1
|
Tessari F, West AM, Hogan N. Explaining human motor coordination via the synergy expansion hypothesis. Proc Natl Acad Sci U S A 2025; 122:e2501705122. [PMID: 40146855 PMCID: PMC12002196 DOI: 10.1073/pnas.2501705122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
The search for an answer to Bernstein's degrees of freedom problem has propelled a large portion of research studies in human motor control over the past six decades. Different theories have been developed to explain how humans might use their incredibly complex neuro-musculo-skeletal system with astonishing ease. Among these theories, motor synergies appeared as one possible explanation. In this work, the authors investigate the nature and role of synergies and propose a theoretical framework, namely the "expansion hypothesis," to answer Bernstein's problem. The expansion hypothesis is articulated in three propositions: mechanical, developmental, and behavioral. Each proposition addresses a different question on the nature of synergies: i) How many synergies can humans have? ii) How do we learn and develop synergies? iii) How do we use synergies? An example numerical simulation is presented and analyzed to clarify the hypothesis propositions. The expansion hypothesis is contextualized with respect to the existing literature on motor synergies both in healthy and impaired individuals, as well as other prominent theories in human motor control and development. The expansion hypothesis provides a framework to better comprehend and explain the nature, use, and evolution of human motor skills.
Collapse
Affiliation(s)
- Federico Tessari
- Newman Laboratory for Biomechanics and Human Rehabilitation, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - A. Michael West
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Neville Hogan
- Newman Laboratory for Biomechanics and Human Rehabilitation, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
2
|
Santisteban IE, Anguera MT, Granda-Vera J, Pastrana-Brincones JL. Analysis of motor behavior in piano performance from the mixed methods approach. Front Psychol 2024; 15:1433441. [PMID: 39300999 PMCID: PMC11410689 DOI: 10.3389/fpsyg.2024.1433441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction The focus of this study centers on the extraction, analysis, and interpretation of the motor behavior of advanced-level pianists using observational methodology, itself framed within the field of mixed methods, paying particular attention to those aspects that characterize the pressed and struck touch. The aim of this research was to analyze the motor interactions of activation or inhibition associated with the production of a type of touch in the movements of the right upper limb of the participating pianists. Methods An ad hoc observational instrument was built that was incorporated into the software Lince Plus for data recording and coding. Data reliability was guaranteed applying Cohen's Kappa coefficient, and an analysis of polar coordinates was carried out to identify the motor interactions involved in piano playing. Results The study provided significant information about the interaction of motor functions linked to two types of touch, such as those that occur in the sliding finger movement over the key in the pressed touch or the lifting finger movement above the key in the struck touch, obtaining clearly identified patterns of piano touch motor behavior. Discussion This research represents an innovative perspective of the study of piano-playing movement via the direct and perceptible observation of the pianist's motor behavior in an everyday context. Observational methodology is distinguished by its low degree of internal control, which makes it possible to scientifically study the spontaneous behavior of pianists in their natural environment. This model allows us to describe and analyze piano touch for its application in the field of piano performance and teaching, emphasizing the practical implications of motor interactions in piano touch.
Collapse
Affiliation(s)
| | - M Teresa Anguera
- Faculty of Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Juan Granda-Vera
- Department of Didactics of Musical, Artistic and Corporal Expression, Faculty of Education and Sport Sciences Melill, University of Granada, Granada, Spain
| | - José Luis Pastrana-Brincones
- Department of Languages and Computer Sciences, School of Computer Science and Engineering, University of Málaga, Málaga, Spain
- Computer and Information Sciences, University of St. Thomas, St. Paul, MN, United States
| |
Collapse
|
3
|
Xu J, Mawase F, Schieber MH. Evolution, biomechanics, and neurobiology converge to explain selective finger motor control. Physiol Rev 2024; 104:983-1020. [PMID: 38385888 PMCID: PMC11380997 DOI: 10.1152/physrev.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.
Collapse
Affiliation(s)
- Jing Xu
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States
| | - Firas Mawase
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa, Israel
| | - Marc H Schieber
- Departments of Neurology and Neuroscience, University of Rochester, Rochester, New York, United States
| |
Collapse
|
4
|
Verwey WB. Chord skill: learning optimized hand postures and bimanual coordination. Exp Brain Res 2023; 241:1643-1659. [PMID: 37179513 DOI: 10.1007/s00221-023-06629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
This reaction time study tested the hypothesis that in the case of finger movements skilled motor control involves the execution of learned hand postures. After delineating hypothetical control mechanisms and their predictions an experiment is described involving 32 participants who practiced 6 chord responses. These responses involved the simultaneous depression of one, two or three keys with either four right-hand fingers or two fingers of both hands. After practicing each of these responses for 240 trials, the participants performed the practiced and also novel chords with the familiar and with the unfamiliar hand configuration of the other practice group. The results suggest that participants learned hand postures rather than spatial or explicit chord representations. Participants practicing with both hands also developed a bimanual coordination skill. Chord execution was most likely slowed by interference between adjacent fingers. This interference seemed eliminated with practice for some chords but not for others. Hence, the results support the notion that skilled control of finger movements is based on learned hand postures that even after practice may be slowed by interference between adjacent fingers.
