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Cell Systems Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Takefumi Kikusui
- School of Veterinary Medicine, Azabu University, Sagamihara-shi, Kanagawa, Japan.,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara-shi, Kanagawa, Japan
| |
Collapse
|
15
|
Serotonergic innervation of the auditory midbrain: dorsal raphe subregions differentially project to the auditory midbrain in male and female mice. Brain Struct Funct 2020; 225:1855-1871. [DOI: 10.1007/s00429-020-02098-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/06/2020] [Indexed: 01/12/2023]
|
16
|
Experience-Dependent Coding of Time-Dependent Frequency Trajectories by Off Responses in Secondary Auditory Cortex. J Neurosci 2020; 40:4469-4482. [PMID: 32327533 PMCID: PMC7275866 DOI: 10.1523/jneurosci.2665-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Time-dependent frequency trajectories are an inherent feature of many behaviorally relevant sounds, such as species-specific vocalizations. Dynamic frequency trajectories, even in short sounds, often convey meaningful information, which may be used to differentiate sound categories. However, it is not clear what and where neural responses in the auditory cortical pathway are critical for conveying information about behaviorally relevant frequency trajectories, and how these responses change with experience. Here, we uncover tuning to subtle variations in frequency trajectories in auditory cortex of female mice. We found that auditory cortical responses could be modulated by variations in a pure tone trajectory as small as 1/24th of an octave, comparable to what has been reported in primates. In particular, late spiking after the end of a sound stimulus was more often sensitive to the sound's subtle frequency variation compared with spiking during the sound. Such “Off” responses in the adult A2, but not those in core auditory cortex, were plastic in a way that may enhance the representation of a newly acquired, behaviorally relevant sound category. We illustrate this with the maternal mouse paradigm for natural vocalization learning. By using an ethologically inspired paradigm to drive auditory responses in higher-order neurons, our results demonstrate that mouse auditory cortex can track fine frequency changes, which allows A2 Off responses in particular to better respond to pitch trajectories that distinguish behaviorally relevant, natural sound categories. SIGNIFICANCE STATEMENT A whistle's pitch conveys meaning to its listener, as when dogs learn that distinct pitch trajectories whistled by their owner differentiate specific commands. Many species use pitch trajectories in their own vocalizations to distinguish sound categories, such as in human languages, such as Mandarin. How and where auditory neural activity encodes these pitch trajectories as their meaning is learned but not well understood, especially for short-duration sounds. We studied this in mice, where infants use ultrasonic whistles to communicate to adults. We found that late neural firing after a sound ends can be tuned to how the pitch changes in time, and that this response in a secondary auditory cortical field changes with experience to acquire a pitch change's meaning.
Collapse
|
17
|
Opendak M, Theisen E, Blomkvist A, Hollis K, Lind T, Sarro E, Lundström JN, Tottenham N, Dozier M, Wilson DA, Sullivan RM. Adverse caregiving in infancy blunts neural processing of the mother. Nat Commun 2020; 11:1119. [PMID: 32111822 PMCID: PMC7048726 DOI: 10.1038/s41467-020-14801-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
The roots of psychopathology frequently take shape during infancy in the context of parent-infant interactions and adversity. Yet, neurobiological mechanisms linking these processes during infancy remain elusive. Here, using responses to attachment figures among infants who experienced adversity as a benchmark, we assessed rat pup cortical local field potentials (LFPs) and behaviors exposed to adversity in response to maternal rough and nurturing handling by examining its impact on pup separation-reunion with the mother. We show that during adversity, pup cortical LFP dynamic range decreased during nurturing maternal behaviors, but was minimally impacted by rough handling. During reunion, adversity-experiencing pups showed aberrant interactions with mother and blunted cortical LFP. Blocking pup stress hormone during either adversity or reunion restored typical behavior, LFP power, and cross-frequency coupling. This translational approach suggests adversity-rearing produces a stress-induced aberrant neurobehavioral processing of the mother, which can be used as an early biomarker of later-life pathology.
