1
|
Pradier B, Segelcke D, Reichl S, Zahn PK, Pogatzki-Zahn EM. Spinal GABA transporter 1 contributes to evoked-pain related behavior but not resting pain after incision injury. Front Mol Neurosci 2023; 16:1282151. [PMID: 38130683 PMCID: PMC10734427 DOI: 10.3389/fnmol.2023.1282151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibitory function of GABA at the spinal level and its central modulation in the brain are essential for pain perception. However, in post-surgical pain, the exact mechanism and modes of action of GABAergic transmission have been poorly studied. This work aimed to investigate GABA synthesis and uptake in the incisional pain model in a time-dependent manner. Here, we combined assays for mechanical and heat stimuli-induced withdrawal reflexes with video-based assessments and assays for non-evoked (NEP, guarding of affected hind paw) and movement-evoked (MEP, gait pattern) pain-related behaviors in a plantar incision model in male rats to phenotype the effects of the inhibition of the GABA transporter (GAT-1), using a specific antagonist (NO711). Further, we determined the expression profile of spinal dorsal horn GAT-1 and glutamate decarboxylase 65/67 (GAD65/67) by protein expression analyses at four time points post-incision. Four hours after incision, we detected an evoked pain phenotype (mechanical, heat and movement), which transiently ameliorated dose-dependently following spinal inhibition of GAT-1. However, the NEP-phenotype was not affected. Four hours after incision, GAT-1 expression was significantly increased, whereas GAD67 expression was significantly reduced. Our data suggest that GAT-1 plays a role in balancing spinal GABAergic signaling in the spinal dorsal horn shortly after incision, resulting in the evoked pain phenotype. Increased GAT-1 expression leads to increased GABA uptake from the synaptic cleft and reduces tonic GABAergic inhibition at the post-synapse. Inhibition of GAT-1 transiently reversed this imbalance and ameliorated the evoked pain phenotype.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sylvia Reichl
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - P. K. Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - E. M. Pogatzki-Zahn
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
2
|
Oyama M, Watanabe S, Iwai T, Tanabe M. Distinct synaptic mechanisms underlying the analgesic effects of γ-aminobutyric acid transporter subtypes 1 and 3 inhibitors in the spinal dorsal horn. Pain 2022; 163:334-349. [PMID: 33990107 DOI: 10.1097/j.pain.0000000000002338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Normalization of the excitatory and inhibitory balance by increasing the levels of endogenous inhibitory neurotransmitters by blocking their reuptake is a promising therapeutic strategy for relieving chronic pain. Pharmacological blockade of spinal γ-aminobutyric acid (GABA) transporter subtypes 1 and 3 (GAT1 and GAT3) has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we explored the synaptic mechanisms underlying their analgesic effects in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult mice, and the effects of GAT inhibitors on miniature and evoked postsynaptic currents were examined. Behaviorally, GAT inhibitors were intrathecally applied to assess their effects on mechanical hypersensitivity in mice developing neuropathic pain after partial sciatic nerve ligation. The GAT1 inhibitor NNC-711 reduced the frequency of miniature excitatory postsynaptic currents (EPSCs) and the amplitude of C-fiber-mediated EPSCs, and the GAT3 inhibitor SNAP-5114 reduced the amplitude of A-fiber-mediated and C-fiber-mediated EPSCs. These effects were antagonized by the GABAB receptor antagonist CGP55845. Consistently, the analgesic effect of intrathecally injected NNC-711 and SNAP-5114 in mice developing mechanical hypersensitivity after partial sciatic nerve ligation was abolished by CGP55845. Thus, GAT1 and GAT3 inhibitors exert distinct GABAB receptor-mediated inhibitory effects on excitatory synaptic transmission in the spinal dorsal horn, which most likely contributes to their analgesic effects.
Collapse
Affiliation(s)
- Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
3
|
Shimizu-Okabe C, Kobayashi S, Kim J, Kosaka Y, Sunagawa M, Okabe A, Takayama C. Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord. Int J Mol Sci 2022; 23:ijms23020834. [PMID: 35055019 PMCID: PMC8776010 DOI: 10.3390/ijms23020834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine coreleasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play critical roles in regulating pain, locomotive movement, and respiratory rhythms. In this study, we first describe GABAergic and glycinergic transmission and inhibitory networks, consisting of three types of terminals in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with a specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated, and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many GABAergic neurons convert to a coreleasing state. The coreleasing neurons and terminals remain in the dorsal horn, whereas many ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.
