1
|
He F, Yan B, Tian Z, Wang B, Cheng X, Wang Z, Yu B. Clomiphene citrate treatment during perinatal development alters adult partner preference, mating behaviour and androgen receptor and vasopressin in the male mandarin vole Microtus mandarinus. Eur J Neurosci 2022; 56:4766-4787. [PMID: 35993282 DOI: 10.1111/ejn.15793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
During development, many aspects of behaviour, including partner preferences and sexual behaviour, are "organized" by neural aromatization of androgen and oestrogen. This study aimed to analyse these processes in the mandarin vole (Microtus mandarinus); this is a novel mammalian model exhibiting strong monogamous pair bonds. Male pups were treated daily with a sesame oil only (MC) or the oestrogen receptor blocker-clomiphene citrate sesame oil mixture (MT) from prenatal day 14 to postnatal day 10. Female pups were treated daily with sesame oil only (FC). Partner preferences, sexual behaviour, and the expression of androgen receptor (AR) and arginine vasopressin (AVP) were examined when animals were 3 months old. The MT and FC groups exhibited male-directed partner preferences and feminized behaviour. AR-immunoreactive neurons (AR-IRs) in the medial preoptic area (mPOA), bed nucleus of stria terminalis (BNST), and medial amygdaloid nucleus (MeA) were reduced in MT males compared to MC males, and there was no significant difference in the number of AR-IRs between MT males and FC females. AVP-immunoreactive neurons (AVP-IRs) in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) were reduced in MT males compared to MC males, and there were no significant differences in the number of AVP-IRs between MT males and FC females. The results indicate a significant role of hormone signalling in the development of male mate preference in the novel monogamous mammal model.
Collapse
Affiliation(s)
- Fengqin He
- College of Biology and Environmental Sciences, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| | - Bingjie Yan
- College of Biology and Environmental Sciences, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| | - Zhen Tian
- College of Biology and Environmental Sciences, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| | - Bo Wang
- College of Biology and Environmental Sciences, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| | - Xiaoxia Cheng
- College of Biology and Environmental Sciences, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| | - Zijian Wang
- College of Biology and Environmental Sciences, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| | - Bing Yu
- College of Biology and Environmental Sciences, Xi'an University, Xi'an Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Binge-like Prenatal Ethanol Exposure Causes Impaired Cellular Differentiation in the Embryonic Forebrain and Synaptic and Behavioral Defects in Adult Mice. Brain Sci 2022; 12:brainsci12060793. [PMID: 35741678 PMCID: PMC9220802 DOI: 10.3390/brainsci12060793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
An embryo’s in-utero exposure to ethanol due to a mother’s alcohol drinking results in a range of deficits in the child that are collectively termed fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is one of the leading causes of preventable intellectual disability. Its neurobehavioral underpinnings warrant systematic research. We investigated the immediate effects on embryos of acute prenatal ethanol exposure during gestational days (GDs) and the influence of such exposure on persistent neurobehavioral deficits in adult offspring. We administered pregnant C57BL/6J mice with ethanol (1.75 g/kg) (GDE) or saline (GDS) intraperitoneally (i.p.) at 0 h and again at 2 h intervals on GD 8 and GD 12. Subsequently, we assessed apoptosis, differentiation, and signaling events in embryo forebrains (E13.5; GD13.5). Long-lasting effects of GDE were evaluated via a behavioral test battery. We also determined the long-term potentiation and synaptic plasticity-related protein expression in adult hippocampal tissue. GDE caused apoptosis, inhibited differentiation, and reduced pERK and pCREB signaling and the expression of transcription factors Pax6 and Lhx2. GDE caused persistent spatial and social investigation memory deficits compared with saline controls, regardless of sex. Interestingly, GDE adult mice exhibited enhanced repetitive and anxiety-like behavior, irrespective of sex. GDE reduced synaptic plasticity-related protein expression and caused hippocampal synaptic plasticity (LTP and LTD) deficits in adult offspring. These findings demonstrate that binge-like ethanol exposure at the GD8 and GD12 developmental stages causes defects in pERK–pCREB signaling and reduces the expression of Pax6 and Lhx2, leading to impaired cellular differentiation during the embryonic stage. In the adult stage, binge-like ethanol exposure caused persistent synaptic and behavioral abnormalities in adult mice. Furthermore, the findings suggest that combining ethanol exposure at two sensitive stages (GD8 and GD12) causes deficits in synaptic plasticity-associated proteins (Arc, Egr1, Fgf1, GluR1, and GluN1), leading to persistent FASD-like neurobehavioral deficits in mice.