Collapse
Affiliation(s)
- Willem B Verwey
- Department of LDT-Section Code, Faculty of Behavioural, Management and Social Sciences, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| |
Collapse
|
5
|
Furuya S, Oku T. Sensorimotor Incoordination in Musicians' Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:61-70. [PMID: 37338696 DOI: 10.1007/978-3-031-26220-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
To acquire and maintain outstanding sensorimotor skills for playing musical instruments inevitably requires extensive training from childhood. However, on the way toward musical excellence, musicians sometimes develop serious disorders, such as tendinitis, carpal tunnel syndrome, and task-specific focal dystonia. Particularly, task-specific focal dystonia in musicians, which is referred to as musician's dystonia (MD), has no perfect cure and therefore often terminates professional careers of musicians. To better understand its pathological and pathophysiological mechanisms, the present article focuses on malfunctions of the sensorimotor system at the behavioral and neurophysiological levels. Based on emerging empirical evidence, we propose that the aberrant sensorimotor integration, possibly which occurs in both cortical and subcortical systems, underlies not only movement incoordination between the fingers (i.e., maladaptive synergy) but also failure of long-term retention of intervention effects in the patients with MD.
Collapse
Affiliation(s)
- Shinichi Furuya
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan.
- NeuroPiano Institute, Kyoto, Japan.
| | - Takanori Oku
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
- NeuroPiano Institute, Kyoto, Japan
| |
Collapse
|
6
|
Kimoto Y, Hirano M, Furuya S. Adaptation of the Corticomuscular and Biomechanical Systems of Pianists. Cereb Cortex 2021; 32:709-724. [PMID: 34426838 DOI: 10.1093/cercor/bhab229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Independent control of movements between the fingers plays a role in hand dexterity characterizing skilled individuals. However, it remains unknown whether and in what manner neuromuscular and biomechanical constraints on the movement independence of the fingers depend on motor expertise. Here, we compared motor dexterity, corticospinal excitability of multiple muscles, muscular activation, and anatomical features of the fingers between the pianists and nonpianists. When the ring finger was passively moved by a robot, passive motions produced at the adjacent fingers were smaller for the pianists than the nonpianists, indicating reduced biomechanical constraint of fingers in the pianists. In contrast, when the ring finger moved actively, we found no group difference in passive motions produced at the adjacent fingers; however, reduced inhibition of corticospinal excitability of the adjacent fingers in the pianists compared with the nonpianists. This suggests strengthened neuromuscular coupling between the fingers of the pianists, enhancing the production of coordinated finger movements. These group differences were not evident during the index and little finger movements. Together, pianists show expertise-dependent biomechanical and neurophysiological adaptations, specifically at the finger with innately low movement independence. Such contrasting adaptations of pianists may subserve dexterous control of both the individuated and coordinated finger movements.
Collapse
Affiliation(s)
- Yudai Kimoto
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Masato Hirano
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
7
|
Yao K, Sternad D, Billard A. Hand pose selection in a bimanual fine-manipulation task. J Neurophysiol 2021; 126:195-212. [PMID: 34107225 PMCID: PMC8325606 DOI: 10.1152/jn.00635.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many daily tasks involve the collaboration of both hands. Humans dexterously adjust hand poses and modulate the forces exerted by fingers in response to task demands. Hand pose selection has been intensively studied in unimanual tasks, but little work has investigated bimanual tasks. This work examines hand poses selection in a bimanual high-precision-screwing task taken from watchmaking. Twenty right-handed subjects dismounted a screw on the watch face with a screwdriver in two conditions. Results showed that although subjects used similar hand poses across steps within the same experimental conditions, the hand poses differed significantly in the two conditions. In the free-base condition, subjects needed to stabilize the watch face on the table. The role distribution across hands was strongly influenced by hand dominance: the dominant hand manipulated the tool, whereas the nondominant hand controlled the additional degrees of freedom that might impair performance. In contrast, in the fixed-base condition, the watch face was stationary. Subjects used both hands even though single hand would have been sufficient. Importantly, hand poses decoupled the control of task-demanded force and torque across hands through virtual fingers that grouped multiple fingers into functional units. This preference for bimanual over unimanual control strategy could be an effort to reduce variability caused by mechanical couplings and to alleviate intrinsic sensorimotor processing burdens. To afford analysis of this variety of observations, a novel graphical matrix-based representation of the distribution of hand pose combinations was developed. Atypical hand poses that are not documented in extant hand taxonomies are also included.NEW & NOTEWORTHY We study hand poses selection in bimanual fine motor skills. To understand how roles and control variables are distributed across the hands and fingers, we compared two conditions when unscrewing a screw from a watch face. When the watch face needed positioning, role distribution was strongly influenced by hand dominance; when the watch face was stationary, a variety of hand pose combinations emerged. Control of independent task demands is distributed either across hands or across distinct groups of fingers.
