1
|
Keese M, Zheng J, Yan K, Bieback K, Yard BA, Pallavi P, Reissfelder C, Kluth MA, Sigl M, Yugublu V. Adipose-Derived Mesenchymal Stem Cells Protect Endothelial Cells from Hypoxic Injury by Suppressing Terminal UPR In Vivo and In Vitro. Int J Mol Sci 2023; 24:17197. [PMID: 38139026 PMCID: PMC10742997 DOI: 10.3390/ijms242417197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Adipose-derived stem cells (ASCs) have been used as a therapeutic intervention for peripheral artery disease (PAD) in clinical trials. To further explore the therapeutic mechanism of these mesenchymal multipotent stromal/stem cells in PAD, this study was designed to test the effect of xenogeneic ASCs extracted from human adipose tissue on hypoxic endothelial cells (ECs) and terminal unfolded protein response (UPR) in vitro and in an atherosclerosis-prone apolipoprotein E-deficient mice (ApoE-/- mice) hindlimb ischemia model in vivo. ASCs were added to Cobalt (II) chloride-treated ECs; then, metabolic activity, cell migration, and tube formation were evaluated. Fluorescence-based sensors were used to assess dynamic changes in Ca2+ levels in the cytosolic- and endoplasmic reticulum (ER) as well as changes in reactive oxygen species. Western blotting was used to observe the UPR pathway. To simulate an acute-on-chronic model of PAD, ApoE-/- mice were subjected to a double ligation of the femoral artery (DLFA). An assessment of functional recovery after DFLA was conducted, as well as histology of gastrocnemius. Hypoxia caused ER stress in ECs, but ASCs reduced it, thereby promoting cell survival. Treatment with ASCs ameliorated the effects of ischemia on muscle tissue in the ApoE-/- mice hindlimb ischemia model. Animals showed less muscle necrosis, less inflammation, and lower levels of muscle enzymes after ASC injection. In vitro and in vivo results revealed that all ER stress sensors (BIP, ATF6, CHOP, and XBP1) were activated. We also observed that the expression of these proteins was reduced in the ASCs treatment group. ASCs effectively alleviated endothelial dysfunction under hypoxic conditions by strengthening ATF6 and initiating a transcriptional program to restore ER homeostasis. In general, our data suggest that ASCs may be a meaningful treatment option for patients with PAD who do not have traditional revascularization options.
Collapse
Affiliation(s)
- Michael Keese
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
- European Center of Angioscience (ECAS), Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany
- Department for Vascular Surgery, Theresienkrankenhaus Mannheim, 68165 Mannheim, Germany
| | - Jiaxing Zheng
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
- European Center of Angioscience (ECAS), Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany
| | - Kaixuan Yan
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Benito A. Yard
- V Department of Medicine, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Prama Pallavi
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
- European Center of Angioscience (ECAS), Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christoph Reissfelder
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
- DKFZ-Hector Cancer Institute, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Mark Andreas Kluth
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany;
| | - Martin Sigl
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Vugar Yugublu
- Department of Surgery, Medical Centre Mannheim, Medical Faculty Manheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.); (J.Z.); (K.Y.); (P.P.); (C.R.)
| |
Collapse
|
2
|
Ning H, Horikawa A, Yamamoto T, Michiue T. Chemical inhibitors of cyclin-dependent kinase (CDKi) improve pancreatic endocrine differentiation of iPS cells. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00776-0. [PMID: 37405627 PMCID: PMC10374832 DOI: 10.1007/s11626-023-00776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023]
Abstract
Islet transplantation, including pancreatic beta cells, has become an approved treatment for type I diabetes. To date, the number of donors limits the availability of treatment. Induction of pancreatic endocrine cells from pluripotent stem cells including iPSCs in vitro offers promise as a solution, but continues to face problems including high reagent costs and cumbersome differentiation procedures. In a previous study, we developed a low-cost, simplified differentiation method, but its efficiency for inducing pancreatic endocrine cells was not sufficient: induction of endocrine cells is non-uniform, resulting in colonies containing relatively high ratio of non-pancreatic-related cells. Here, we applied cyclin-dependent kinase inhibitors (CDKi) within a specific time window, which improved the efficiency of pancreatic endocrine cell induction. CDKi treatment reduced the prevalence of multi-layered regions and enhanced expression of the endocrine progenitor-related marker genes PDX1 and NGN3 resulting in enhanced production of both INSULIN and GLUCAGON. These findings support a step forward in the field of regenerative medicine of pancreatic endocrine cells.