Collapse
Affiliation(s)
- Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, Korea;
| | - Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Masanobu Sunagawa
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Akihito Okabe
- Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan;
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
- Correspondence: ; Tel.: +81-98-895-1103 or +81-895-1405
| |
Collapse
|
4
|
Liu P, Zhang X, He X, Jiang Z, Wang Q, Lu Y. Spinal GABAergic neurons are under feed-forward inhibitory control driven by A δ and C fibers in Gad2 td-Tomato mice. Mol Pain 2021; 17:1744806921992620. [PMID: 33586515 PMCID: PMC7890716 DOI: 10.1177/1744806921992620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Spinal GABAergic neurons act as a critical modulator in sensory transmission like pain or itch. The monosynaptic or polysynaptic primary afferent inputs onto GABAergic neurons, along with other interneurons or projection neurons make up the direct and feed-forward inhibitory neural circuits. Previous research indicates that spinal GABAergic neurons mainly receive excitatory inputs from Aδ and C fibers. However, whether they are controlled by other inhibitory sending signals is not well understood. METHODS We applied a transgenic mouse line in which neurons co-expressed the GABA-synthesizing enzyme Gad65 and the enhanced red fluorescence (td-Tomato) to characterize the features of morphology and electrophysiology of GABAergic neurons. Patch-clamp whole cell recordings were used to record the evoked postsynaptic potentials of fluorescent neurons in spinal slices in response to dorsal root stimulation. RESULTS We demonstrated that GABAergic neurons not only received excitatory drive from peripheral Aβ, Aδ and C fibers, but also received inhibitory inputs driven by Aδ and C fibers. The evoked inhibitory postsynaptic potentials (eIPSPs) mediated by C fibers were mainly Glycinergic (66.7%) as well as GABAergic mixed with Glycinergic (33.3%), whereas the inhibition mediated by Aδ fibers was predominately both GABA and Glycine-dominant (57.1%), and the rest of which was purely Glycine-dominant (42.9%). CONCLUSION These results indicated that spinal GABAergic inhibitory neurons are under feedforward inhibitory control driven by primary C and Aδ fibers, suggesting that this feed-forward inhibitory pathway may play an important role in balancing the excitability of GABAergic neurons in spinal dorsal horn.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiao Zhang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaolan He
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenhua Jiang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qun Wang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan Lu
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Distinct development of the glycinergic terminals in the ventral and dorsal horns of the mouse cervical spinal cord. Neuroscience 2016; 343:459-471. [PMID: 28039040 DOI: 10.1016/j.neuroscience.2016.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 02/01/2023]
Abstract
In the spinal cord, glycine and γ-amino butyric acid (GABA) are inhibitory neurotransmitters. However, the ontogeny of the glycinergic network remains unclear. To address this point, we examined the developmental formation of glycinergic terminals by immunohistochemistry for glycine transporter 2 (GlyT2), a marker of glycinergic terminals, in developing mouse cervical spinal cord. Furthermore, the developmental localization of GlyT2 was compared with that of glutamic acid decarboxylase (GAD), a marker of GABAergic terminals, and vesicular GABA transporter (VGAT), a marker of inhibitory terminals, by single and double immunolabeling. GlyT2-positive dots (glycinergic terminals) were first detected in the marginal zone on embryonic day 14 (E14). In the ventral horn, they were detected at E16 and increased in observed density during postnatal development. Until postnatal day 7 (P7), GAD-positive dots (GABAergic terminals) were dominant and GlyT2 immunolabeling was localized at GAD-positive dots. During the second postnatal week, GABAergic terminals markedly decreased and glycinergic terminals became dominant. In the dorsal horn, glycinergic terminals were detected at P0 in lamina IV and P7 in lamina III and developmentally increased. GlyT2 was also localized at GAD-positive dots, and colocalizing dots were dominant at P21. VGAT-positive dots (inhibitory terminals) continued to increase until P21. These results suggest that GABAergic terminals first appear during embryonic development and may often change to colocalizing terminals throughout the gray matter during development. The colocalizing terminals may remain in the dorsal horn, whereas in the ventral horn, colocalizing terminals may give rise to glycinergic terminals.