Collapse
Affiliation(s)
- Kunpeng Yao
- 1Learning Algorithms and Systems Laboratory, School of Engineering,
grid.5333.6École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dagmar Sternad
- 2Department of Biology, Northeastern University, Boston, Massachusetts,3Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts,4Department of Physics, Northeastern University, Boston, Massachusetts
| | - Aude Billard
- 1Learning Algorithms and Systems Laboratory, School of Engineering,
grid.5333.6École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Furuya S, Ishimaru R, Nagata N. Factors of choking under pressure in musicians. PLoS One 2021; 16:e0244082. [PMID: 33406149 PMCID: PMC7787383 DOI: 10.1371/journal.pone.0244082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022] Open
Abstract
Under pressure, motor actions, such as those required in public speech, surgery, or musical performance, can be compromised, even when these have been well-trained. The latter is often referred to as 'choking' under pressure. Although multifaceted problems mediate such performance failure in anxiogenic situations, such as compromised motor dexterity and cognitive disruption, the fundamental set of abnormalities characterizing choking under pressure and how these abnormalities are related have not been elucidated. Here, we attempted, first, to classify behavioural, psychological, and physiological abnormalities associated with choking under pressure in musicians and, second, to identify their relationship based on datasets derived from a questionnaire with 258 pianist respondents. Explorative factor analysis demonstrated eight functional abnormalities related to the musicians' choking, such as attention to the audience, erroneous motor actions, perceptual confusion, and failure of memory recall, which however did not include exaggerated attention to the performance. This suggests distraction of attention away from skill execution, which may underlie the spoiled performance under pressure. A structural equation analysis further inferred causal relationships among them. For instance, while failure of memory recall was influenced by passive behaviours manifesting under pressure, erroneous motor actions during performance were influenced by feeling rushed and a loss of body control. In addition, some specific personal traits, such as neuroticism, public self-consciousness, and a lack of confidence, were associated with the extent to which pressure brought about these abnormalities. These findings suggest that distinct psycho-behavioural abnormalities and personal traits underlie the detrimental effects of pressure on musical performance.
Collapse
Affiliation(s)
- Shinichi Furuya
- Sony Computer Science Laboratories Inc. (Sony CSL), Tokyo, Japan
- Sophia University, Tokyo, Japan
- * E-mail:
| | - Reiko Ishimaru
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Noriko Nagata
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
9
|
Tseng YT, Chen FC, Tsai CL, Konczak J. Upper limb proprioception and fine motor function in young pianists. Hum Mov Sci 2020; 75:102748. [PMID: 33360200 DOI: 10.1016/j.humov.2020.102748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND This study investigated if intensive piano training may be associated with improved motor and somatosensory function. We systematically examined upper limb proprioception, which is known to play an essential role in skill movements, and motor function in young pianists. METHOD Forty-four typically developing children who either regularly played piano for more than six years (N = 16) or had no experience playing musical instruments (N = 28) participated. Elbow and wrist joint proprioceptive acuity was assessed using a manipulandum. The wrist/elbow was passively flexed to a target with participants actively trying to match the just experienced target position. Motor function was assessed using the Movement Assessment Battery for Children (MABC-2). RESULTS First, children in the pianist group exhibited significantly lower position sense bias (systematic error) at both the elbow and wrist when compared to controls. Position sense precision (random error) was not different between groups. Second, the piano group exhibited enhanced fine motor function as shown by higher manual dexterity MABC-2 scores. Performance in other motor domains (aiming and catching or balance) was not improved in young pianists. Third, a lower position sense bias was correlated with a higher level of manual dexterity. CONCLUSION This study documents that children who regularly play the piano have superior upper limb position sense acuity. Specifically, smaller position sense bias, i.e., less systematic error. Superior upper position sense acuity in young pianists is associated with higher fine motor functions.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Hsinchu City, Taiwan; Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu City, Taiwan.
| | - Fu-Chen Chen
- Department of Physical Education, National Kaohsiung Normal University, Kaohsiung City, Taiwan
| | - Chia-Liang Tsai
- Institutes of Physical Education, Health, and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, 1900 University Ave. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Tseng YT, Tsai CL, Chen FC. Wrist proprioceptive acuity is linked to fine motor function in children undergoing piano training. J Neurophysiol 2020; 124:2052-2059. [PMID: 33112691 DOI: 10.1152/jn.00282.