1
|
Napit PR, Ali MH, Mahmood ASMH, Ibrahim MMH, Briski KP. Sex-dimorphic hindbrain lactate regulation of ventromedial hypothalamic nucleus glucoregulatory neuron 5'-AMP-activated protein kinase activity and transmitter marker protein expression. Neuropeptides 2023; 99:102324. [PMID: 36791640 PMCID: PMC10175150 DOI: 10.1016/j.npep.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The oxidizable glycolytic end-product L-lactate is a gauge of nerve cell metabolic fuel stability that metabolic-sensory hindbrain A2 noradrenergic neurons impart to the brain glucose-regulatory network. Current research investigated the premise that hindbrain lactate deficiency exerts sex-specific control of energy sensor and transmitter marker protein responses to hypoglycemia in ventromedial hypothalamic nucleus (VMN) glucose-regulatory nitrergic and γ-aminobutyric acid (GABA) neurons. METHODS Nitric oxide synthase (nNOS)- or glutamate decarboxylase65/67 (GAD)-immunoreactive neurons were laser-catapult-microdissected from male and female rat VMN after subcutaneous insulin injection and caudal fourth ventricular L-lactate or vehicle infusion for Western blot protein analysis. RESULTS Hindbrain lactate repletion reversed hypoglycemia-associated augmentation (males) or inhibition (females) of nitrergic neuron nNOS expression, and prevented up-regulation of phosphorylated AMPK 5'-AMP-activated protein kinase (pAMPK) expression in those neurons. Hypoglycemic suppression of GABAergic neuron GAD protein was averted by exogenous lactate over the rostro-caudal length of the male VMN and in the middle region of the female VMN. Lactate normalized GABA neuron pAMPK profiles in hypoglycemic male (caudal VMN) and female (all VMN segments) rats. Hypoglycemic patterns of norepinephrine (NE) signaling were lactate-dependent throughout the male VMN, but confined to the rostral and middle female VMN. CONCLUSIONS Results document, in each sex, regional VMN glucose-regulatory transmitter responses to hypoglycemia that are controlled by hindbrain lactate status. Hindbrain metabolic-sensory regulation of hypoglycemia-correlated nitric oxide or GABA release may entail AMPK-dependent mechanisms in specific VMN rostro-caudal segments in each sex. Additional effort is required to examine the role of hindbrain lactoprivic-sensitive VMN neurotransmitters in lactate-mediated attenuation of hypoglycemic hyperglucagonemia and hypercorticosteronemia in male and female rats.
Collapse
Affiliation(s)
- Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
2
|
Ali MH, Alshamrani AA, Briski KP. Hindbrain lactate regulation of hypoglycemia-associated patterns of catecholamine and metabolic-sensory biomarker gene expression in A2 noradrenergic neurons innervating the male versus female ventromedial hypothalamic nucleus. J Chem Neuroanat 2022; 122:102102. [PMID: 35483611 DOI: 10.1016/j.jchemneu.2022.102102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
Caudal hindbrain A2 noradrenergic neurons provide critical metabolic-sensory input to the brain glucostatic circuitry. In males, insulin-induced hypoglycemia (IIH)-associated patterns of A2 cell dopamine-beta-hydroxylase (DβH) protein expression reflect diminution of the oxidizable fuel L-lactate, yet DβH exhibits sex-dimorphic responses to IIH. Here, retrograde tracing and combinatory single-cell laser-microdissection/multiplex qPCR techniques were used to examine whether lactate imposes sex-specific control of hypoglycemia-associated metabolic-sensory function and noradrenergic neurotransmission in A2 neurons that innervate the ventromedial hypothalamic nucleus (VMN), a key glucose-regulatory structure. VMN-projecting A2 neurons from each sex were characterized by presence or absence of nuclear glucokinase regulatory protein (nGKRP) immunoreactivity (-ir). IIH caused lactate-reversible up- or down-regulation of DβH mRNA in male and female nGKRP-ir-positive A2 neurons, respectively, and stimulated glucokinase (GCK) and sulfonylurea receptor-1 (SUR-1) gene expression in these cells in each sex. Hypoglycemia did not alter DβH, GCK, and SUR-1 transcript profiles in nGKRP-ir-negative male or female A2 neurons innervating the VMN. Estrogen receptor (ER) gene profiles in nGKRP-ir-positive neurons showed sex-specific [ER-alpha; G-protein-coupled estrogen-receptor-1 (GPER)] or sex-monomorphic (ER-beta) transcriptional responses to IIH. Fewer ER gene profiles were affected by IIH in nGKRP-ir-negative A2 neurons from male or female rats. Results show that during IIH, VMN-projecting A2 neurons may deliver altered, sex-dependent (nGKRP-positive) or unaffected (nGKRP-negative) noradrenergic input to the VMN. In each sex, metabolic-sensory gene profiles were reactive to hypoglycemia in nGKRP-ir-positive, not -negative A2 cells. Further studies are needed to elucidate the role of GKRP in transduction of metabolic imbalance into noradrenergic signaling, and to determine if input by one or more ER variants establishes sex differences in DβH transcriptional sensitivity to IIH.
Collapse
Affiliation(s)
- Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
3
|
Briski K, Napit PR, Md. Haider A, Alshamrani A, Alhamyani A, Bheemanapally K, Ibrahim MM. Hindbrain catecholamine regulation of ventromedial hypothalamic nucleus glycogen metabolism during acute versus recurring insulin-induced hypoglycemia in male versus female rat. ENDOCRINE AND METABOLIC SCIENCE 2021; 3. [PMID: 33997825 PMCID: PMC8114938 DOI: 10.1016/j.endmts.2021.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ventromedial hypothalamic nucleus (VMN) glycogen metabolism affects local glucoregulatory signaling. The hindbrain metabolic-sensitive catecholamine (CA) neurotransmitter norepinephrine controls VMN glycogen phosphorylase (GP)-muscle (GPmm) and -brain (GPbb) type expression in male rats. Present studies addressed the premise that CA regulation of hypoglycemic patterns of VMN glycogen metabolic enzyme protein expression is sex-dimorphic, and that this signal is responsible for sex differences in acclimation of these profiles to recurrent insulin-induced hypoglycemia (RIIH). VMN tissue was acquired by micropunch-dissection from male and female rats pretreated by caudal fourth ventricular administration of the CA neurotoxin 6-hydroxydopamine (6OHDA) before single or serial insulin injection. 6-OHDA averted acute hypoglycemic inhibition of VMN glycogen synthase (GS) and augmentation of GPmm and GPbb protein expression in males, and prevented GPmm and -bb down-regulation in females. Males recovered from antecedent hypoglycemia (AH) exhibited neurotoxin-preventable diminution of baseline GS profiles, whereas acclimated GPmm and -bb expression in females occurred irrespective of pretreatment. RIIH did not alter VMN GS, GPmm, and GPbb expression in vehicle- or 6-OHDA-pretreated animals of either sex. VMN glycogen content was correspondingly unchanged or increased in males versus females following AH; 6-OHDA augmented glycogen mass in AH-exposed animals of both sexes. RIIH did not alter VMN glycogen accumulation in vehicle-pretreated rats of either sex, but diminished glycogen in neurotoxin-pretreated animals. AH suppresses baseline GS (CA-dependent) or GPmm/GPbb (CA-independent) expression in male and female rats, respectively, which corresponds with unaltered or augmented VMN glycogen content in those sexes. AH-associated loss of sex-distinctive CA-mediated enzyme protein sensitivity to hypoglycemia (male: GS, GPmm, GPbb; female: GPmm, Gpbb) may reflect, in part, VMN target desensitization to noradrenergic input.