Collapse
Affiliation(s)
- Maya Opendak
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA. .,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
| | - Emma Theisen
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Anna Blomkvist
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA.,Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Kaitlin Hollis
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA
| | - Teresa Lind
- Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Psychiatry, UCSD, San Diego, CA, USA.,Child and Adolescent Services Research Center (CASRC), San Diego, CA, USA
| | - Emma Sarro
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Dominican College, Orangeburg, NY, 10962, USA
| | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY, USA
| | - Mary Dozier
- Psychological and Brain Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Regina M Sullivan
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, 10016, USA. .,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA. .,Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
18
|
Maternal Experience-Dependent Cortical Plasticity in Mice Is Circuit- and Stimulus-Specific and Requires MECP2. J Neurosci 2020; 40:1514-1526. [PMID: 31911459 DOI: 10.1523/jneurosci.1964-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 01/26/2023] Open
Abstract
The neurodevelopmental disorder Rett syndrome is caused by mutations in the gene Mecp2 Misexpression of the protein MECP2 is thought to contribute to neuropathology by causing dysregulation of plasticity. Female heterozygous Mecp2 mutants (Mecp2het ) failed to acquire a learned maternal retrieval behavior when exposed to pups, an effect linked to disruption of parvalbumin-expressing inhibitory interneurons (PV) in the auditory cortex. Nevertheless, how dysregulated PV networks affect the neural activity dynamics that underlie auditory cortical plasticity during early maternal experience is unknown. Here we show that maternal experience in WT adult female mice (WT) triggers suppression of PV auditory responses. We also observe concomitant disinhibition of auditory responses in deep-layer pyramidal neurons that is selective for behaviorally relevant pup vocalizations. These neurons further exhibit sharpened tuning for pup vocalizations following maternal experience. All of these neuronal changes are abolished in Mecp2het , suggesting that they are an essential component of maternal learning. This is further supported by our finding that genetic manipulation of GABAergic networks that restores accurate retrieval behavior in Mecp2het also restores maternal experience-dependent plasticity of PV. Our data are consistent with a growing body of evidence that cortical networks are particularly vulnerable to mutations of Mecp2 in PV neurons. Moreover, our work links, for the first time, impaired in vivo cortical plasticity in awake Mecp2 mutant animals to a natural, ethologically relevant behavior.SIGNIFICANCE STATEMENT Rett syndrome is a genetic disorder that includes language communication problems. Nearly all Rett syndrome is caused by mutations in the gene that produces the protein MECP2, which is important for changes in brain connectivity believed to underlie learning. We previously showed that female Mecp2 mutants fail to learn a simple maternal care behavior performed in response to their pups' distress cries. This impairment appeared to critically involve inhibitory neurons in the auditory cortex called parvalbumin neurons. Here we record from these neurons before and after maternal experience, and we show that they adapt their response to pup calls during maternal learning in nonmutants, but not in mutants. This adaptation is partially restored by a manipulation that improves learning.
Collapse
|
19
|
Stolzenberg DS, Mayer HS. Experience-dependent mechanisms in the regulation of parental care. Front Neuroendocrinol 2019; 54:100745. [PMID: 31009675 PMCID: PMC7347228 DOI: 10.1016/j.yfrne.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/29/2019] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
Maternal behavior is a defining characteristic of mammals, which is regulated by a core, conserved neural circuit. However, mothering behavior is not always a default response to infant conspecifics. For example, initial fearful, fragmented or aggressive responses toward infants in laboratory rats and mice can give way to highly motivated and organized caregiving behaviors following appropriate hormone exposure or repeated experience with infants. Therefore hormonal and/or experiential factors must be involved in determining the extent to which infants access central approach and avoidance neural systems. In this review we describe evidence supporting the idea that infant conspecifics are capable of activating distinct neural pathways to elicit avoidant, aggressive and parental responses from adult rodents. Additionally, we discuss the hypothesis that alterations in transcriptional regulation within the medial preoptic area of the hypothalamus may be a key mechanism of neural plasticity involved in programming the differential sensitivity of these neural pathways.