Collapse
Affiliation(s)
- Heming Ning
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Ayumi Horikawa
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Takayoshi Yamamoto
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
The Effects of Co-Culture of Embryonic Stem Cells with Neural Stem Cells on Differentiation. Curr Issues Mol Biol 2022; 44:6104-6116. [PMID: 36547077 PMCID: PMC9776753 DOI: 10.3390/cimb44120416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Researching the technology for in vitro differentiation of embryonic stem cells (ESCs) into neural lineages is very important in developmental biology, regenerative medicine, and cell therapy. Thus, studies on in vitro differentiation of ESCs into neural lineages by co-culture are expected to improve our understanding of this process. A co-culture system has long been used to study interactions between cell populations, improve culture efficiency, and establish synthetic interactions between populations. In this study, we investigated the effect of a co-culture of ESCs with neural stem cells (NSCs) in two-dimensional (2D) or three-dimensional (3D) culture conditions. Furthermore, we examined the effect of an NSC-derived conditioned medium (CM) on ESC differentiation. OG2-ESCs lost the specific morphology of colonies and Oct4-GFP when co-cultured with NSC. Additionally, real-time PCR analysis showed that ESCs co-cultured with NSCs expressed higher levels of ectoderm markers Pax6 and Sox1 under both co-culture conditions. However, the differentiation efficiency of CM was lower than that of the non-conditioned medium. Collectively, our results show that co-culture with NSCs promotes the differentiation of ESCs into the ectoderm.
Collapse
|
4
|
Kouchakian MR, Koruji M, Najafi M, Moniri SF, Asgari A, Shariatpanahi M, Moosavi SA, Asgari HR. Human umbilical cord mesenchymal stem cells express cholinergic neuron markers during co-culture with amniotic membrane cells and retinoic acid induction. Med J Islam Repub Iran 2022; 35:129. [PMID: 35321367 PMCID: PMC8840847 DOI: 10.47176/mjiri.35.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Background: A wide variety of cytokines are released from human amniotic membrane cells (hAMCs), which can increase the rate of differentiation of mesenchymal stem cells into the neurons. We studied the effect of Retinoic Acid (RA) on the differentiation rate of human Umbilical Cord Mesenchymal Stem Cells (hUMSCs) which were co-cultured with hAMCs. Methods: In this experimental study, both hUMSCs and hAMCs were isolated from postpartum human umbilical cords and placenta respectively. The expression of mesenchymal (CD73, CD90 and CD105), hematopoietic and endothelial (CD34 and CD45) markers in hUMSCs were confirmed by flow cytometry. The hUMSCs were cultured in four distinct groups: group 1) Control, group 2) Co-culture with hAMCs, group 3) RA treatment and group 4) Co-culture with hAMCs treated by RA. Twelve days after culturing, the expression of NSE, MAP2 and ChAT differentiation genes and their related proteins were examined by real-time PCR and immunocytochemistry respectively. Results: The flow-cytometry analysis indicated increased expression of mesenchymal markers and a low expression of both hematopoietic and endothelial markers (CD73:98.24%, CD90: 97.32%, CD105: 90.75%, CD34: 2.96%, and CD45:1.74%). Moreover, the expression of both NSE and MAP2 markers was increased significantly in all studied groups in comparison to the control group On the other hand, the expression of ChAT had a significant increase in the group 2 and 4 (RA and RA+ co-culture). Conclusion: RA can be used as an effective inducer to differentiate hUMSCs into cholinergic-like cells, and hAMCs could increase the number of differentiated cells as an effective factor.