Collapse
|
4
|
Briski KP, Ali MH, Napit PR, Mahmood ASMH, Alhamyani AR, Alshamrani AA, Ibrahim MMH. Sex differences in ventromedial hypothalamic nucleus glucoregulatory transmitter biomarker protein during recurring insulin-induced hypoglycemia. Brain Struct Funct 2021; 226:1053-1065. [PMID: 33580322 DOI: 10.1007/s00429-021-02225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
Recurring insulin-induced hypoglycemia (RIIH) in males correlates with maladaptive glucose counter-regulatory collapse and acclimated expression of ventromedial hypothalamic nucleus (VMN) nitric oxide (NO) and γ-aminobutyric acid (GABA) metabolic transmitter biomarkers, e.g., neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD). Hindbrain noradrenergic neurons innervate the VMN, where norepinephrine regulates nNOS and GAD expression. Current research investigated the hypothesis that antecedent hypoglycemia (AH) exposure causes sex-dimorphic habituation of VMN glucoregulatory biomarker proteins between and/or during serial hypoglycemic bouts, and that hindbrain catecholaminergic (CA) signaling may control sex-specific adaptation of one or more of these proteins. Data show that upon recovery from AH, females exhibit CA-mediated reductions in baseline VMN nNOS, GAD, steroidogenic factor-1 (SF-1), and brain-derived neurotrophic factor (BNDF) expression compared to euglycemic profiles. In males, however, AH caused 6-OHDA-insensitive suppression of only basal SF-1 levels in the VMN. VMN transmitter protein acclimation to RIIH was sex-contingent, as differential nNOS, GAD, SF-1, and BDNF responses to a single vs final bout of hypoglycemia occur in males, whereas females show acclimated reactivity of GAD and SF-1 only to renewed hypoglycemia. CA-mediated and -independent habituation of distinctive VMN protein profiles occurred in each sex. Further research is necessary to evaluate, in each sex, effects of altered baseline VMN metabolic neurotransmitter signals on glucose homeostasis as well as non-metabolic functions under the control of those neurochemicals. It would also be insightful to learn if and how sex-contingent habituation of VMN transmitter responses to hypoglycemia contribute to sex-dimorphic patterns of glucose counter-regulation during RIIH.
Collapse
Affiliation(s)
- K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - A S M H Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - A R Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - A A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| |
Collapse
|
5
|
Briski KP, Ibrahim MMH, Mahmood ASMH, Alshamrani AA. Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Astrocyte Glycogen Metabolism. Int J Mol Sci 2021; 22:ijms22020759. [PMID: 33451134 PMCID: PMC7828624 DOI: 10.3390/ijms22020759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The catecholamine norepinephrine (NE) links hindbrain metabolic-sensory neurons with key glucostatic control structures in the brain, including the ventromedial hypothalamic nucleus (VMN). In the brain, the glycogen reserve is maintained within the astrocyte cell compartment as an alternative energy source to blood-derived glucose. VMN astrocytes are direct targets for metabolic stimulus-driven noradrenergic signaling due to their adrenergic receptor expression (AR). The current review discusses recent affirmative evidence that neuro-metabolic stability in the VMN may be shaped by NE influence on astrocyte glycogen metabolism and glycogen-derived substrate fuel supply. Noradrenergic modulation of estrogen receptor (ER) control of VMN glycogen phosphorylase (GP) isoform expression supports the interaction of catecholamine and estradiol signals in shaping the physiological stimulus-specific control of astrocyte glycogen mobilization. Sex-dimorphic NE control of glycogen synthase and GP brain versus muscle type proteins may be due, in part, to the dissimilar noradrenergic governance of astrocyte AR and ER variant profiles in males versus females. Forthcoming advances in the understanding of the molecular mechanistic framework for catecholamine stimulus integration with other regulatory inputs to VMN astrocytes will undoubtedly reveal useful new molecular targets in each sex for glycogen mediated defense of neuronal metabolic equilibrium during neuro-glucopenia.
Collapse
|
6
|
Uddin MM, Ibrahim MMH, Briski KP. Sex-dimorphic neuroestradiol regulation of ventromedial hypothalamic nucleus glucoregulatory transmitter and glycogen metabolism enzyme protein expression in the rat. BMC Neurosci 2020; 21:51. [PMID: 33238883 PMCID: PMC7687823 DOI: 10.1186/s12868-020-00598-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Ventromedial hypothalamic nucleus (VMN) gluco-regulatory transmission is subject to sex-specific control by estradiol. The VMN is characterized by high levels of aromatase expression. Methods The aromatase inhibitor letrozole (LZ) was used with high-resolution microdissection/Western blot techniques to address the hypothesis that neuroestradiol exerts sex-dimorphic control of VMN neuronal nitric oxide synthase (nNOS) and glutamate decarboxylase65/67 (GAD) protein expression. Glycogen metabolism impacts VMN nNOS and GAD profiles; here, LZ treatment effects on VMN glycogen synthase (GS) and phosphorylase brain- (GPbb; glucoprivic-sensitive) and muscle (GPmm; norepinephrine-sensitive) variant proteins were examined. Results VMN aromatase protein content was similar between sexes. Intracerebroventricular LZ infusion of testes-intact male and ovariectomized, estradiol-replaced female rats blocked insulin-induced hypoglycemic (IIH) up-regulation of this profile. LZ exerted sex-contingent effects on basal VMN nNOS and GAD expression, but blocked IIH-induced NO stimulation and GAD suppression in each sex. Sex-contingent LZ effects on basal and hypoglycemic patterns of GPbb and GPmm expression occurred at distinctive levels of the VMN. LZ correspondingly down- or up-regulated baseline pyruvate recycling pathway marker protein expression in males (glutaminase) and females (malic enzyme-1), and altered INS effects on those proteins. Conclusions Results infer that neuroestradiol is required in each sex for optimal VMN metabolic transmitter signaling of hypoglycemic energy deficiency. Sex differences in VMN GP variant protein levels and sensitivity to aromatase may correlate with sex-dimorphic glycogen mobilization during this metabolic stress. Neuroestradiol may also exert sex-specific effects on glucogenic amino acid energy yield by actions on distinctive enzyme targets in each sex.