Collapse
|
3
|
He FQ, Fan MY, Hui YN, Lai RJ, Chen X, Yang MJ, Cheng XX, Wang ZJ, Yu B, Yan BJ, Tian Z. Effects of treadmill exercise on anxiety-like behavior in association with changes in estrogen receptors ERα, ERβ and oxytocin of C57BL/6J female mice. IBRO Neurosci Rep 2021; 11:164-174. [PMID: 34746914 PMCID: PMC8551837 DOI: 10.1016/j.ibneur.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
Exercise can reduce the incidence of stress-related mental diseases, such as depression and anxiety. Control group was neither exposed to CVMS nor TRE (noCVMS/noTRE). Females were tested and levels of serum17-beta-oestradiol (E2), estrogen receptors α immunoreactive neurons (ERα-IRs), estrogen receptors β immunoreactive neurons (ERβ-IRs) and oxytocin immunoreactive neurons (OT-IRs) were measured. The results showed there's increased anxiety-like behaviors for mice from CVMS/noTRE, CVMS/higher speed TRE (CVMS/HTRE) and noCVMS/HTRE groups when they were put in open field and elevated maze tests. They had lower serum E2 levels than mice from CVMS/low-moderate speed TRE (CVMS/LMTRE), noCVMS/LMTRE and noCVMS/noTRE groups. The three groups of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice had more ERα-IRs and less ERβ-IRs in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA), hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). The number of OT-IRs in PVN and SON of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice was also lower than that of mice from CVMS/LMTRE, noCVMS/LMTRE and noCVMS/noTRE groups. Interestingly, CVMS/LMTRE and noCVMS/LMTRE mice were similar to noCVMS/noTRE mice in that they did not show anxiety, while CVMS/HTRE and noCVMS/HTRE mice did not, which were similar to the mice in CVMS/noTRE. We propose that LMTRE instead of HTRE changes the serum concentration of E2. ERβ/ERα ratio and OT level in the brain may be responsible for the decrease in anxiety-like behavior in female mice exposed to anxiety-inducing stress conditions.
Collapse
Key Words
- BNST, bed nucleus of the stria terminalis
- CVMS, chronic variable moderate stress
- Chronic variable moderate stress (CVMS)
- E2, 17-beta-oestradiol
- ELISA, enzyme-linked immunosorbent assay
- EPM, elevated plusmazetest
- ERα-IRs, estrogen receptors αimmunoreactive neurons
- ERβ-IRs, estrogen receptor β immunoreactive neurons
- Estrogen receptor α (ERα)
- Estrogen receptor β (ERβ)
- HPA, hypothalamic–pituitary–adrenal
- HRP, horseradishperoxidase
- HTRE, higher speed TRE
- LMTRE, low-moderate speed TRE
- MeA, medial amygdaloid nucleus
- OF, open field test
- OT-IRs, Oxytocin immunoreactive neurons
- Oxytocin (OT)
- PBS, phosphatebufferedsolution
- PVN, paraventricular nucleus
- SON, supraoptic nucleus
- TRE, treadmill exercise
- Treadmill exercise (TRE)
- mPOA, medial preopticarea
Collapse
Affiliation(s)
- Feng-Qin He
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Mei-Yang Fan
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Yu-Nan Hui
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Rui-Juan Lai
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Xin Chen
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ming-Juan Yang
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Xiao-Xia Cheng
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Zi-Jian Wang
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Bin Yu
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Bing-Jie Yan
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Zhen Tian
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| |
Collapse
|
4
|
Godino A, Renard GM. Effects of alcohol and psychostimulants on the vasopressin system: behavioral implications. J Neuroendocrinol 2018; 30:e12611. [PMID: 29802803 DOI: 10.1111/jne.12611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
Drug addiction is a chronic brain disease characterized by a compulsion to seek drugs, a loss of control with respect to drug consumption, and negative emotional states, including increased anxiety and irritability during withdrawal. Central vasopressin (AVP) and its receptors are involved in controlling social behavior, anxiety and reward, all of which are altered by drugs of abuse. Hypothalamic AVP neurons influence the stress response by modulating the hypothalamic-pituitary-adrenal (HPA) axis. The extrahypothalamic AVP system, however, is commonly associated with social recognition, motivational and anxiety responses. The specific relationship between AVP and drugs of abuse has been rarely reviewed. Here, we provide an overview of the interaction between the brain AVP system and psychostimulants and alcohol. We focus on the effects of alcohol and psychostimulants on AVP regulation of the HPA axis, their effect on the brain AVP system and their behavioral implications, the influence of the AVP system on addictive behaviors, AVP's organizational effects on the brain and consequently on behavior, and we highlight clinical studies on the relation between the AVP system and drug addiction. Finally, we discuss the data to address areas that need further research to support clinical trials and prevent drug-related disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrea Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Casilla de Correo 389-5000, Facultad de Psicología, Universidad Nacional de CórdobaCórdoba, Argentina
| | - Georgina M Renard
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
He F, Wang Z, Guo G. Postnatal separation prevents the development of prenatal stress-induced anxiety in association with changes in oestrogen receptor and oxytocin immunoreactivity in female mandarin vole (Microtus mandarinus) offspring. Eur J Neurosci 2017; 47:95-108. [PMID: 29205599 DOI: 10.1111/ejn.13788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 11/27/2022]
Abstract
Oestrogen has both anxiogenic and anxiolytic effects because of variation in opposing action on alpha (ERα) and beta (ERβ) estrogen receptors in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA). Oxytocin (OT) reverses some of the anxiogenic effects of oestrogen in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). Because anxiety disorders are twice as common in women as in men, and oestrogen and OT are more important in females, we examined interactions between prenatal restraint stress (GS) and postnatal early short-term maternal separation (MS) and female mandarin vole behaviour, estrogen receptors and OT. The results show that adult female offspring from GS/noMS mothers showed increased anxiety in open-field and elevated plus-maze tests and had lower serum 17-beta-oestradiol (E2 ) levels than female offspring from GS/MS, noGS/MS and noGS/noMS mothers. GS/noMS females had more immunoreactive neurons for ERα in several brain regions and less ERβ- and OT-immunoreactive neurons in brain areas compared to GS/MS, noGS/MS and noGS/noMS offspring. Interestingly, noGS/MS and GS/MS offspring were similar to noGS/noMS offspring in that they did not develop anxiety as adults. We propose that MS alters the serum concentration of E2 and that the ERβ/ERα ratio and OT level in the brain may be responsible for the decrease in anxiety-like behaviour in adult female offspring initially exposed to anxiety-inducing conditions via an adverse foetal environment.