Collapse
Affiliation(s)
- Danielle S Stolzenberg
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States.
| | - Heather S Mayer
- University of California, Davis, Department of Psychology, One Shields Ave., Davis, CA 95616, United States
| |
Collapse
|
20
|
Valtcheva S, Froemke RC. Neuromodulation of maternal circuits by oxytocin. Cell Tissue Res 2019; 375:57-68. [PMID: 30062614 PMCID: PMC6336509 DOI: 10.1007/s00441-018-2883-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022]
Abstract
Motherhood in mammals involves tremendous changes throughout the body and central nervous system, which support attention and nurturing of infants. Maternal care consists of complex behaviors, such as nursing and protection of the offspring, requiring new mothers to become highly sensitive to infant needs. Long-lasting neural plasticity in various regions of the cerebral cortex may enable the perception and recognition of infant cues, important for appropriate caregiving responses. Recent findings have demonstrated that the neuropeptide oxytocin is involved in a number of physiological processes, including parturition and lactation and dynamically shaping neuronal responses to infant stimuli as well. Here, we review experience-dependent changes within the cortex occurring throughout motherhood, focusing on plasticity of the somatosensory and auditory cortex. We outline the role of oxytocin in gating cortical plasticity and discuss potential mechanisms regulating oxytocin release in response to different sensory stimuli.
Collapse
Affiliation(s)
- Silvana Valtcheva
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
- Neuroscience Institute, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
- Department of Otolaryngology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
- Neuroscience Institute, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
- Department of Otolaryngology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
21
|
Moreno A, Gumaste A, Adams GK, Chong KK, Nguyen M, Shepard KN, Liu RC. Familiarity with social sounds alters c-Fos expression in auditory cortex and interacts with estradiol in locus coeruleus. Hear Res 2018; 366:38-49. [PMID: 29983289 PMCID: PMC6470399 DOI: 10.1016/j.heares.2018.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
When a social sound category initially gains behavioral significance to an animal, plasticity events presumably enhance the ability to recognize that sound category in the future. In the context of learning natural social stimuli, neuromodulators such as norepinephrine and estrogen have been associated with experience-dependent plasticity and processing of newly salient social cues, yet continued plasticity once stimuli are familiar could disrupt the stability of sensorineural representations. Here we employed a maternal mouse model of natural sensory cortical plasticity for infant vocalizations to ask whether the engagement of the noradrenergic locus coeruleus (LC) by the playback of pup-calls is affected by either prior experience with the sounds or estrogen availability, using a well-studied cellular activity and plasticity marker, the immediate early gene c-Fos. We counted call-induced c-Fos immunoreactive (cFos-IR) cells in both LC and physiologically validated fields within the auditory cortex (AC) of estradiol or blank-implanted virgin female mice with either 0 or 5-days prior experience caring for vocalizing pups. Estradiol and pup experience interacted both in the induction of c-Fos-IR in the LC, as well as in behavioral measures of locomotion during playback, consistent with the neuromodulatory center’s activity being an online reflection of both hormonal and experience-dependent influences on arousal. Throughout core AC, as well as in a high frequency sub-region of AC and in secondary AC, a main effect of pup experience was to reduce call-induced c-Fos-IR, irrespective of estradiol availability. This is consistent with the hypothesis that sound familiarity leads to less c-Fos-mediated plasticity, and less disrupted sensory representations of a meaningful call category. Taken together, our data support the view that any coupling between these sensory and neuromodulatory areas is situationally dependent, and their engagement depends differentially on both internal state factors like hormones and external state factors like prior experience.
Collapse
Affiliation(s)
- Amielle Moreno
- Neuroscience Graduate Program, Emory University, 1462 Clifton Road, Atlanta, GA, 30322, USA; Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Ankita Gumaste
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA; Neuroscience and Behavior Biology Program, Emory University, 1462 Clifton Road, Atlanta, GA, 30322, USA.
| | - Geoff K Adams
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Kelly K Chong
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA; Biomedical Engineering Graduate Program, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA.
| | - Michael Nguyen
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA; Neuroscience and Behavior Biology Program, Emory University, 1462 Clifton Road, Atlanta, GA, 30322, USA.