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Playing the piano involves rapid and precise upper limb movements, which require seamless integration of the proprioceptive and motor systems. In this study, we comprehensively assessed active and passive proprioception and different domains of motor function in young pianists, aiming to understand how their proprioceptive and motor functions are improved. Fifty-seven participants, including seventeen 11- to 12-yr-old (young) pianists, 20 children, and 20 adults, were included. The children in the pianist group had received piano training for 6 yr, whereas the children and adults in the control groups had no previous experience with instrumental training. All participants performed a psychophysical discrimination threshold hunting task and an ipsilateral joint position reproduction task, both of which measured the position sense acuity of the wrist. Their motor function was evaluated by the Movement Assessment Battery for Children, 2nd edition. The results revealed that the young pianists showed a significantly lower position sense discrimination threshold (31%) and fewer joint position reproduction errors (49%) than the nontrained children. Second, a higher level of manual dexterity, but not of ball skills or balance, was found in the young pianist group. Third, a higher proprioceptive acuity (i.e., decreased position sense discrimination threshold) significantly correlated with higher manual dexterity. This study documents that a high wrist position sense is a common characteristic among young pianists. The increased upper limb position sense acuity is correlated with better manual dexterity, suggesting that piano practice may benefit untrained fine motor skills in children.NEW & NOTEWORTHY We document that improved proprioceptive acuity is a common feature in young pianists. This proprioceptive improvement is associated with both proprioceptive processing and proprioceptive-motor integration. Higher wrist proprioceptive acuity in young pianists is linked to enhanced manual dexterity, which suggests that intensive piano training may improve untrained fine motor skills.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Kinesiology, National Tsing Hua University, Hsinchu City, Taiwan.,Research Center for Mind Sciences, National Tsing Hua University, Hsinchu City, Taiwan
| | - Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Fu-Chen Chen
- Department of Physical Education, National Kaohsiung Normal University, Kaohsiung City, Taiwan
| |
Collapse
|
11
|
González A, Pérez P, Santapau M, González JJ, Modroño CD. A neuroimaging comparative study of changes in a cellist's brain when playing contemporary and Baroque styles. Brain Cogn 2020; 145:105623. [PMID: 32950818 DOI: 10.1016/j.bandc.2020.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
The emergence of different styles of Contemporary concert music in the 20th century led to a marked modification of the foundations built on previous styles. This work investigates whether these modifications, which include procedures and technical resources different to those used in the interpretation of previous musical styles, require different encephalic controls to those used in tonal music and if the experience of the musician in these styles influences them. Functional magnetic resonance images of encephalic regions from 13 professional cellists while interpreting Baroque and Contemporary excerpts inside an MRI scanner were acquired. Activation and connectivity encephalic maps show common cortical motor and sensorial regions (Precentral, Postcentral and Supramarginal Gyri) in both interpretation styles, but with different hemispheric intensity levels. However, certain auditory and motor regions only activate during Baroque. Connectivity maps show some exclusive seed-regions; thus, the Heschl's and Superior Frontal Gyri, Planum-Temporal and Caudate appear as prominent seeds when playing Baroque, whereas when playing Contemporary, the main seeds appear in the Cerebellar-Vermis, Insular cortex and Parietal Operculum. The discrepancies found are attributed to different cognitive, sensory and motor demands underlying the musical interpretation of each style, as well as to the musicians' learning of and training in these styles.
Collapse
Affiliation(s)
- Almudena González
- Departamento Ciencias Médicas Básicas (Fisiología, Medicina), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain; Conservatorio Superior de Música de Canarias, 38009 Santa Cruz de Tenerife, Spain; Departamento Historia del Arte y Filosofía, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain.
| | - Pompeyo Pérez
- Departamento Historia del Arte y Filosofía, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain.
| | - Manuel Santapau
- Conservatorio Profesional de Requena, 46340 Requena, Valencia, Spain; Departamento de Biología, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Julián J González
- Departamento Ciencias Médicas Básicas (Fisiología, Medicina), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain; Departamento de Biología, Universidad de las Islas Baleares, 07122 Palma de Mallorca, Illes Balears, Spain.
| | - Cristián D Modroño
- Departamento Ciencias Médicas Básicas (Fisiología, Medicina), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
12
|
Neuromuscular and biomechanical functions subserving finger dexterity in musicians. Sci Rep 2019; 9:12224. [PMID: 31434947 PMCID: PMC6704118 DOI: 10.1038/s41598-019-48718-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
Exceptional finger dexterity enables skillful motor actions such as those required for musical performance. However, it has been not known whether and in what manner neuromuscular or biomechanical features of the fingers subserve the dexterity. We aimed to identify the features firstly differentiating the finger dexterity between trained and untrained individuals and secondly accounting for the individual differences in the dexterity across trained individuals. To this aim, two studies were conducted. The first study compared the finger dexterity and several neuromuscular and biomechanical characteristics of the fingers between pianists and non-musicians. As a measure of the dexterity, we used the maximum rate of repetitive finger movements. The results showed no differences in any biomechanical constraints of the fingers between the two groups (i.e. anatomical connectivity between the fingers and range of motion). However, the pianists exhibited faster finger movements and more independent control of movements between the fingers. These observations indicate expertise-dependent enhancement of the finger dexterity and reduction of neuromuscular constraints on movement independence between the fingers. The second study assessed individual differences in the finger dexterity between trained pianists. A penalized regression determined an association of the maximum movement speed of the fingers with both muscular strength and biomechanical characteristics of the fingers, but not with neuromuscular constraints of the fingers. None of these features covaried with measures of early and deliberate piano practice. These findings indicate that distinct biological factors of finger motor dexterity differentiate between the effects of piano practicing and individual differences across skilled pianists.