Collapse
Affiliation(s)
- Md Main Uddin
- Willis-Knighton Endowed Professor of Pharmacy and Director, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Mostafa M H Ibrahim
- Willis-Knighton Endowed Professor of Pharmacy and Director, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Karen P Briski
- Willis-Knighton Endowed Professor of Pharmacy and Director, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
7
|
Alshamrani AA, Bheemanapally K, Ibrahim MMH, Briski KP. Impact of caudal hindbrain glycogen metabolism on A2 noradrenergic neuron AMPK activation and ventromedial hypothalamic nucleus norepinephrine activity and glucoregulatory neurotransmitter marker protein expression. Neuropeptides 2020; 82:102055. [PMID: 32451071 PMCID: PMC7354902 DOI: 10.1016/j.npep.2020.102055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023]
Abstract
The brain glycogen reserve is a source of oxidizable substrate fuel. Lactoprivic-sensitive hindbrain A2 noradrenergic neurons provide crucial metabolic-sensory input to downstream hypothalamic glucose-regulatory structures. Current research examined whether hindbrain glycogen fuel supply impacts A2 energy stability and governance of ventromedial hypothalamic nucleus (VMN) metabolic transmitter signaling. Male rats were injected into the caudal fourth ventricle (CV4) with the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) prior to continuous intra-CV4 infusion of L-lactate or vehicle. Lactate reversed DAB suppression of A2 neuron AMPK protein and up-regulated phosphoAMPK profiles. A2 dopamine-β-hydroxylase expression was refractory to DAB, but elevated by DAB/lactate. Lactate normalized A2 estrogen receptor-alpha and GPER proteins and up-regulated estrogen receptor-beta levels in DAB-treated rats. VMN norepinephrine content was decreased by DAB, but partially restored by lactate. DAB caused lactate-reversible or -irreversible augmentation of VMN glycogen phosphorylase-brain (GPbb) and -muscle type (GPmm) variant profiles, and correspondingly up- or down-regulated VMN protein markers of glucose-stimulatory nitrergic and glucose-inhibitory γ-aminobutyric acid transmission. DAB did not alter plasma glucose, but suppressed or elevated circulating glucagon and corticosterone in that order. Results show that diminished hindbrain glycogen breakdown is communicated to the VMN, in part by NE signaling, to up-regulate VMN glycogen breakdown and trigger neurochemical signaling of energy imbalance in that site. DAB effects on GPmm, VMN glycogen content, and counter-regulatory hormone secretion were unabated by lactate infusion, suggesting that aside from substrate fuel provision rate, additional indicators of glycogen metabolism such as turnover rate may be monitored in the hindbrain.
Collapse
Affiliation(s)
- Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
8
|
Sex-specific acclimation of A2 noradrenergic neuron dopamine-β-hydroxylase and estrogen receptor variant protein and 5'-AMP-Activated protein kinase reactivity to recurring hypoglycemia in rat. J Chem Neuroanat 2020; 109:101845. [PMID: 32599255 DOI: 10.1016/j.jchemneu.2020.101845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Hindbrain estrogen receptors (ER) impose sex-dimorphic control of counter-regulatory hormone and hypothalamic glucoregulatory transmitter and glycogen metabolic responses to hypoglycemia. A2 noradrenergic neurons are estradiol- and metabolic-sensitive. Estradiol controls dopamine-beta-hydroxylase (DBH) protein habituation to recurrent insulin-induced hypoglycemia (RIIH) in females. Current research investigated the premise that sex-dimorphic patterns of A2 ER variant acclimation to RIIH correlate with differential A2 DBH and 5'-AMP-activated protein kinase (AMPK) adaptation to RIIH. A2 neurons were laser-catapult-microdissected from male and female rats after one or four insulin injections for Western blot analysis. A2 pAMPK and DBH levels were increased in males, but suppressed in females after single insulin dosing. ER-alpha (ERα) and -beta (ERβ) protein profiles were unaffected or decreased by acute hypoglycemia in each sex, whereas G protein-linked ER-1 (GPER) reactivity varied by sex. Antecedent hypoglycemia diminished basal A2 ERα/GPER and elevated ERβ content in each sex, yet reduced pAMPK and DBH levels in female rats only. Reintroduced hypoglycemia suppressed A2 ERβ levels in each sex, but altered DBH (↓), ERα (↓), and GPER (↑) levels in males only. Data document sex differences in A2 DBH adaptation to RIIH, e.g. a shift from positive-to-negative response in males versus loss of negative reactivity in females, as well as attenuated AMPK activation in both sexes. Between hypoglycemic episodes, A2 neurons in each sex likely exhibit diminished sensitivity to ERα/GPER signaling, but heightened receptivity to ERβ input. RIIH-induced changes in ERα and GPER expression in male but not female may contribute to DBH suppression (males) versus no change (females) relative to adapted baseline expression.
Collapse
|
9
|
Mahmood ASMH, Napit PR, Ali MH, Briski KP. Estrogen Receptor Involvement in Noradrenergic Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neurotransmitter and Stimulus-Specific Glycogen Phosphorylase Enzyme Isoform Expression. ASN Neuro 2020; 12:1759091420910933. [PMID: 32233668 PMCID: PMC7133083 DOI: 10.1177/1759091420910933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Norepinephrine (NE) directly regulates ventromedial hypothalamic nucleus (VMN) glucoregulatory neurons and also controls glycogen-derived fuel provision to those cells. VMN nitric oxide (NO) and γ-aminobutyric acid (GABA) neurons and astrocytes express estrogen receptor-alpha (ERα) and ER-beta (ERβ) proteins. Current research used selective ERα (1,3Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride) or ERβ (4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol) antagonists to address the premise that these ERs govern basal and/or NE-associated patterns of VMN metabolic neuron signaling and astrocyte glycogen metabolism. Both ERs stimulate expression of the enzyme marker protein neuronal nitric oxide synthase, not glutamate decarboxylase65/67. NE inhibition or augmentation of neuronal nitric oxide synthase and glutamate decarboxylase65/67 profiles was ER-independent or -dependent, respectively. In both neuron types, VMN ERβ activity inhibited baseline alpha1- (α1-) and/or alpha2- (α2-)adrenergic receptor (AR) expression, but ERα and -β signaling was paradoxically crucial for noradrenergic upregulation of α2-AR. NE inhibited glycogen synthase expression and exerted opposite effects on VMN adenosine monophosphate-sensitive glycogen phosphorylase (GP)-brain type (stimulatory) versus NE-sensitive GP muscle (inhibitory) via ERα or -β activity. Results document unique ERα and ERβ actions on metabolic transmitter and AR protein expression in VMN nitrergic versus GABAergic neurons. ER effects varied in the presence versus absence of NE, indicating that both neuron types are substrates for estradiol and noradrenergic regulatory interaction. NE-dependent ER control of VMN GP variant expression implies that these signals also act on astrocytes to direct physiological stimulus-specific control of glycogen metabolism, which may in turn influence GABA transmission.