Collapse
Affiliation(s)
| | - Morteza Koruji
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farzaneh Moniri
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Asgari
- School of Pharmacy, Zanjan University of medical sciences, Zanjan, Iran
| | - Marjan Shariatpanahi
- Department of Toxicology & Pharmacology, School of Pharmacy, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Akbar Moosavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Roballo KCS, Ambrosio CE, da Silveira JC. Protocol to Study the Role of Extracellular Vesicles During Induced Stem Cell Differentiation. Methods Mol Biol 2021; 2273:63-73. [PMID: 33604844 DOI: 10.1007/978-1-0716-1246-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are vesicles released by cells, which due to their cargo and cell membrane proteins induce changes in the recipient cells. These vesicles can be a novel option to induce stem cell differentiation. Here we described a method to induce mesenchymal stem cell differentiation (MSC) into neuron-like cells using small EVs from neurons. First, we will describe a method based on neurons to induce adipocyte derived stem cells differentiation, a type of MSC, by coculturing both using inserts. Secondly, we will describe a follow-up method by using only isolated neuron-derived small EVs to directly induce ADSC differentiation in neuron-like cells. Importantly, in both methods it is possible to avoid the direct cell-to-cell contact, thus allowing for the study of soluble factors role during stem cell differentiation.
Collapse
Affiliation(s)
- Kelly C S Roballo
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, São Paulo, Brazil.,College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Carlos E Ambrosio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Juliano C da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Kawashima A, Yasuhara R, Akino R, Mishima K, Nasu M, Sekizawa A. Engraftment potential of maternal adipose-derived stem cells for fetal transplantation. Heliyon 2020; 6:e03409. [PMID: 32154403 PMCID: PMC7057202 DOI: 10.1016/j.heliyon.2020.e03409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Advances in prenatal molecular testing have made it possible to diagnose most genetic disorders early in gestation. In utero mesenchymal stem cell (MSC) therapy can be a powerful tool to cure the incurable. With this in mind, this method could ameliorate potential physical and functional damage. However, the presence of maternal T cells trafficking in the fetus during pregnancy is thought to be the major barrier to achieving the engraftment into the fetus. We investigated the possibility of using maternal adipose-derived stem cells (ADSCs) for in utero transplantation to improve engraftment, thus lowering the risk of graft rejection. Herein, fetal brain engraftment using congenic and maternal ADSC grafts was examined via in utero stem cell transplantation in a mouse model. ADSCs were purified using the mesenchymal stem cell markers, PDGFRα, and Sca-1 via fluorescence-activated cell sorting. The PDGFRα+Sca-1+ ADSCs were transplanted into the fetal intracerebroventricular (ICV) at E14.5. The transplanted grafts grew for at least 28 days after in utero transplantation with PDGFRα+Sca-1+ ADSC, and mature neuronal markers were also detected in the grafts. Furthermore, using the maternal sorted ADSCs suppressed the innate immune response, preventing the infiltration of CD8 T cells into the graft. Thus, in utero transplantation into the fetal ICV with the maternal PDGFRα+Sca-1+ ADSCs may be beneficial for the treatment of congenital neurological diseases because of the ability to reduce the responses after in utero stem cell transplantation and differentiate into neuronal lineages.