Collapse
Affiliation(s)
- Fengqin He
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, 710065, China
| | - Zijian Wang
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, 710065, China
| | - Guanlin Guo
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, 710065, China
| |
Collapse
|
6
|
Rouzer SK, Cole JM, Johnson JM, Varlinskaya EI, Diaz MR. Moderate Maternal Alcohol Exposure on Gestational Day 12 Impacts Anxiety-Like Behavior in Offspring. Front Behav Neurosci 2017; 11:183. [PMID: 29033803 PMCID: PMC5626811 DOI: 10.3389/fnbeh.2017.00183] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/14/2017] [Indexed: 12/29/2022] Open
Abstract
Among the numerous consequences of prenatal alcohol exposure (PAE) is an increase in anxiety-like behavior that can prove debilitating to daily functioning. A significant body of literature has linked gestational day 12 (G12) heavy ethanol exposure with social anxiety, evident in adolescent males and females. However, the association between non-social anxiety-like behavior and moderate alcohol exposure, a more common pattern of drinking in pregnant women, is yet unidentified. To model moderate PAE (mPAE), we exposed pregnant Sprague-Dawley rats to either room air or vaporized ethanol for 6 h on G12. Adolescent offspring were then tested on postnatal days (P) 41-47 in one of the following four anxiety assays: novelty-induced hypophagia (NIH), elevated plus maze (EPM), light-dark box (LDB) and open-field (OF). Our findings revealed significant increases in measures of anxiety-like behavior in male PAE offspring in the NIH, LDB and OF, with no differences observed in females on any test. Additionally, male offspring who demonstrated heightened anxiety-like behavior as adolescents demonstrated decreased anxiety-like behavior in adulthood, as measured by a marble-burying test (MBT), while females continued to be unaffected in adulthood. These results suggest that mPAE leads to dynamic changes in anxiety-like behavior exclusively in male offspring.
Collapse
Affiliation(s)
- Siara K Rouzer
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Jesse M Cole
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Julia M Johnson
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
7
|
Low-dose chronic prenatal alcohol exposure abolishes the pro-cognitive effects of angiotensin IV. Behav Brain Res 2017; 329:140-147. [DOI: 10.1016/j.bbr.2017.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 11/19/2022]
|
8
|
Diaz MR, Mooney SM, Varlinskaya EI. Acute prenatal exposure to ethanol on gestational day 12 elicits opposing deficits in social behaviors and anxiety-like behaviors in Sprague Dawley rats. Behav Brain Res 2016; 310:11-9. [PMID: 27154534 DOI: 10.1016/j.bbr.2016.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023]
Abstract
Our previous research has shown that in Long Evans rats acute prenatal exposure to a high dose of ethanol on gestational day (G) 12 produces social deficits in male offspring and elicits substantial decreases in social preference relative to controls, in late adolescents and adults regardless of sex. In order to generalize the observed detrimental effects of ethanol exposure on G12, pregnant female Sprague Dawley rats were exposed to ethanol or saline and their offspring were assessed in a modified social interaction (SI) test as early adolescents, late adolescents, or young adults. Anxiety-like behavior was also assessed in adults using the elevated plus maze (EPM) or the light/dark box (LDB) test. Age- and sex-dependent social alterations were evident in ethanol-exposed animals. Ethanol-exposed males showed deficits in social investigation at all ages and age-dependent alterations in social preference. Play fighting was not affected in males. In contrast, ethanol-exposed early adolescent females showed no changes in social interactions, whereas older females demonstrated social deficits and social indifference. In adulthood, anxiety-like behavior was decreased in males and females prenatally exposed to ethanol in the EPM, but not the LDB. These findings suggest that social alterations associated with acute exposure to ethanol on G12 are not strain-specific, although they are more pronounced in Long Evans males and Sprague Dawley females. Furthermore, given that anxiety-like behaviors were attenuated in a test-specific manner, this study indicates that early ethanol exposure can have differential effects on different forms of anxiety.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY 13902, United States.
| | - Sandra M Mooney
- Developmental Exposure Alcohol Research Center, Baltimore, MD 21201, United States; Department of Pediatrics, University of Maryland, Baltimore, MD 21201, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY 13902, United States
| |
Collapse
|