Collapse
Affiliation(s)
- A S M H Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| |
Collapse
|
10
|
Mahmood ASMH, Uddin MM, Ibrahim MMH, Briski KP. Norepinephrine Regulation of Ventromedial Hypothalamic Nucleus Metabolic-Sensory Neuron 5'-AMP-Activated Protein Kinase Activity: Impact of Estradiol. Int J Mol Sci 2020; 21:ijms21062013. [PMID: 32188013 PMCID: PMC7139458 DOI: 10.3390/ijms21062013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022] Open
Abstract
The mediobasal hypothalamus (MBH) shapes the neural regulation of glucostasis by 5′-AMP-activated protein kinase (AMPK)-dependent mechanisms. Yet, the neurochemical identity and neuroanatomical distribution of MBH neurons that express glucoprivic-sensitive AMPK remain unclear. The neurotransmitters γ-aminobutyric acid (GABA) and nitric oxide (NO) act within the MBH to correspondingly inhibit or stimulate glucose counter-regulation. The current review highlights recent findings that GABA and NO, neurons located in the ventromedial hypothalamic nucleus (VMN), a distinct important element of the MBH, are direct targets of noradrenergic regulatory signaling, and thereby, likely operate under the control of hindbrain metabolic-sensory neurons. The ovarian hormone estradiol acts within the VMN to govern energy homeostasis. Discussed here is current evidence that estradiol regulates GABA and NO nerve cell receptivity to norepinephrine and moreover, controls the noradrenergic regulation of AMPK activity in each cell type. Future gains in insight on mechanisms underpinning estradiol’s impact on neurotransmitter communication between the hindbrain and hypothalamic AMPKergic neurons are expected to disclose viable new molecular targets for the therapeutic simulation of hormonal enhancement of neuro-metabolic stability during circumstances of diminished endogenous estrogen secretion or glucose dysregulation.
Collapse
|
11
|
Briski KP, Mandal SK, Bheemanapally K, Ibrahim MMH. Effects of acute versus recurrent insulin-induced hypoglycemia on ventromedial hypothalamic nucleus metabolic-sensory neuron AMPK activity: Impact of alpha 1-adrenergic receptor signaling. Brain Res Bull 2020; 157:41-50. [PMID: 31981674 DOI: 10.1016/j.brainresbull.2020.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/15/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Mechanisms that underlie metabolic sensor acclimation to recurring insulin-induced hypoglycemia (RIIH) are unclear. Norepinephrine (NE) regulates ventromedial hypothalamic nucleus (VMN) gluco-stimulatory nitric oxide (NO) and gluco-inhibitory γ-aminobutryic acid (GABA) neuron signaling. Current research addressed the hypothesis that during RIIH, NE suppresses 5'-AMP-activated protein kinase (AMPK) reactivity in both populations and impedes counter-regulation. The brain is postulated to utilize non-glucose substrates, e.g. amino acids glutamine (Gln), glutamate (Glu), and aspartate (Asp), to produce energy during hypoglycemia. A correlated aim investigated whether NE controls pyruvate recycling pathway marker protein (glutaminase, GLT; malic enzyme, ME-1) expression in either metabolic-sensory cell population. Male rats were injected subcutaneously with vehicle or insulin on days 1-3, then pretreated on day 4 by intracerebroventricular delivery of the alpha1-adrenergic receptor (α1-AR) reverse-agonist prazocin (PRZ) or vehicle before final insulin therapy. PRZ prevented acute hypoglycemic augmentation of AMPK activation in each cell group. Antecedent hypoglycemic repression of sensor activity was reversed by PRZ in GABA neurons. During RIIH, nitrergic neurons exhibited α1-AR - dependent up-regulated GLT and α2-AR profiles, while GABA cells showed down-regulated α1-AR. LC-ESI-MS analysis documented a decline in VMN Glu, Gln, and Asp concentrations during acute hypoglycemia, and habituation of the former two profiles to RIIH. PRZ attenuated glucagon and corticosterone secretion during acute hypoglycemia, but reversed decrements in output of both hormones during RIIH. Results implicate adjustments in impact of α1-AR signaling in repressed VMN metabolic-sensory AMPK activation and counter-regulatory dysfunction during RIIH. Antecedent hypoglycemia may up-regulate NO neuron energy yield via α1-AR - mediated up-regulated pyruvate recycling.
Collapse
Affiliation(s)
- Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| |
Collapse
|
12
|
Briski KP, Mandal SK. Hindbrain metabolic deficiency regulates ventromedial hypothalamic nucleus glycogen metabolism and glucose-regulatory signaling. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Briski KP, Mandal SK. Hindbrain lactoprivic regulation of hypothalamic neuron transactivation and gluco-regulatory neurotransmitter expression: Impact of antecedent insulin-induced hypoglycemia. Neuropeptides 2019; 77:101962. [PMID: 31488323 PMCID: PMC6756167 DOI: 10.1016/j.npep.2019.101962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Hindbrain energy state shapes hypothalamic control of glucostasis. Dorsal vagal complex (DVC) L-lactate deficiency is a potent glucose-stimulatory signal that triggers neuronal transcriptional activation in key hypothalamic metabolic loci. The energy gauge AMPK is activated in DVC metabolic-sensory A2 noradrenergic neurons by hypoglycemia-associated lactoprivation, but sensor reactivity is diminished by antecedent hypoglycemia (AH). Current research addressed the premise that AH alters hindbrain lactoprivic regulation of hypothalamic metabolic transmitter function. AH did not modify reductions in A2 dopamine-beta-hydroxylase and monocarboxylate-2 (MCT2) protein expression elicited by caudal fourth ventricular delivery of the MCT inhibitor alpha-cyano-4-hydroxycinnamic acid (4CIN), but attenuated 4CIN activation of A2 AMPK. 4CIN constraint of hypothalamic norepinephrine (NE) activity was averted by AH in a site-specific manner. 4CIN induction of Fos immunolabeling in hypothalamic arcuate (ARH), ventromedial (VMN), dorsomedial (DMN) and paraventricular (PVN) nuclei and lateral hypothalamic area (LHA) was avoided by AH. AH affected reactivity of select hypothalamic metabolic neurotransmitter/enzyme marker proteins, e.g. ARH neuropeptide Y, VMN glutamate decarboxylase, DMN RFamide-related peptide-1 and -3, and LHA orexin-A profiles to 4CIN, but did not alleviate drug inhibition of ARH proopiomelanocortin. AH prevented 4CIN augmentation of circulating glucagon, but did not alter hyperglycemic or hypocorticosteronemic responses to that treatment. Results identify hindbrain lactate deficiency as a stimulus for glucagon secretion, and imply that habituation of this critical counter-regulatory hormone to recurring hypoglycemia may involve one or more hypothalamic neurotransmitters characterized here by acclimation to this critical sensory stimulus.