Collapse
Affiliation(s)
- Akihiro Kawashima
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Ryosuke Akino
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Michiko Nasu
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| |
Collapse
|
7
|
Gao S, Guo X, Zhao S, Jin Y, Zhou F, Yuan P, Cao L, Wang J, Qiu Y, Sun C, Kang Z, Gao F, Xu W, Hu X, Yang D, Qin Y, Ning K, Shaw PJ, Zhong G, Cheng L, Zhu H, Gao Z, Chen X, Xu J. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death Dis 2019; 10:597. [PMID: 31395857 PMCID: PMC6687731 DOI: 10.1038/s41419-019-1772-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
Abstract
Human adipose-derived stem cells (hADSCs) are increasingly presumed to be a prospective stem cell source for cell replacement therapy in various degenerative and/or traumatic diseases. The potential of trans-differentiating hADSCs into motor neuron cells indisputably provides an alternative way for spinal cord injury (SCI) treatment. In the present study, a stepwise and efficient hADSC trans-differentiation protocol with retinoic acid (RA), sonic hedgehog (SHH), and neurotrophic factors were developed. With this protocol hADSCs could be converted into electrophysiologically active motoneuron-like cells (hADSC-MNs), which expressed both a cohort of pan neuronal markers and motor neuron specific markers. Moreover, after being primed for neuronal differentiation with RA/SHH, hADSCs were transplanted into SCI mouse model and they survived, migrated, and integrated into injured site and led to partial functional recovery of SCI mice. When ablating the transplanted hADSC-MNs harboring HSV-TK-mCherry overexpression system with antivirial Ganciclovir (GCV), functional relapse was detected by motor-evoked potential (MEP) and BMS assays, implying that transplanted hADSC-MNs participated in rebuilding the neural circuits, which was further confirmed by retrograde neuronal tracing system (WGA). GFP-labeled hADSC-MNs were subjected to whole-cell patch-clamp recording in acute spinal cord slice preparation and both action potentials and synaptic activities were recorded, which further confirmed that those pre-conditioned hADSCs indeed became functionally active neurons in vivo. As well, transplanted hADSC-MNs largely prevented the formation of injury-induced cavities and exerted obvious immune-suppression effect as revealed by preventing astrocyte reactivation and favoring the secretion of a spectrum of anti-inflammatory cytokines and chemokines. Our work suggests that hADSCs can be readily transformed into MNs in vitro, and stay viable in spinal cord of the SCI mouse and exert multi-therapeutic effects by rebuilding the broken circuitry and optimizing the microenvironment through immunosuppression.
Collapse
Affiliation(s)
- Shane Gao
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xuanxuan Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Simeng Zhao
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, JinShan, Shanghai, 201508, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, 200438, China
| | - Ping Yuan
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Limei Cao
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yue Qiu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chenxi Sun
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhanrong Kang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 200137, China
| | - Fengjuan Gao
- Zhoupu hospital, Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Wei Xu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Hu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ying Qin
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Guisheng Zhong
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China.
| | - Liming Cheng
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Hongwen Zhu
- Tianjin Hospital, Tianjin, 300211, China. .,BOE Technology Group Co., Ltd., Beijing, 100176, China.
| | - Zhengliang Gao
- Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xu Chen
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
8
|
Roballo KCS, da Silveira JC, Bressan FF, de Souza AF, Pereira VM, Porras JEP, Rós FA, Pulz LH, Strefezzi RDF, Martins DDS, Meirelles FV, Ambrósio CE. Neurons-derived extracellular vesicles promote neural differentiation of ADSCs: a model to prevent peripheral nerve degeneration. Sci Rep 2019; 9:11213. [PMID: 31371742 PMCID: PMC6671995 DOI: 10.1038/s41598-019-47229-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
Potential mechanisms involved in neural differentiation of adipocyte derived stem cells (ADSCs) are still unclear. In the present study, extracellular vesicles (EVs) were tested as a potential mechanism involved in the neuronal differentiation of stem cells. In order to address this, ADSCs and neurons (BRC) were established in primary culture and co-culture at three timepoints. Furthermore, we evaluated protein and transcript levels of differentiated ADSCs from the same timepoints, to confirm phenotype change to neuronal linage. Importantly, neuron-derived EVs cargo and EVs originated from co-culture were analyzed and tested in terms of function, such as gene expression and microRNA levels related to the adult neurogenesis process. Ideal neuron-like cells were identified and, therefore, we speculated the in vivo function of these cells in acute sciatic nerve injury. Overall, our data demonstrated that ADSCs in indirect contact with neurons differentiated into neuron-like cells. Neuron-derived EVs appear to play an important role in this process carrying SNAP25, miR-132 and miR-9. Additionally, in vivo neuron-like cells helped in microenvironment modulation probably preventing peripheral nerve injury degeneration. Consequently, our findings provide new insight of future methods of ADSC induction into neuronal linage to be applied in peripheral nerve (PN) injury.