Collapse
|
13
|
Kotani S, Furuya S. State anxiety disorganizes finger movements during musical performance. J Neurophysiol 2018; 120:439-451. [PMID: 29641301 DOI: 10.1152/jn.00813.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skilled performance, in many situations, exposes an individual to psychological stress and fear, thus triggering state anxiety and compromising motor dexterity. Suboptimal skill execution in people under pressure affects the future career prospects of trained individuals, such as athletes, clinicians, and musicians. However, it has not been elucidated in what manner state anxiety affects multijoint movements and thereby degrades fine motor control. Using principal component analysis of hand kinematics recorded by a data glove during piano performances, we tested whether state anxiety affects the organization of movements of multiple joints or merely constrains the amplitude of the individual joints without affecting joint movement coordination. The result demonstrated changes in the coordination of movements across joints in piano performances by experts under psychological stress. Overall, the change was characterized by reduction of synergistic movements between the finger responsible for the keypress and its adjacent fingers. A regression analysis further identified that the attenuation of the movement covariation between the fingers was associated with an increase in temporal error during performance under pressure. In contrast, neither the maximum nor minimum angles of the individual joints of the hand were susceptible to induced anxiety. These results suggest that degradation of fine motor control under pressure is mediated by incoordination of movements between the fingers in skilled piano performances. NEW & NOTEWORTHY A key issue in neuromuscular control of coordinated movements is how the nervous system organizes multiple degrees of freedom for production of skillful motor behaviors. We found that state anxiety disorchestrates the organization of finger movements so as to decrease synergistic motions between the fingers in musical performance, which degrades fine motor control. The findings are important to shed light on mechanisms underlying loss of motor dexterity under pressure.
Collapse
Affiliation(s)
- Shuntaro Kotani
- Musical Skill and Injury Center (MuSIC), Sophia University , Tokyo , Japan
| | - Shinichi Furuya
- Musical Skill and Injury Center (MuSIC), Sophia University , Tokyo , Japan.,Sony Computer Science Laboratories, Inc. , Tokyo , Japan
| |
Collapse
|
14
|
Furuya S, Yokota S. Temporal exploration in sequential movements shapes efficient neuromuscular control. J Neurophysiol 2018; 120:196-210. [PMID: 29641299 DOI: 10.1152/jn.00922.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interaction of early and deliberate practice with genetic predisposition endows experts with virtuosic motor performance. However, it has not been known whether ways of practicing shape motor virtuosity. Here, we addressed this issue by comparing the effects of rhythmic variation in motor practice on neuromuscular control of the finger movements in pianists. With the use of a novel electromyography system with miniature active electrodes, we recorded the activity of the intrinsic hand muscles of 27 pianists while they played the piano and analyzed it by using a nonnegative matrix factorization algorithm and cluster analysis. The result demonstrated that practicing a target movement sequence with various rhythms reduced muscular activity, whereas neither practicing a sequence with a single rhythm nor taking a rest without practicing changed the activity. In addition, practice with rhythmic variation changed the patterns of simultaneous activations across muscles. This alteration of muscular coordination was associated with decreased activation of muscles not only relevant to, but also irrelevant to the task performance. In contrast, piano practice improved the maximum speed of the performance, the amount of which was independent of whether rhythmic variation was present. These results suggest that temporal variation in movement sequences during practice co-optimizes both movement speed and neuromuscular efficiency, which emphasizes the significance of ways of practice in the acquisition of motor virtuosity. NEW & NOTEWORTHY A key question in motor neuroscience is whether "ways of practicing" contribute to shaping motor virtuosity. We found both attenuation of activities and alteration of coordination of the intrinsic hand muscles of pianists, specifically through practicing a movement sequence with various rhythms. The maximum speed of the finger movements was also enhanced following the practice. These results emphasize the importance of ways of practicing in facilitating multiple skills: efficiency and speed.
Collapse
Affiliation(s)
- Shinichi Furuya
- Sony Computer Science Laboratories, Incorporated, Tokyo , Japan.,Musical Skill and Injury Center, Sophia University , Tokyo , Japan
| | - Sayuri Yokota
- Musical Skill and Injury Center, Sophia University , Tokyo , Japan
| |
Collapse
|
15
|
|
16
|
Mirakhorlo M, Maas H, Veeger HEJ. Increased enslaving in elderly is associated with changes in neural control of the extrinsic finger muscles. Exp Brain Res 2018; 236:1583-1592. [PMID: 29572650 PMCID: PMC5982445 DOI: 10.1007/s00221-018-5219-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/24/2018] [Indexed: 11/03/2022]
Abstract
Aging has consequences for hand motor control, among others affecting finger force enslaving during static pressing tasks. The aim of this study was to assess whether the extent of finger force enslaving changes with aging during a task that involves both static and dynamic phases. Ten right-handed young (22-30 years) and ten elderly subjects (67-79 years) were instructed to first exert a constant force (static phase) and then flex their index finger while counteracting constant resistance forces orthogonal to their fingertips (dynamic phase). The other fingers (non-instructed) were held in extension. EMG activities of the flexor digitorum superficialis (FDS) and extensor digitorum (ED) muscles in the regions corresponding to the index, middle and ring fingers together with their forces and position of index finger were measured. In both elderly and young, forces exerted by the non-instructed fingers increased (around 0.6 N for both young and elderly) during isotonic flexion of the index finger, but with a different delay of on average 100 ± 72 ms in elderly and 334 ± 101 ms in young subjects. Results also suggest different responses in activity of FDS and ED muscle regions of the non-instructed fingers to index finger flexion between elderly and young subjects. The enslaving effect was significantly higher in elderly than in young subjects both in the static (12% more) and dynamic (14% more) phases. These differences in enslaving can at least partly be explained by changes in neuromuscular control.