Collapse
Affiliation(s)
- Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States of America.
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States of America
| |
Collapse
|
14
|
Napit PR, Ali MH, Shakya M, Mandal SK, Bheemanapally K, Mahmood ASMH, Ibrahim MMH, Briski KP. Hindbrain Estrogen Receptor Regulation of Ventromedial Hypothalamic Glycogen Metabolism and Glucoregulatory Transmitter Expression in the Hypoglycemic Female Rat. Neuroscience 2019; 411:211-221. [PMID: 31085279 DOI: 10.1016/j.neuroscience.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022]
Abstract
Neural substrates for estrogen regulation of glucose homeostasis remain unclear. Female rat dorsal vagal complex (DVC) A2 noradrenergic neurons are estrogen- and metabolic-sensitive. The ventromedial hypothalamic nucleus (VMN) is a key component of the brain network that governs counter-regulatory responses to insulin-induced hypoglycemia (IIH). Here, the selective estrogen receptor-alpha (ERα) or -beta (ERβ) antagonists MPP and PHTPP were administered separately to the caudal fourth ventricle to address the premise that these hindbrain ER variants exert distinctive control of VMN reactivity to IIH in the female sex. Data show that ERα governs hypoglycemic patterns of VMN astrocyte glycogen metabolic enzyme, e.g. glycogen synthase and phosphorylase protein expression, whereas ERβ mediates local glycogen breakdown. DVC ERs also regulate VMN neurotransmitter signaling of energy sufficiency [γ-aminobutyric acid] or deficiency [nitric oxide, steroidogenic factor-1] during IIH. Neither hindbrain ER mediates IIH-associated diminution of VMN norepinephrine (NE) content. Both ERs oppose hypoglycemic hyperglucagonemia, while ERβ contributes to reduced corticosterone output. Outcomes reveal that input from the female hindbrain to the VMN is critical for energy reserve mobilization, metabolic transmitter signaling, and counter-regulatory hormone secretion during hypoglycemia, and that ERs control those cues. Evidence that VMN NE content is not controlled by hindbrain ERα or -β implies that these receptors may regulate VMN function via NE-independent mechanisms, or alternatively, that other neurotransmitter signals to the VMN may control local substrate receptivity to NE.
Collapse
Affiliation(s)
- Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Manita Shakya
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
15
|
Ali MH, Napit PR, Mahmood ASMH, Bheemanapally K, Alhamami HN, Uddin MM, Mandal SK, Ibrahim MMH, Briski KP. Hindbrain estrogen receptor regulation of ventromedial hypothalamic glycogen metabolism and glucoregulatory transmitter expression in the hypoglycemic male rat. Neuroscience 2019; 409:253-260. [PMID: 30954669 DOI: 10.1016/j.neuroscience.2019.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
Abstract
Estrogen receptor-alpha (ERα) and -beta (ERβ) occur in key elements of the brain gluco-homeostatic network in both sexes, including the hindbrain dorsal vagal complex (DVC), but the influence of distinct receptor populations on this critical function is unclear. The ventromedial hypothalamic nucleus (VMN) maintains glucose balance by integrating nutrient, endocrine, and neurochemical cues, including metabolic sensory information supplied by DVC A2 noradrenergic neurons. Current research utilized the selective ERα and ERβ antagonists MPP and PHTPP to characterize effects of DVC ERs on VMN norepinephrine (NE) activity and metabolic neurotransmitter signaling in insulin-induced hypoglycemic (IIH) male rats. Data show that ERβ inhibits VMN glycogen synthase and stimulates phosphorylase protein expression, while attenuating hypoglycemic augmentation of glycogen content. Furthermore, both ERs attenuate VMN glucose concentrations during IIH. Hypoglycemic up-regulation of nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) signaling was correspondingly driven by ERα or -β, whereas GABA and steroidogenic factor-1 were respectively suppressed independently of ER input or by ERβ. IIH intensified VMN NE accumulation by ERβ-dependent mechanisms, but did not alter NE levels in other gluco-regulatory loci. ERβ amplified the magnitude of insulin-induced decline in blood glucose. Both ERs regulate corticosterone, but not glucagon secretion during IIH and oppose hypoglycemic diminution of circulating free fatty acids. These findings identify distinguishing versus common VMN functions targeted by DVC ERα and -β. Sex differences in hypoglycemic VMN NE accumulation, glycogen metabolism, and transmitter signaling may involve, in part, discrepant regulatory involvement or differential magnitude of impact of these hindbrain ERs.
Collapse
Affiliation(s)
- Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Hussain N Alhamami
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
16
|
Mandal SK, Briski KP. Hindbrain dorsal vagal complex AMPK controls hypothalamic gluco-regulatory transmitter and counter-regulatory hormone responses to hypoglycemia. Brain Res Bull 2018; 144:171-179. [PMID: 30481553 DOI: 10.1016/j.brainresbull.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Pharmacologic activation of the hindbrain dorsal vagal complex energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) causes site-specific adjustments in hypothalamic AMPK activity. DVC A2 noradrenergic neurons are a likely source of metabolo-sensory cues to downstream network components as they express substrate fuel-sensitive AMPK. This study investigated the hypothesis that DVC AMPK controls hypothalamic sensor, metabolic effector transmitter, and counter-regulatory hormone responses to insulin-induced hypoglycemia. Male rats were injected into the caudal fourth ventricle with the AMPK inhibitor compound C (Ccor vehicle before hypoglycemia. Arcuate (ARH), ventromedial (VMN), and dorsomedial (DMN) nuclei and lateral hypothalamic area (LHA) were micropunch-dissected for norepinephrine ELISA and Western blot analyses. Hypoglycemic stimulation of norepinephrine activity in each site was impeded by compound C. Hypoglycemia caused drug-revocable (ARH) or -refractory (VMN, DMN) reductions in AMPK, alongside hindbrain AMPK-dependent augmentation of phospho-AMPK expression in each location. Compound C prevented hypoglycemic augmentation of gluco-stimulatory ARH neuropeptide Y, VMN neuronal nitric oxide synthase, and LHA orexin-A expression, while hypoglycemic suppression of the catabolic neuron protein markers ARH pro-opiomelanocortin and VMN glutamate decarboxylase65/67 was respectively averted or unaffected by drug treatment. DMN RFamide-related peptide-1 and -3 profiles were correspondingly amplified or suppressed hindbrain AMPK-reliant mechanisms during hypoglycemia. Results show that DVC AMPK is required for hypoglycemic intensification of norepinephrine activity in characterized hypothalamic gluco-regulatory structures, and that this sensor regulates AMPK activation and metabolic effector transmission in those sites.