Collapse
Affiliation(s)
- Kelly Cristine Santos Roballo
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil.
| | - Fabiana Fernandes Bressan
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Aline Fernanda de Souza
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Vitoria Mattos Pereira
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Jorge Eliecer Pinzon Porras
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil.,Faculty of Veterinary Medicine and Animal Science, Department of Posgraduation, University National of Columbia, Bogota, Colombia
| | - Felipe Augusto Rós
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Lidia Hildebrand Pulz
- Experimental and Comparative Pathology Department, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Orlando Marques de Paiva, 87 - Butantã, 05508-010, São Paulo, SP, Brazil
| | - Ricardo de Francisco Strefezzi
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil.,Experimental and Comparative Pathology Department, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Orlando Marques de Paiva, 87 - Butantã, 05508-010, São Paulo, SP, Brazil
| | - Daniele Dos Santos Martins
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Flavio Vieira Meirelles
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Carlos Eduardo Ambrósio
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| |
Collapse
|
9
|
Taha MF, Javeri A, Karimipour M, Yamaghani MS. Priming with oxytocin and relaxin improves cardiac differentiation of adipose tissue-derived stem cells. J Cell Biochem 2018; 120:5825-5834. [PMID: 30362159 DOI: 10.1002/jcb.27868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/20/2018] [Indexed: 11/07/2022]
Abstract
Previous studies have identified the heart as a source and a target tissue for oxytocin and relaxin hormones. These hormones play important roles in the regulation of cardiovascular function and repair of ischemic heart injury. In the current study, we examined the impact of oxytocin and relaxin on the development of cardiomyocytes from mesenchymal stem cells. For this purpose, mouse adipose tissue-derived stem cells (ADSCs) were treated with different concentrations of oxytocin or relaxin for 4 days. Three weeks after initiation of cardiac induction, differentiated ADSCs expressed cardiac-specific genes, Gata4, Mef2c, Nkx2.5, Tbx5, α- and β-Mhc, Mlc2v, Mlc2a and Anp, and cardiac proteins including connexin 43, desmin and α-actinin. 10 -7 M oxytocin and 50 ng/mL relaxin induced the maximum upregulation in the expression of cardiac markers. A combination of oxytocin and relaxin induced cardiomyocyte differentiation more potently than the individual factors. In our experiment, oxytocin-relaxin combination increased the population of cardiac troponin I-expressing cells to 6.84% as compared with 2.36% for the untreated ADSCs, 3.7% for oxytocin treatment and 3.41% for relaxin treatment groups. In summary, the results of this study indicated that oxytocin and relaxin hormones individually and in combination can improve cardiac differentiation of ADSCs, and treatment of the ADSCs and possibly other mesenchymal stem cells with these hormones may enhance their cardiogenic differentiation and survival after transplantation into the ischemic heart tissue.
Collapse
Affiliation(s)
- Masoumeh Fakhr Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mojtaba Karimipour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
10
|
Luo L, Hu DH, Yin JQ, Xu RX. Molecular Mechanisms of Transdifferentiation of Adipose-Derived Stem Cells into Neural Cells: Current Status and Perspectives. Stem Cells Int 2018; 2018:5630802. [PMID: 30302094 PMCID: PMC6158979 DOI: 10.1155/2018/5630802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Neurological diseases can severely compromise both physical and psychological health. Recently, adult mesenchymal stem cell- (MSC-) based cell transplantation has become a potential therapeutic strategy. However, most studies related to the transdifferentiation of MSCs into neural cells have had disappointing outcomes. Better understanding of the mechanisms underlying MSC transdifferentiation is necessary to make adult stem cells more applicable to treating neurological diseases. Several studies have focused on adipose-derived stromal/stem cell (ADSC) transdifferentiation. The purpose of this review is to outline the molecular characterization of ADSCs, to describe the methods for inducing ADSC transdifferentiation, and to examine factors influencing transdifferentiation, including transcription factors, epigenetics, and signaling pathways. Exploring and understanding the mechanisms are a precondition for developing and applying novel cell therapies.