Collapse
Affiliation(s)
- M Mirakhorlo
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - H Maas
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - H E J Veeger
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
17
|
Hirano M, Kubota S, Furuya S, Koizume Y, Tanaka S, Funase K. Acquisition of skilled finger movements is accompanied by reorganization of the corticospinal system. J Neurophysiol 2018; 119:573-584. [DOI: 10.1152/jn.00667.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dexterous finger movements are often characterized by highly coordinated movements. Such coordination might be derived from reorganization of the corticospinal system. In this study, we investigated 1) the manner in which finger movement covariation patterns are acquired, by examining the effects of the implicit and explicit learning of a serial reaction time task (SRTT), and 2) how such changes in finger coordination are represented in the corticospinal system. The subjects learned a button press sequence in both implicit and explicit learning conditions. In the implicit conditions, they were naive about what they were learning, whereas in the explicit conditions the subjects consciously learned the order of the sequence elements. Principal component analysis decomposed both the voluntary movements produced during the SRTT and the passive movements evoked by transcranial magnetic stimulation (TMS) over the primary motor cortex into a set of five finger joint covariation patterns. The structures of the voluntary and passive TMS-evoked movement patterns were reorganized by implicit learning but not explicit learning. Furthermore, in the implicit learning conditions the finger covariation patterns derived from the TMS-evoked and voluntary movements spanned similar movement subspaces. These results provide the first evidence that skilled sequential finger movements are acquired differently through implicit and explicit learning, i.e., the changes in finger coordination patterns induced by implicit learning are accompanied by functional reorganization of the corticospinal system, whereas explicit learning results in faster recruitment of individual finger movements without causing any changes in finger coordination. NEW & NOTEWORTHY Skilled sequential multifinger movements are characterized as highly coordinated movement patterns. These finger coordination patterns are represented in the corticospinal system, yet it still remains unclear how these patterns are acquired through implicit and explicit motor sequence learning. A direct comparison of learning-related changes between actively generated finger movements and passively evoked finger movements by TMS provided evidence that finger coordination patterns represented in the corticospinal system are reorganized through implicit, but not explicit, sequence learning.
Collapse
Affiliation(s)
- Masato Hirano
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shinji Kubota
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shinichi Furuya
- Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan
- SONY Computer Science Laboratory, Tokyo, Japan
| | - Yoshiki Koizume
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Tanaka
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Kozo Funase
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Mirakhorlo M, Maas H, Veeger DHEJ. Timing and extent of finger force enslaving during a dynamic force task cannot be explained by EMG activity patterns. PLoS One 2017; 12:e0183145. [PMID: 28817708 PMCID: PMC5560573 DOI: 10.1371/journal.pone.0183145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/31/2017] [Indexed: 11/19/2022] Open
Abstract
Finger enslaving is defined as the inability of the fingers to move or to produce force independently. Such finger enslaving has predominantly been investigated for isometric force tasks. The aim of this study was to assess whether the extent of force enslaving is dependent on relative finger movements. Ten right-handed subjects (22–30 years) flexed the index finger while counteracting constant resistance forces (4, 6 and 8 N) orthogonal to the fingertip. The other, non-instructed fingers were held in extension. EMG activities of the mm. flexor digitorum superficialis (FDS) and extensor digitorum (ED) in the regions corresponding to the index, middle and ring fingers were measured. Forces exerted by the non-instructed fingers increased substantially (by 0.2 to 1.4 N) with flexion of the index finger, increasing the enslaving effect with respect to the static, pre-movement phase. Such changes in force were found 260–370 ms after the initiation of index flexion. The estimated MCP joint angle of the index finger at which forces exerted by the non-instructed fingers started to increase varied between 4° and 6°. In contrast to the finger forces, no significant changes in EMG activity of the FDS regions corresponding to the non-instructed fingers upon index finger flexion were found. This mismatch between forces and EMG of the non-instructed fingers, as well as the delay in force development are in agreement with connective tissue linkages being slack when the positions of the fingers are similar, but pulled taut when one finger moves relative to the others. Although neural factors cannot be excluded, our results suggest that mechanical connections between muscle-tendon structures were (at least partly) responsible for the observed increase in force enslaving during index finger flexion.