Collapse
Affiliation(s)
- Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, United States.
| |
Collapse
|
17
|
Mandal SK, Shrestha PK, Alenazi FSH, Shakya M, Alhamami HN, Briski KP. Effects of estradiol on lactoprivic signaling of the hindbrain upon the contraregulatory hormonal response and metabolic neuropeptide synthesis in hypoglycemic female rats. Neuropeptides 2018; 70:37-46. [PMID: 29779845 PMCID: PMC6057805 DOI: 10.1016/j.npep.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/27/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Caudal dorsomedial hindbrain detection of hypoglycemia-associated lactoprivation regulates glucose counter-regulation in male rats. In females, estradiol (E) determines hypothalamic neuroanatomical and molecular foci of hindbrain energy sensor activation. This study investigated the hypothesis that E signal strength governs metabolic neuropeptide and counter-regulatory hormone responses to hindbrain lactoprivic stimuli in hypoglycemic female rats. METHODS Ovariectomized animals were implanted with E-filled silastic capsules [30 (E-30) or 300 μg (E-300)/mL] to replicate plasma concentrations at estrous cycle nadir versus peak levels. E-30 and E-300 rats were injected with insulin or vehicle following initiation of continuous caudal fourth ventricular L-lactate infusion. RESULTS Hypoglycemic hypercorticosteronemia was greater in E-30 versus E-300 animals. Glucagon and corticosterone outflow was correspondingly fully or partially reversed by hindbrain lactate infusion. Insulin-injected rats exhibited lactate-reversible augmentation of norepinephrine (NE) accumulation in all preoptic/hypothalamic structures examined, excluding the dorsomedial hypothalamic nucleus (DMH) where hindbrain lactate infusion either suppressed (E-30) or enhanced (E-300) NE content. Expression profiles of hypoglycemia-reactive metabolic neuropeptides were normalized (with greater efficacy in E-300 animals) by lactate infusion. DMH RFamide-related peptide-1 and -3, arcuate neuropeptide Y and kisspeptin, and ventromedial nucleus nitric oxide synthase protein responses to hypoglycemia were E dosage-dependent. CONCLUSIONS Distinct physiological patterns of E secretion characteristic of the female rat estrous cycle elicit differential corticosterone outflow during hypoglycemia, and establish both common and different hypothalamic metabolic neurotransmitter targets of hindbrain lactate deficit signaling. Outcomes emphasize a need for insight on systems-level organization, interaction, and involvement of E signal strength-sensitive neuropeptides in counter-regulatory functions.
Collapse
Affiliation(s)
- Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Fahaad S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
18
|
Shakya M, Shrestha PK, Briski KP. Hindbrain 5'-Adenosine Monophosphate-activated Protein Kinase Mediates Short-term Food Deprivation Inhibition of the Gonadotropin-releasing Hormone-Luteinizing Hormone Axis: Role of Nitric Oxide. Neuroscience 2018; 383:46-59. [PMID: 29746990 DOI: 10.1016/j.neuroscience.2018.04.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
Hindbrain-derived stimuli restrain the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) reproductive neuroendocrine axis during energy insufficiency. Interruption of food intake, planned or unplanned, is emblematic of modern life. This study investigated the premise that the hindbrain energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) inhibits reproductive neuroendocrine function in short term, e.g. 18-h food-deprived (FD) estradiol (E)-implanted ovariectomized female rats. Intra-caudal fourth ventricular administration of the AMPK inhibitor Compound C (Cc) reversed FD-induced inhibition of rostral preoptic (rPO) GnRH protein expression and LH release in animals given E to replicate proestrus (high-E dose-, but not metestrus (low-E dose)-stage plasma steroid levels. FD caused Cc-reversible augmentation or diminution of preoptic norepinephrine (NE) activity in high- versus low-E rats, respectively, and AMPK-independent reductions in hypothalamic NE accumulation in the latter. Nitric oxide (NO) and kisspeptin are key stimulatory signals for the preovulatory LH surge. Here, FD inhibited rPO neuronal nitric oxide synthase protein expression in high-, but not low-E-dosed animals. Lateral ventricular delivery of the NO donor 3-morpholinosydnonimine (SIN-1) reversed inhibitory GnRH and LH responses to FD in high-E rats, and normalized rPO Vglut2, anteroventral periventricular KiSS1, and dorsomedial hypothalamic RFRP-3 mRNA and/or protein profiles. Data show that FD curtails reproductive neuroendocrine outflow by hindbrain AMPK-dependent mechanisms in the presence of peak estrous cycle E levels. Results indicate that neural networks linking this sensor to GnRH neurons likely involve NO signaling, which may function upstream of one or more neurotransmitters identified here by SIN-1-reversible inhibitory responses to FD.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
19
|
Alhamami HN, Uddin MM, Mahmood ASMH, Briski KP. Lateral but not Medial Hypothalamic AMPK Activation Occurs at the Hypoglycemic Nadir in Insulin-injected Male Rats: Impact of Caudal Dorsomedial Hindbrain Catecholamine Signaling. Neuroscience 2018. [PMID: 29534973 DOI: 10.1016/j.neuroscience.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hypothalamic energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK), an important regulator of counter-regulatory responses to hypoglycemia, responds to pharmacological manipulation of hindbrain AMPK activity. Dorsomedial hindbrain A2 noradrenergic neurons express hypoglycemia-sensitive metabolo-sensory biomarkers, including AMPK. Here, adult male rats were pretreated by intra-caudal fourth ventricular administration of the selective neurotoxin 6-hydroxydopamine (6-OHDA) to determine if catecholamine signaling from the aforesaid site governs hypothalamic AMPK activation during insulin-induced hypoglycemia (IIH). Micropunched arcuate (ARH), ventromedial (VMH), paraventricular (PVH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissues were obtained at the neutral protamine Hagedorn insulin-induced hypoglycemic nadir, coincident with A2 AMPK activation, for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant metabolic neuropeptides. ARH, VMH, LHA, and DMH norepinephrine levels were altered according to insulin dose; 6-OHDA-mediated reversal of these responses was site-specific. IIH elevated LHA and reduced VMH pAMPK protein, profiles that were respectively unchanged or increased by 6-OHDA. PVH and ARH pAMPK was resistant to IIH, but augmented in ARH of neurotoxin- plus insulin-treated rats. ARH neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) proteins were correspondingly increased or refractory to IIH; 6-OHDA pretreatment normalized NPY and elevated POMC expression after insulin injection. Results demonstrate site-specific bi-directional adjustments in hypothalamic AMPK reactivity to hypoglycemia. Intensification of ARH/VMH pAMPK by 6-OHDA implies dorsomedial hindbrain improvement of energy balance in those sites during IIH. Neurotoxin-mediated augmentation versus suppression of basal catabolic (ARH POMC/VMH steroidogenic factor-1) or IIH-associated anabolic (ARH NPY) neuropeptide profiles, respectively, may involve local AMPK-dependent against independent mechanisms.