| | - Kathryn N Shepard
- Neuroscience Graduate Program, Emory University, 1462 Clifton Road, Atlanta, GA, 30322, USA; Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Robert C Liu
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
22
|
Ivanova TN, Gross C, Mappus RC, Kwon YJ, Bassell GJ, Liu RC. Familiarity with a vocal category biases the compartmental expression of Arc/Arg3.1 in core auditory cortex. Learn Mem 2017; 24:612-621. [PMID: 29142056 PMCID: PMC5688959 DOI: 10.1101/lm.046086.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/01/2017] [Indexed: 01/18/2023]
Abstract
Learning to recognize a stimulus category requires experience with its many natural variations. However, the mechanisms that allow a category's sensorineural representation to be updated after experiencing new exemplars are not well understood, particularly at the molecular level. Here we investigate how a natural vocal category induces expression in the auditory system of a key synaptic plasticity effector immediate early gene, Arc/Arg3.1, which is required for memory consolidation. We use the ultrasonic communication system between mouse pups and adult females to study whether prior familiarity with pup vocalizations alters how Arc is engaged in the core auditory cortex after playback of novel exemplars from the pup vocal category. A computerized, 3D surface-assisted cellular compartmental analysis, validated against manual cell counts, demonstrates significant changes in the recruitment of neurons expressing Arc in pup-experienced animals (mothers and virgin females "cocaring" for pups) compared with pup-inexperienced animals (pup-naïve virgins), especially when listening to more familiar, natural calls compared to less familiar but similarly recognized tonal model calls. Our data support the hypothesis that the kinetics of Arc induction to refine cortical representations of sensory categories is sensitive to the familiarity of the sensory experience.
Collapse
Affiliation(s)
- Tamara N Ivanova
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Christina Gross
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| | - Rudolph C Mappus
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Yong Jun Kwon
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Graduate Program in Neuroscience, Laney Graduate School, Emory University, Atlanta, Georgia 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
23
|
Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat Neurosci 2017; 20:1199-1208. [PMID: 28849791 DOI: 10.1038/nn.4619] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
Neocortical inhibitory neurons exhibit remarkably diverse morphology, physiological properties and connectivity. Genetic access to molecularly defined subtypes of inhibitory neurons has aided their functional characterization in recent years. These studies have established that, instead of simply balancing excitatory neuron activity, inhibitory neurons actively shape excitatory circuits in a subtype-specific manner. We review the emerging view that inhibitory neuron subtypes perform context-dependent modulation of excitatory activity, as well as regulate experience-dependent plasticity of excitatory circuits. We then review the roles of neuromodulators in regulating the subtype-specific functions of inhibitory neurons. Finally, we discuss the idea that dysfunctions of inhibitory neuron subtypes may be responsible for various aspects of neurological disorders.
Collapse
|
24
|
Pereira M. Structural and Functional Plasticity in the Maternal Brain Circuitry. New Dir Child Adolesc Dev 2017; 2016:23-46. [PMID: 27589496 DOI: 10.1002/cad.20163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social experience while the reciprocal relationship between the mother and her infant forms and develops. These alterations account for the remarkable behavioral plasticity of mothers. This review will examine the molecular and neurobiological modulation and plasticity through which parenting develops and adjusts in new mothers, primarily discussing recent findings in nonhuman animals. A better understanding of how parenting impacts the brain at the molecular, cellular, systems/network, and behavioral levels is likely to significantly contribute to novel strategies for treating postpartum neuropsychiatric disorders in new mothers, and critical for both the mother's physiological and mental health and the development and well-being of her young.
Collapse
|
25
|
MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice. Nat Commun 2017; 8:14077. [PMID: 28098153 PMCID: PMC5253927 DOI: 10.1038/ncomms14077] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Neurodevelopmental disorders are marked by inappropriate synaptic connectivity early in life, but how disruption of experience-dependent plasticity contributes to cognitive and behavioural decline in adulthood is unclear. Here we show that pup gathering behaviour and associated auditory cortical plasticity are impaired in female Mecp2het mice, a model of Rett syndrome. In response to learned maternal experience, Mecp2het females exhibited transient changes to cortical inhibitory networks typically associated with limited plasticity. Averting these changes in Mecp2het through genetic or pharmacological manipulations targeting the GABAergic network restored gathering behaviour. We propose that pup gathering learning triggers a transient epoch of inhibitory plasticity in auditory cortex that is dysregulated in Mecp2het. In this window of heightened sensitivity to sensory and social cues, Mecp2 mutations suppress adult plasticity independently from their effects on early development. Rett syndrome is associated with impaired synaptic connectivity beginning in early development. Here the authors show in female mice heterozygous for Mecp2, a model of Rett syndrome, that during adulthood, auditory cortex plasticity associated with a learned maternal behaviour is also impaired.