Collapse
Affiliation(s)
- Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi 710032, China
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Da-Hai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi 710032, China
| | - James Q. Yin
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Ru-Xiang Xu
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| |
Collapse
|
11
|
Chen S, Wang M, Chen X, Chen S, Liu L, Zhu J, Wang J, Yang X, Cai X. In Vitro Expression of Cytokeratin 19 in Adipose-Derived Stem Cells Is Induced by Epidermal Growth Factor. Med Sci Monit 2018; 24:4254-4261. [PMID: 29925829 PMCID: PMC6044214 DOI: 10.12659/msm.908647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cytokeratin 19 (CK19) is a typical epithelial marker. In this study, we determined whether epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) could enhance CK19 expression in adipose-derived stem cells (ADSCs), thereby inducing the differentiation of ADSCs into epithelial-like cells. MATERIAL AND METHODS ADSCs were isolated from perinephric fat, and the expression of CD29, CD90, and CD105 was confirmed. Following isolation, ADSCs were cultured in static medium or medium containing EGF or bFGF. RESULTS Flow cytometry revealed that EGF and bFGF could alter mesenchymal stem cell markers as well as the cell cycle of ADSCs. Western blotting and immunofluorescence revealed that after 14 days, EGF treatment enhanced the expression of CK19 in ADSCs. CONCLUSIONS Our findings offer important insight for the clinical use of ADSCs in the generation of epithelial-like cells in the future.
Collapse
Affiliation(s)
- Shangliang Chen
- Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, P.R. China
- Clinical Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guongzhou, Guangdong, P.R. China
| | - Mingzhu Wang
- Center of Reproduction Medicine in Fourth Hospital of Xi’an City, Xi’an, Shaanxi, P.R. China
| | - Xinglu Chen
- Clinical Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guongzhou, Guangdong, P.R. China
| | - Shaolian Chen
- Clinical Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guongzhou, Guangdong, P.R. China
| | - Li Liu
- State key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jianbin Zhu
- Technology Center, Guangdong Vitalife Bio-tech Co., Ltd., Foshan, Guangdong, P.R. China
| | - Jinhui Wang
- Technology Center, Guangdong Vitalife Bio-tech Co., Ltd., Foshan, Guangdong, P.R. China
| | - Xiaorong Yang
- Clinical Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guongzhou, Guangdong, P.R. China
| | - Xiangsheng Cai
- Clinical Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guongzhou, Guangdong, P.R. China
| |
Collapse
|
12
|
Ciervo Y, Ning K, Jun X, Shaw PJ, Mead RJ. Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener 2017; 12:85. [PMID: 29132389 PMCID: PMC5683324 DOI: 10.1186/s13024-017-0227-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition where loss of motor neurons within the brain and spinal cord leads to muscle atrophy, weakness, paralysis and ultimately death within 3–5 years from onset of symptoms. The specific molecular mechanisms underlying the disease pathology are not fully understood and neuroprotective treatment options are minimally effective. In recent years, stem cell transplantation as a new therapy for ALS patients has been extensively investigated, becoming an intense and debated field of study. In several preclinical studies using the SOD1G93A mouse model of ALS, stem cells were demonstrated to be neuroprotective, effectively delayed disease onset and extended survival. Despite substantial improvements in stem cell technology and promising results in preclinical studies, several questions still remain unanswered, such as the identification of the most suitable and beneficial cell source, cell dose, route of delivery and therapeutic mechanisms. This review will cover publications in this field and comprehensively discuss advances, challenges and future direction regarding the therapeutic potential of stem cells in ALS, with a focus on mesenchymal stem cells. In summary, given their high proliferation activity, immunomodulation, multi-differentiation potential, and the capacity to secrete neuroprotective factors, adult mesenchymal stem cells represent a promising candidate for clinical translation. However, technical hurdles such as optimal dose, differentiation state, route of administration, and the underlying potential therapeutic mechanisms still need to be assessed.
Collapse
Affiliation(s)
- Yuri Ciervo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.,Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.,Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Xu Jun
- Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.