Collapse
|
6
|
Developmental localization of calcitonin gene-related peptide in dorsal sensory axons and ventral motor neurons of mouse cervical spinal cord. Neurosci Res 2015; 105:42-8. [PMID: 26403381 DOI: 10.1016/j.neures.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 11/21/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide, synthesized by alternative splicing of calcitonin gene mRNA. CGRP is characteristically distributed in the nervous system, and its function varies depending on where it is expressed. To reveal developmental formation of the CGRP network and its function in neuronal maturation, we examined the immunohistochemical localization of CGRP in the developing mouse cervical spinal cord and dorsal root ganglion. CGRP immunolabeling (IL) was first detected in motor neurons on E13, and in ascending axons of the posterior funiculus and DRG neurons on E14. CGRP-positive sensory axon fibers entered Laminae I and II on E16, and Laminae I through IV on E18. The intensity of the CGRP-IL gradually increased in both ventral and dorsal horns during embryonic development, but markedly decreased in the ventral horn after birth. These results suggest that CGRP is expressed several days after neuronal settling and entry of sensory fibers, and that the CGRP network is formed in chronological and sequential order. Furthermore, because CGRP is markedly expressed in motor neurons when axons are vastly extending and innervating targets, CGRP may also be involved in axonal elongation and synapse formation during normal development.
Collapse
|
7
|
Yadav R, Yan X, Maixner DW, Gao M, Weng HR. Blocking the GABA transporter GAT-1 ameliorates spinal GABAergic disinhibition and neuropathic pain induced by paclitaxel. J Neurochem 2015; 133:857-69. [PMID: 25827582 DOI: 10.1111/jnc.13103] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 11/24/2022]
Abstract
Paclitaxel is a chemotherapeutic agent widely used for treating carcinomas. Patients receiving paclitaxel often develop neuropathic pain and have a reduced quality of life which hinders the use of this life-saving drug. In this study, we determined the role of GABA transporters in the genesis of paclitaxel-induced neuropathic pain using behavioral tests, electrophysiology, and biochemical techniques. We found that tonic GABA receptor activities in the spinal dorsal horn were reduced in rats with neuropathic pain induced by paclitaxel. In normal controls, tonic GABA receptor activities were mainly controlled by the GABA transporter GAT-1 but not GAT-3. In the spinal dorsal horn, GAT-1 was expressed at presynaptic terminals and astrocytes while GAT-3 was only expressed in astrocytes. In rats with paclitaxel-induced neuropathic pain, the protein expression of GAT-1 was increased while GAT-3 was decreased. This was concurrently associated with an increase in global GABA uptake. The paclitaxel-induced attenuation of GABAergic tonic inhibition was ameliorated by blocking GAT-1 but not GAT-3 transporters. Paclitaxel-induced neuropathic pain was significantly attenuated by the intrathecal injection of a GAT-1 inhibitor. These findings suggest that targeting GAT-1 transporters for reversing disinhibition in the spinal dorsal horn may be a useful approach for treating paclitaxel-induced neuropathic pain. Patients receiving paclitaxel for cancer therapy often develop neuropathic pain and have a reduced quality of life. In this study, we demonstrated that animals treated with paclitaxel develop neuropathic pain, have enhancements of GABA transporter-1 protein expression and global GABA uptake, as well as suppression of GABAergic tonic inhibition in the spinal dorsal horn. Pharmacological inhibition of GABA transporter-1 ameliorates the paclitaxel-induced suppression of GABAergic tonic inhibition and neuropathic pain. Thus, targeting GAT-1 transporters for reversing GABAergic disinhibition in the spinal dorsal horn could be a useful approach for treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Xisheng Yan
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA.,Department of Cardiovascular Medicine, the Third Hospital of Wuhan, Wuhan, Hubei Province, China
| | - Dylan W Maixner
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Mei Gao
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| | - Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, Georgia, USA
| |
Collapse
|