Collapse
Affiliation(s)
- Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Md Main Uddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
20
|
Mandal SK, Shrestha PK, Alenazi FSH, Shakya M, Alhamami H, Briski KP. Role of hindbrain adenosine 5'-monophosphate-activated protein kinase (AMPK) in hypothalamic AMPK and metabolic neuropeptide adaptation to recurring insulin-induced hypoglycemia in the male rat. Neuropeptides 2017; 66:25-35. [PMID: 28823463 DOI: 10.1016/j.npep.2017.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
Glucose counter-regulatory dysfunction correlates with impaired activation of the hypothalamic metabolic sensor adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypothalamic AMPK is controlled by hindbrain energy status; we examined here whether hindbrain AMPK regulates hypothalamic AMPK and metabolic neurotransmitter maladaptation to recurring insulin-induced hypoglycemia (RIIH). Brain tissue was harvested after single versus serial insulin (I) dosing for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant biosynthetic enzyme/neuropeptide expression in micro-punch dissected arcuate (ARH), ventromedial (VMH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissue. The AMPK inhibitor compound c (Cc) or vehicle was administered to the caudal fourth ventricle ahead of antecedent I injections. RIIH caused site-specific elevation (ARH, VMH, LHA) or reduction (DMH) of total AMPK protein versus acute hypoglycemia; Cc respectively exacerbated or attenuated this response in the ARH and VMH. Hindbrain AMPK correspondingly inhibited or stimulated LHA and DMH pAMPK expression during RIIH. RIIH elicited Cc-reversible augmentation of VMH glutamate decarboxylase profiles, but stimulated (ARH pro-opiomelanocortin; LHA orexin-A) or decreased (VMH nitric oxide synthase) other metabolic neurotransmitters without hindbrain sensor involvement. Results demonstrate acclimated up-regulation of total AMPK protein expression in multiple hypothalamic loci during RIIH, and document hindbrain sensor contribution to amplification of this protein profile in the VMH. Concurrent lack of net change in ARH and VMH tissue pAMPK implies adaptive reductions in local sensor activity, which may/may not reflect positive gain in energy state. It remains unclear if 'glucose-excited' VMH GABAergic and/or ARH pro-opiomelanocortin neurons exhibit AMPK habituation to RIIH, and whether diminished sensor activation in these and other mediobasal hypothalamic neurotransmitter populations may contribute to HAAF.
Collapse
Affiliation(s)
- Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Fahaad S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Hussain Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
21
|
Briski KP, Alhamami HN, Alshamrani A, Mandal SK, Shakya M, Ibrahim MHH. Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:359-383. [PMID: 29224103 DOI: 10.1007/978-3-319-70178-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vital nerve cell functions, including maintenance of transmembrane voltage and information transfer, occur at high energy expense. Inadequate provision of the obligate metabolic fuel glucose exposes neurons to risk of dysfunction or injury. Clinical hypoglycemia rarely occurs in nondiabetic individuals but is an unfortunate regular occurrence in patients with type 1 or advanced insulin-treated type 2 diabetes mellitus. Requisite strict glycemic control, involving treatment with insulin, sulfonylureas, or glinides, can cause frequent episodes of iatrogenic hypoglycemia due to defective counter-regulation, including reduced glycemic thresholds and diminished magnitude of motor responses. Multiple components of the body's far-reaching energy balance regulatory network, including the hindbrain dorsal vagal complex, provide dynamic readout of cellular energetic disequilibrium, signals that are utilized by the hypothalamus to shape counterregulatory autonomic, neuroendocrine, and behavioral outflow toward restoration of glucostasis. The ovarian steroid hormone 17β-estradiol acts on central substrates to preserve nerve cell energy stability brain-wide, thereby providing neuroprotection against bio-energetic insults such as neurodegenerative diseases and acute brain ischemia. The current review highlights recent evidence implicating estrogen in gluco-regulation in females by control of hindbrain metabolic sensor screening and signaling of hypoglycemia-associated neuro-energetic instability. It is anticipated that new understanding of the mechanistic basis of how estradiol influences metabolic sensory input from this critical brain locus to discrete downstream regulatory network substrates will likely reveal viable new molecular targets for therapeutic simulation of hormone actions that promote positive neuronal metabolic state during acute and recurring hypoglycemia.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Ayed Alshamrani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Mostafa H H Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
22
|
Briski KP, Alenazi FSH, Shakya M, Sylvester PW. Hindbrain A2 noradrenergic neuron adenosine 5'-monophosphate-activated protein kinase activation, upstream kinase/phosphorylase protein expression, and receptivity to hormone and fuel reporters of short-term food deprivation are regulated by estradiol. J Neurosci Res 2016; 95:1427-1437. [PMID: 27618227 DOI: 10.1002/jnr.23892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/28/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022]
Abstract
Estradiol (E) mitigates acute and postacute adverse effects of 12 hr-food deprivation (FD) on energy balance. Hindbrain 5'-monophosphate-activated protein kinase (AMPK) regulates hyperphagic and hypothalamic metabolic neuropeptide and norepinephrine responses to FD in an E-dependent manner. Energy-state information from AMPK-expressing hindbrain A2 noradrenergic neurons shapes neural responses to metabolic imbalance. Here we investigate the hypothesis that FD causes divergent changes in A2 AMPK activity in E- vs. oil (O)-implanted ovariectomized female rats, alongside dissimilar adjustments in circulating metabolic fuel (glucose, free fatty acids [FFA]) and energy deficit-sensitive hormone (corticosterone, glucagon, leptin) levels. FD decreased blood glucose in oil (O)- but not E-implanted ovariectomized female rats and elevated and reduced glucagon levels in O and E, respectively. FD decreased circulating leptin in O and E, but increased corticosterone and FFA concentrations in E only. Western blot analysis of laser-microdissected A2 neurons showed that glucocorticoid receptor type II and very-long-chain acyl-CoA synthetase 3 protein profiles were amplified in FD/E vs. FD/O. A2 total AMPK protein was elevated without change in activity in FD/O, whereas FD/E exhibited increased AMPK activation along with decreased upstream phosphatase expression. The catecholamine biosynthetic enzyme dopamine-β-hydroxylase (DβH) was increased in FD/O but not FD/E A2 cells. The data show discordance between A2 AMPK activation and glycemic responses to FD; sensor activity was refractory to glucose decrements in FD/O but augmented in FD/E despite stabilized glucose and elevated FFA levels. E-dependent amplification of AMPK activity may reflect adaptive conversion to fatty acid oxidation and/or glucocorticoid stimulation. FD augmentation of A2 DβH protein profiles in FD/O but not FD/E animals suggests that FD may correspondingly regulate NE synthesis vs. metabolism/release in the absence vs. presence of E. Mechanisms underlying translation of E-contingent A2 neuron responses to FD into regulatory signaling remain to be determined. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Fahaad S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Paul W Sylvester