| |
Collapse
|
13
|
Andrographolide Promotes Neural Differentiation of Rat Adipose Tissue-Derived Stromal Cells through Wnt/ β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4210867. [PMID: 29085837 PMCID: PMC5632471 DOI: 10.1155/2017/4210867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/05/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022]
Abstract
Adipose tissue-derived stromal cells (ADSCs) are a high-yield source of pluripotent stem cells for use in cell-based therapies. We explored the effect of andrographolide (ANDRO, one of the ingredients of the medicinal herb extract) on the neural differentiation of rat ADSCs and associated molecular mechanisms. We observed that rat ADSCs were small and spindle-shaped and expressed multiple stem cell markers including nestin. They were multipotent as evidenced by adipogenic, osteogenic, chondrogenic, and neural differentiation under appropriate conditions. The proportion of cells exhibiting neural-like morphology was higher, and neurites developed faster in the ANDRO group than in the control group in the same neural differentiation medium. Expression levels of the neural lineage markers MAP2, tau, GFAP, and β-tubulin III were higher in the ANDRO group. ANDRO induced a concentration-dependent increase in Wnt/β-catenin signaling as evidenced by the enhanced expression of nuclear β-catenin and the inhibited form of GSK-3β (pSer9). Thus, this study shows for the first time how by enhancing the neural differentiation of ADSCs we expect that ANDRO pretreatment may increase the efficacy of adult stem cell transplantation in nervous system diseases, but more exploration is needed.
Collapse
|
14
|
Zarei MH, Soodi M, Qasemian-Lemraski M, Jafarzadeh E, Taha MF. Study of the chlorpyrifos neurotoxicity using neural differentiation of adipose tissue-derived stem cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1510-1519. [PMID: 26018426 DOI: 10.1002/tox.22155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Chlorpyrifos (CPF) is the most commonly used organophosphorus insecticide which causes neurodevelopmental toxicity. So far, animals have been used as ideal models for neurotoxicity studies, but working with animals is very expensive, laborious, and ethically challenging. This has encouraged researchers to seek alternatives. During recent years, several studies have reported successful differentiation of embryonic and adult stem cells to neurons. This has provided an excellent model for neurotoxicologic studies. In this study, neural differentiation of mouse adipose tissue-derived stem cells (ADSCs) was used as an in vitro model for investigation of CPF neurotoxicity. For this purpose, mouse ADSCs were cultured in a medium containing knockout serum replacement and were treated with different concentrations of CPF at several stages of differentiation. Cytotoxic effect of CPF and the expression of neuron-specific genes and proteins were studied in the differentiating ADSCs. Furthermore, the activity of acetylcholinesterase was assessed by Ellman assay at different stages of differentiation. This study showed that up to 500 μM CPF did not alter viability of the undifferentiated ADSCs, whereas viability of the differentiating cells decreased with 500 μM CPF. CPF upregulated the expression of some neuron-specific genes and seemed to decrease the number of β-tubulin III and MAP2 proteins-expressing cells. There was no detectable acetylcholine esterase activity in differentiated ADSCs. In summary, it was shown that CPF treatment can decrease the viability of ADSC-derived neurons and dysregulate the expression of some neuronal markers through acetylcholinesterase-independent mechanisms. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1510-1519, 2016.
Collapse
Affiliation(s)
- Mohammad Hadi Zarei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Qasemian-Lemraski
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Fakhr Taha
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
15
|
Elfayomy AK, Almasry SM, El-Tarhouny SA, Eldomiaty MA. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: Possible direct and indirect effects. Tissue Cell 2016; 48:370-82. [PMID: 27233913 DOI: 10.1016/j.tice.2016.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 01/09/2023]
Abstract
This study aimed to isolate mesenchymal stem cells (MSC) from human umbilical cord blood (HCB) and to explore their influence on the ovarian epithelium after paclitaxel-induced ovarian failure. Ninety-five rats were divided into 6 groups: control, paclitaxel, paclitaxel and saline, HCB-MSC-treated for 2 weeks, HCB-MSC-treated for 4 weeks, and HCB-MSC-treated for 6 weeks. HCB cells were studied for CD34, CD44, and Oct ¾ using flow cytometry. Serum levels of FSH and E2 were measured using ELISA, RT-PCR analysis for human gene; beta-actin (ACTB), immunohistochemical analysis for CK 8/18, TGF-ß, PCNA and CASP-3 were performed. We found that ACTB gene was expressed in all rats' ovaries received HCB-MSC. After 4 weeks of transplantation, there was significant reduction in FSH, elevation in E2 levels, stabilization of the surface epithelium morphostasis, an increase in the antral follicle count and increase in integrated densities (ID) of CK 8/18, TGF-ß, and PCNA expressions and decrease in ID of CASP-3 expression. We concluded that HCB-MSC can restore the ovarian function after paclitaxel injection through a direct triggering effect on the ovarian epithelium and/or indirect enrichment of ovarian niche through regulating tissue expression of CK 8/18, TGF-ß and PCNA. These molecules are crucial in regulating folliculogenesis and suppressing CASP-3-induced apoptosis.