Collapse
|
26
|
Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning. eNeuro 2016; 3:eN-NWR-0318-16. [PMID: 27957529 PMCID: PMC5128782 DOI: 10.1523/eneuro.0318-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups’ postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning.
Collapse
|
27
|
Geissler DB, Schmidt HS, Ehret G. Knowledge About Sounds-Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields, and Layers in House Mice. Front Neurosci 2016; 10:98. [PMID: 27013959 PMCID: PMC4789409 DOI: 10.3389/fnins.2016.00098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Activation of the auditory cortex (AC) by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF), the ultrasonic field (UF), the secondary field (AII), and the dorsoposterior field (DP) suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers) and brains which acquired knowledge via implicit learning (naïve females). In this way, auditory cortical activation discriminates between instinctive (mothers) and learned (naïve females) cognition.
Collapse
Affiliation(s)
| | | | - Günter Ehret
- Institute of Neurobiology, University of Ulm Ulm, Germany
| |
Collapse
|
28
|
Tan AYY. Spatial diversity of spontaneous activity in the cortex. Front Neural Circuits 2015; 9:48. [PMID: 26441547 PMCID: PMC4585302 DOI: 10.3389/fncir.2015.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/24/2015] [Indexed: 12/05/2022] Open
Abstract
The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.
Collapse
Affiliation(s)
- Andrew Y Y Tan
- Center for Perceptual Systems and Department of Neuroscience, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
29
|
Becoming a mother-circuit plasticity underlying maternal behavior. Curr Opin Neurobiol 2015; 35:49-56. [PMID: 26143475 DOI: 10.1016/j.conb.2015.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022]
Abstract
The transition to motherhood is a dramatic event during the lifetime of many animals. In mammals, motherhood is accompanied by hormonal changes in the brain that start during pregnancy, followed by experience dependent plasticity after parturition. Together, these changes prime the nervous system of the mother for efficient nurturing of her offspring. Recent work has described how neural circuits are modified during the transition to motherhood. Here we discuss changes in the auditory cortex during motherhood as a model for maternal plasticity in sensory systems. We compare classical plasticity paradigms with changes that arise naturally in mothers, highlighting current efforts to establish a mechanistic understanding of plasticity and its different components in the context of maternal behavior.
Collapse
|
30
|
Behavioral relevance helps untangle natural vocal categories in a specific subset of core auditory cortical pyramidal neurons. J Neurosci 2015; 35:2636-45. [PMID: 25673855 DOI: 10.1523/jneurosci.3803-14.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sound categorization is essential for auditory behaviors like acoustic communication, but its genesis within the auditory pathway is not well understood-especially for learned natural categories like vocalizations, which often share overlapping acoustic features that must be distinguished (e.g., speech). We use electrophysiological mapping and single-unit recordings in mice to investigate how representations of natural vocal categories within core auditory cortex are modulated when one category acquires enhanced behavioral relevance. Taking advantage of a maternal mouse model of acoustic communication, we found no long-term auditory cortical map expansion to represent a behaviorally relevant pup vocalization category-contrary to expectations from the cortical plasticity literature on conditioning with pure tones. Instead, we observed plasticity that improved the separation between acoustically similar pup and adult vocalization categories among a physiologically defined subset of late-onset, putative pyramidal neurons, but not among putative interneurons. Additionally, a larger proportion of these putative pyramidal neurons in maternal animals compared with nonmaternal animals responded to the individual pup call exemplars having combinations of acoustic features most typical of that category. Together, these data suggest that higher-order representations of acoustic categories arise from a subset of core auditory cortical pyramidal neurons that become biased toward the combination of acoustic features statistically predictive of membership to a behaviorally relevant sound category.