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| |
Collapse
|
23
|
Briski KP, Shrestha PK. Hindbrain estrogen receptor-beta antagonism normalizes reproductive and counter-regulatory hormone secretion in hypoglycemic steroid-primed ovariectomized female rats. Neuroscience 2016; 331:62-71. [PMID: 27316550 DOI: 10.1016/j.neuroscience.2016.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Hindbrain dorsal vagal complex A2 noradrenergic signaling represses the pre-ovulatory luteinizing hormone (LH) surge in response to energy deficiency. Insulin-induced hypoglycemia augments A2 neuron adenosine 5'-monophosphate-activated protein kinase (AMPK) activity and estrogen receptor-beta (ERβ) expression, coincident with LH surge suppression. We hypothesized that ERβ is critical for hypoglycemia-associated patterns of LH secretion and norepinephrine (NE) activity in key reproduction-relevant forebrain structures. The neural mechanisms responsible for tight coupling of systemic energy balance and procreation remain unclear; here, we investigated whether ERβ-dependent hindbrain signals also control glucose counter-regulatory responses to hypoglycemia. Gonadal steroid-primed ovariectomized female rats were pretreated by caudal fourth ventricular administration of the ERβ antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP) or vehicle before insulin injection at LH surge onset. Western blot analysis of laser-microdissected A2 neurons revealed hypoglycemic intensification of AMPK activity and dopamine-β-hydroxylase protein expression; the latter response was attenuated by PHTPP pretreatment. PHTPP regularized LH release, but not preoptic GnRH-I precursor protein expression in insulin-injected rats, and reversed hypoglycemic stimulation of glucagon and corticosterone secretion. Hypoglycemia caused PHTPP-reversible changes in NE and prepro-kisspeptin protein content in the hypothalamic arcuate (ARH), but not anteroventral periventricular nucleus. Results provide novel evidence for ERβ-dependent caudal hindbrain regulation of LH and counter-regulatory hormone secretion during hypoglycemia. Observed inhibition of LH likely involves mechanisms at the axon terminal that impede GnRH neurotransmission. Data also show that caudal hindbrain ERβ exerts site-specific control of NE activity in forebrain projection sites during hypoglycemia, including the ARH where prepro-kisspeptin may be a target of that signaling.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71291, United States.
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71291, United States
| |
Collapse
|
24
|
Alenazi FSH, Ibrahim BA, Al-Hamami H, Shakiya M, Briski KP. Role of estradiol in intrinsic hindbrain AMPK regulation of hypothalamic AMPK, metabolic neuropeptide, and norepinephrine activity and food intake in the female rat. Neuroscience 2015; 314:35-46. [PMID: 26628404 DOI: 10.1016/j.neuroscience.2015.11.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/10/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
This study addressed the hypothesis that dorsomedial hindbrain adenosine 5'-monophosphate-activated protein kinase (AMPK) imposes inherent estradiol-dependent control of hypothalamic AMPK, neuropeptide, and norepinephrine (NE) activity and feeding in the female rat. Estradiol (E)- or oil (O)-implanted ovariectomized rats were injected with the AMPK inhibitor compound c (Cc) or vehicle into the caudal fourth ventricle (CV4) prior to micropunch-dissection of individual hypothalamic metabolic loci or assessment of food intake. Cc decreased hindbrain dorsal vagal complex phosphoAMPK (pAMPK) in both E and O; tissue ATP levels were reduced by this treatment in O only. In E/Cc, pAMPK expression was diminished in the lateral hypothalamic area (LHA) and ventromedial (VMH) and paraventricular (PVH) nuclei; only PVH pAMPK was suppressed by this treatment in O/Cc. Cc decreased PVH corticotropin-releasing hormone and arcuate (ARH) proopiomelanocortin (POMC) and neuropeptide Y in O, but suppressed only POMC in E. O/Cc exhibited both augmented (PVH, VMH) and decreased (LHA, ARH) hypothalamic NE content, whereas Cc treatment of E elevated preoptic and dorsomedial hypothalamic nucleus NE. Cc completely or incompletely repressed feeding in E versus O, respectively. Results implicate dorsomedial hindbrain AMPK in physiological stimulus-induced feeding in females. Excepting POMC, hypothalamic neuropeptide responses to this sensor may be contingent on estrogen. Estradiol likely designates hypothalamic targets of altered NE signaling due to hindbrain AMPK activation. Divergent changes in NE content of hypothalamic loci in O/Cc uniquely demonstrate sensor-induced bimodal catecholamine signaling to those sites.
Collapse
Affiliation(s)
- F S H Alenazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - B A Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - H Al-Hamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - M Shakiya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - K P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
25
|
Shrestha PK, Briski KP. Hindbrain lactate regulates preoptic gonadotropin-releasing hormone (GnRH) neuron GnRH-I protein but not AMPK responses to hypoglycemia in the steroid-primed ovariectomized female rat. Neuroscience 2015; 298:467-74. [PMID: 25934033 DOI: 10.1016/j.neuroscience.2015.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/04/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
Steroid positive-feedback activation of the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) neuroendocrine axis propagates the pre ovulatory LH surge, a crucial component of female reproduction. Our work shows that this key event is restrained by inhibitory metabolic input from hindbrain A2 noradrenergic neurons. GnRH neurons express the ultra-sensitive energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK); here, we investigated the hypothesis that GnRH nerve cell AMPK and peptide neurotransmitter responses to insulin-induced hypoglycemia are controlled by hindbrain lack of the oxidizable glycolytic end-product L-lactate. Data show that hypoglycemic inhibition of LH release in steroid-primed ovariectomized female rats was reversed by coincident caudal hindbrain lactate infusion. Western blot analyses of laser-microdissected A2 neurons demonstrate hypoglycemic augmentation [Fos, estrogen receptor-beta (ER-β), phosphoAMPK (pAMPK)] and inhibition (dopamine-beta-hydroxylase, GLUT3, MCT2) of protein expression in these cells, responses that were normalized by insulin plus lactate treatment. Hypoglycemia diminished rostral preoptic GnRH nerve cell GnRH-I protein and pAMPK content; the former, but not the latter response was reversed by lactate. Results implicate caudal hindbrain lactoprivic signaling in hypoglycemia-induced suppression of the LH surge, demonstrating that lactate repletion of that site reverses decrements in A2 catecholamine biosynthetic enzyme and GnRH neuropeptide precursor protein expression. Lack of effect of lactate on hypoglycemic patterns of GnRH AMPK activity suggests that this sensor is uninvolved in metabolic-inhibition of positive-feedback-stimulated hypophysiotropic signaling to pituitary gonadotropes.
Collapse
Affiliation(s)
- P K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - K P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|