Collapse
Affiliation(s)
- Amr K Elfayomy
- Department of Obstetrics and Gynecology, Taibah University, Almadinah Almunawarah, Saudi Arabia; Department of Obstetrics and Gynecology, Zagazig University, Zagazig, Egypt
| | - Shaima M Almasry
- Department of Anatomy, Taibah University, Almadinah Almunawarah, Saudi Arabia; Department of Anatomy, Mansoura University, Mansoura, Egypt.
| | - Shereen A El-Tarhouny
- Department of Clinical Biochemistry, Taibah University, Saudi Arabia; Department of Medical Biochemistry, Zagazig University, Egypt
| | - Magda A Eldomiaty
- Department of Anatomy, Taibah University, Almadinah Almunawarah, Saudi Arabia; Department of Anatomy, Tanta University, Tanta, Egypt
| |
Collapse
|
16
|
Ahmed HH, Salem AM, Atta HM, Eskandar EF, Farrag ARH, Ghazy MA, Salem NA, Aglan HA. Updates in the pathophysiological mechanisms of Parkinson’s disease: Emerging role of bone marrow mesenchymal stem cells. World J Stem Cells 2016; 8:106-117. [PMID: 27022441 PMCID: PMC4807309 DOI: 10.4252/wjsc.v8.i3.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/27/2015] [Accepted: 02/24/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the approaches exerted by mesenchymal stem cells (MSCs) to improve Parkinson’s disease (PD) pathophysiology.
METHODS: MSCs were harvested from bone marrow of femoral bones of male rats, grown and propagated in culture. Twenty four ovariectomized animals were classified into 3 groups: Group (1) was control, Groups (2) and (3) were subcutaneously administered with rotenone for 14 d after one month of ovariectomy for induction of PD. Then, Group (2) was left untreated, while Group (3) was treated with single intravenous dose of bone marrow derived MSCs (BM-MSCs). SRY gene was assessed by PCR in brain tissue of the female rats. Serum transforming growth factor beta-1 (TGF-β1), monocyte chemoattractant protein-1 (MCP-1) and brain derived neurotrophic factor (BDNF) levels were assayed by ELISA. Brain dopamine DA level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) and nestin gene expression were detected by semi-quantitative real time PCR. Brain survivin expression was determined by immunohistochemical procedure. Histopathological investigation of brain tissues was also done.
RESULTS: BM-MSCs were able to home at the injured brains and elicited significant decrease in serum TGF-β1 (489.7 ± 13.0 vs 691.2 ± 8.0, P < 0.05) and MCP-1 (89.6 ± 2.0 vs 112.1 ± 1.9, P < 0.05) levels associated with significant increase in serum BDNF (3663 ± 17.8 vs 2905 ± 72.9, P < 0.05) and brain DA (874 ± 15.0 vs 599 ± 9.8, P < 0.05) levels as well as brain TH (1.18 ± 0.004 vs 0.54 ± 0.009, P < 0.05) and nestin (1.29 ± 0.005 vs 0.67 ± 0.006, P < 0.05) genes expression levels. In addition to, producing insignificant increase in the number of positive cells for survivin (293.2 ± 15.9 vs 271.5 ± 15.9, P > 0.05) expression. Finally, the brain sections showed intact histological structure of the striatum as a result of treatment with BM-MSCs.
CONCLUSION: The current study sheds light on the therapeutic potential of BM-MSCs against PD pathophysiology via multi-mechanistic actions.
Collapse
|
17
|
Tissue Engineering and Regenerative Medicine in Iran: Current State of Research and Future Outlook. Mol Biotechnol 2015; 57:589-605. [DOI: 10.1007/s12033-015-9865-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|