Collapse
|
31
|
Single neuron and population coding of natural sounds in auditory cortex. Curr Opin Neurobiol 2013; 24:103-10. [PMID: 24492086 DOI: 10.1016/j.conb.2013.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/29/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022]
Abstract
The auditory system drives behavior using information extracted from sounds. Early in the auditory hierarchy, circuits are highly specialized for detecting basic sound features. However, already at the level of the auditory cortex the functional organization of the circuits and the underlying coding principles become different. Here, we review some recent progress in our understanding of single neuron and population coding in primary auditory cortex, focusing on natural sounds. We discuss possible mechanisms explaining why single neuron responses to simple sounds cannot predict responses to natural stimuli. We describe recent work suggesting that structural features like local subnetworks rather than smoothly mapped tonotopy are essential components of population coding. Finally, we suggest a synthesis of how single neurons and subnetworks may be involved in coding natural sounds.
Collapse
|
32
|
Banerjee SB, Liu RC. Storing maternal memories: hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues. Front Neuroendocrinol 2013; 34:300-14. [PMID: 23916405 PMCID: PMC3788048 DOI: 10.1016/j.yfrne.2013.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/15/2022]
Abstract
Much of the literature on maternal behavior has focused on the role of infant experience and hormones in a canonical subcortical circuit for maternal motivation and maternal memory. Although early studies demonstrated that the cerebral cortex also plays a significant role in maternal behaviors, little has been done to explore what that role may be. Recent work though has provided evidence that the cortex, particularly sensory cortices, contains correlates of sensory memories of infant cues, consistent with classical studies of experience-dependent sensory cortical plasticity in non-maternal paradigms. By reviewing the literature from both the maternal behavior and sensory cortical plasticity fields, focusing on the auditory modality, we hypothesize that maternal hormones (predominantly estrogen) may act to prime auditory cortical neurons for a longer-lasting neural trace of infant vocal cues, thereby facilitating recognition and discrimination. This couldthen more efficiently activate the subcortical circuit to elicit and sustain maternal behavior.
Collapse
Affiliation(s)
- Sunayana B. Banerjee
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322
| | - Robert C. Liu
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30322
| |
Collapse
|
33
|
Understanding the neurophysiological basis of auditory abilities for social communication: a perspective on the value of ethological paradigms. Hear Res 2013; 305:3-9. [PMID: 23994815 DOI: 10.1016/j.heares.2013.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/11/2013] [Accepted: 08/19/2013] [Indexed: 11/21/2022]
Abstract
Acoustic communication between animals requires them to detect, discriminate, and categorize conspecific or heterospecific vocalizations in their natural environment. Laboratory studies of the auditory-processing abilities that facilitate these tasks have typically employed a broad range of acoustic stimuli, ranging from natural sounds like vocalizations to "artificial" sounds like pure tones and noise bursts. However, even when using vocalizations, laboratory studies often test abilities like categorization in relatively artificial contexts. Consequently, it is not clear whether neural and behavioral correlates of these tasks (1) reflect extensive operant training, which drives plastic changes in auditory pathways, or (2) the innate capacity of the animal and its auditory system. Here, we review a number of recent studies, which suggest that adopting more ethological paradigms utilizing natural communication contexts are scientifically important for elucidating how the auditory system normally processes and learns communication sounds. Additionally, since learning the meaning of communication sounds generally involves social interactions that engage neuromodulatory systems differently than laboratory-based conditioning paradigms, we argue that scientists need to pursue more ethological approaches to more fully inform our understanding of how the auditory system is engaged during acoustic communication. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
|
34
|
Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS, Liu R, Maffei A, Miller P, Wierenga CJ, Woodin MA, Zenke F, Sprekeler H. Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front Neural Circuits 2013; 7:119. [PMID: 23882186 PMCID: PMC3714539 DOI: 10.3389/fncir.2013.00119] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/23/2013] [Indexed: 02/03/2023] Open
Abstract
While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical findings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.
Collapse
Affiliation(s)
- T P Vogels
- Department of Physiology, Anatomy, and Genetics, Centre for Neural Circuits and Behaviour, University of Oxford Oxford, UK ; School of Computer and Communication Sciences and School of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|