Collapse
Affiliation(s)
- Mojtaba Mirakhorlo
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- * E-mail:
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - DirkJan H. E. J. Veeger
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
19
|
van den Noort JC, van Beek N, van der Kraan T, Veeger DHEJ, Stegeman DF, Veltink PH, Maas H. Variable and Asymmetric Range of Enslaving: Fingers Can Act Independently over Small Range of Flexion. PLoS One 2016; 11:e0168636. [PMID: 27992598 PMCID: PMC5167409 DOI: 10.1371/journal.pone.0168636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
The variability in the numerous tasks in which we use our hands is very large. However, independent movement control of individual fingers is limited. To assess the extent of finger independency during full-range finger flexion including all finger joints, we studied enslaving (movement in non-instructed fingers) and range of independent finger movement through the whole finger flexion trajectory in single and multi-finger movement tasks. Thirteen young healthy subjects performed single- and multi-finger movement tasks under two conditions: active flexion through the full range of movement with all fingers free to move and active flexion while the non-instructed finger(s) were restrained. Finger kinematics were measured using inertial sensors (PowerGlove), to assess enslaving and range of independent finger movement. Although all fingers showed enslaving movement to some extent, highest enslaving was found in adjacent fingers. Enslaving effects in ring and little finger were increased with movement of additional, non-adjacent fingers. The middle finger was the only finger affected by restriction in movement of non-instructed fingers. Each finger showed a range of independent movement before the non-instructed fingers started to move, which was largest for the index finger. The start of enslaving was asymmetrical for adjacent fingers. Little finger enslaving movement was affected by multi-finger movement. We conclude that no finger can move independently through the full range of finger flexion, although some degree of full independence is present for smaller movements. This range of independent movement is asymmetric and variable between fingers and between subjects. The presented results provide insight into the role of finger independency for different types of tasks and populations.
Collapse
Affiliation(s)
- Josien C. van den Noort
- Biomedical Signals and Systems, MIRA Institute, University of Twente, Enschede, the Netherlands
- Department of Rehabilitation medicine, VU University medical center, MOVE Research Institute Amsterdam, the Netherlands
- * E-mail:
| | - Nathalie van Beek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Thomas van der Kraan
- Donders Institute, Department of Neurology and Clinical Neurophysiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - DirkJan H. E. J. Veeger
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | - Dick F. Stegeman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
- Donders Institute, Department of Neurology and Clinical Neurophysiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter H. Veltink
- Biomedical Signals and Systems, MIRA Institute, University of Twente, Enschede, the Netherlands
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| |
Collapse
|
20
|
Hosoda M, Furuya S. Shared somatosensory and motor functions in musicians. Sci Rep 2016; 6:37632. [PMID: 27886250 PMCID: PMC5122843 DOI: 10.1038/srep37632] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/01/2016] [Indexed: 01/23/2023] Open
Abstract
Skilled individuals are characterized by fine-tuned perceptual and motor functions. Here, we tested the idea that the sensory and motor functions of highly-trained individuals are coupled. We assessed the relationships among multifaceted somatosensory and motor functions of expert pianists. The results demonstrated a positive covariation between the acuity of weight discrimination and the precision of force control during piano keystrokes among the pianists but not among the non-musicians. However, neither the age of starting musical training nor the total amount of life-long piano practice was correlated with these sensory-motor functions in the pianists. Furthermore, a difference between the pianists and non-musicians was absent for the weight discrimination acuity but present for precise force control during keystrokes. The results suggest that individuals with innately superior sensory function had finer motor control only in a case of having undergone musical training. Intriguingly, the tactile spatial acuity of the fingertip was superior in the pianists compared with the non-musicians but was not correlated with any functions representing fine motor control among the pianists. The findings implicate the presence of two distinct mechanisms of sensorimotor learning elicited by musical training, which occur either independently in individual sensorimotor modalities or through interacting between modalities.
Collapse
Affiliation(s)
- Moe Hosoda
- Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, JAPAN
| | - Shinichi Furuya
- Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, JAPAN
| |
Collapse
|
21
|
Tominaga K, Lee A, Altenmüller E, Miyazaki F, Furuya S. Kinematic Origins of Motor Inconsistency in Expert Pianists. PLoS One 2016; 11:e0161324. [PMID: 27537686 PMCID: PMC4990412 DOI: 10.1371/journal.pone.0161324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
For top performers, including athletes and musicians, even subtle inconsistencies in rhythm and force during movement production decrease the quality of performance. However, extensive training over many years beginning in childhood is unable to perfect dexterous motor performance so that it is without any error. To gain insight into the biological mechanisms underlying the subtle defects of motor actions, the present study sought to identify the kinematic origins of inconsistency of dexterous finger movements in musical performance. Seven highly-skilled pianists who have won prizes at international piano competitions played a short sequence of tones with the right hand at a predetermined tempo. Time-varying joint angles of the fingers were recorded using a custom-made data glove, and the timing and velocity of the individual keystrokes were recorded from a digital piano. Both ridge and stepwise multiple regression analyses demonstrated an association of the inter-trial variability of the inter-keystroke interval (i.e., rhythmic inconsistency) with both the rotational velocity of joints of the finger used for a keystroke (i.e., striking finger) and the movement independence between the striking and non-striking fingers. This indicates a relationship between rhythmic inconsistency in musical performance and the dynamic features of movements in not only the striking finger but also the non-striking fingers. In contrast, the inter-trial variability of the key-descending velocity (i.e., loudness inconsistency) was associated mostly with the kinematic features of the striking finger at the moment of the keystroke. Furthermore, there was no correlation between the rhythmic and loudness inconsistencies. The results suggest distinct kinematic origins of inconsistencies in rhythm and loudness in expert musical performance.
Collapse
Affiliation(s)
- Kenta Tominaga
- Department of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 5608531, Japan
| | - André Lee
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Music Physiology and Musicians’ Medicine, Hannover University for Music, Drama and Media, Emmichplatz 1, 30175 Hannover, Germany
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians’ Medicine, Hannover University for Music, Drama and Media, Emmichplatz 1, 30175 Hannover, Germany
| | - Fumio Miyazaki
- Department of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 5608531, Japan
| | - Shinichi Furuya
- Institute for Music Physiology and Musicians’ Medicine, Hannover University for Music, Drama and Media, Emmichplatz 1, 30175 Hannover, Germany
- Musical Skill and Injury Center (MuSIC), Sophia University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Müller NCJ, Genzel L, Konrad BN, Pawlowski M, Neville D, Fernández G, Steiger A, Dresler M. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline. PLoS One 2016; 11:e0157770. [PMID: 27333186 PMCID: PMC4917083 DOI: 10.1371/journal.pone.0157770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/03/2016] [Indexed: 11/19/2022] Open
Abstract
The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience-in our case piano skills-increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline.
Collapse
Affiliation(s)
- Nils C. J. Müller
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail: (NCJM); (MD)
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - Boris N. Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - David Neville
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail: (NCJM); (MD)
| |
Collapse
|
23
|
MacRitchie J, McPherson AP. Integrating optical finger motion tracking with surface touch events. Front Psychol 2015; 6:702. [PMID: 26082732 PMCID: PMC4451251 DOI: 10.3389/fpsyg.2015.00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/12/2015] [Indexed: 11/13/2022] Open
Abstract
This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.
Collapse
Affiliation(s)
- Jennifer MacRitchie
- The MARCS Institute, University of Western Sydney Sydney, NSW, Australia ; Conservatorio della Svizzera Italiana, Scuola Universitaria di Musica, The University of Applied Sciences and Arts of Southern Switzerland Lugano, Switzerland
| | - Andrew P McPherson
- Centre for Digital Music, School of Electronic Engineering and Computer Science, Queen Mary University of London London, UK
| |
Collapse
|
24
|
Furuya S, Altenmüller E. Acquisition and reacquisition of motor coordination in musicians. Ann N Y Acad Sci 2015; 1337:118-24. [PMID: 25773625 DOI: 10.1111/nyas.12659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Precise control of movement timing plays a key role in musical performance. This motor skill requires coordination across multiple joints and muscles, which is acquired through extensive musical training from childhood. However, extensive training has a potential risk of causing neurological disorders that impair fine motor control, such as task-specific tremor and focal dystonia. Recent technological advances in measurement and analysis of biological data, as well as noninvasive manipulation of neuronal activities, have promoted the understanding of computational and neurophysiological mechanisms underlying acquisition, loss, and reacquisition of dexterous movements through musical practice and rehabilitation. This paper aims to provide an overview of the behavioral and neurophysiological basis of motor virtuosity and disorder in musicians, representative extremes of human motor skill. We also report novel evidence of effects of noninvasive neurorehabilitation that combined transcranial direct-current stimulation and motor rehabilitation over multiple days on musician's dystonia, which offers a promising therapeutic means.
Collapse
Affiliation(s)
- Shinichi Furuya
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany; Department of Information and Communication Sciences, Sophia University, Tokyo, Japan
| | | |
Collapse
|
25
|
Proverbio AM, Attardo L, Cozzi M, Zani A. The effect of musical practice on gesture/sound pairing. Front Psychol 2015; 6:376. [PMID: 25883580 PMCID: PMC4382982 DOI: 10.3389/fpsyg.2015.00376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
Learning to play a musical instrument is a demanding process requiring years of intense practice. Dramatic changes in brain connectivity, volume, and functionality have been shown in skilled musicians. It is thought that music learning involves the formation of novel audio visuomotor associations, but not much is known about the gradual acquisition of this ability. In the present study, we investigated whether formal music training enhances audiovisual multisensory processing. To this end, pupils at different stages of education were examined based on the hypothesis that the strength of audio/visuomotor associations would be augmented as a function of the number of years of conservatory study (expertise). The study participants were violin and clarinet students of pre-academic and academic levels and of different chronological ages, ages of acquisition, and academic levels. A violinist and a clarinetist each played the same score, and each participant viewed the video corresponding to his or her instrument. Pitch, intensity, rhythm, and sound duration were matched across instruments. In half of the trials, the soundtrack did not match (in pitch) the corresponding musical gestures. Data analysis indicated a correlation between the number of years of formal training (expertise) and the ability to detect an audiomotor incongruence in music performance (relative to the musical instrument practiced), thus suggesting a direct correlation between knowing how to play and perceptual sensitivity.
Collapse
Affiliation(s)
- Alice M Proverbio
- NeuroMi - Milan Center for Neuroscience, Department of Psychology, University of Milano-Bicocca , Milan, Italy
| | - Lapo Attardo
- NeuroMi - Milan Center for Neuroscience, Department of Psychology, University of Milano-Bicocca , Milan, Italy
| | - Matteo Cozzi
- NeuroMi - Milan Center for Neuroscience, Department of Psychology, University of Milano-Bicocca , Milan, Italy
| | - Alberto Zani
- Institute of Bioimaging and Molecular Physiology, National Research Council , Milan, Italy
| |
Collapse
|