1
|
Ai C, Zhou Y, Pu K, Yang Y, Zhou Y. Nogo‑A/NgR signaling regulates stemness in cancer stem‑like cells derived from U87MG glioblastoma cells. Oncol Lett 2022; 24:230. [PMID: 35720478 PMCID: PMC9185138 DOI: 10.3892/ol.2022.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 11/08/2022] Open
Abstract
Neurite outgrowth inhibitor A (Nogo-A), a member of the reticulon 4 family, is an axon regeneration inhibitor that is negatively associated with the malignancy of oligodendroglial tumors. It has been suggested that the Nogo-A/Nogo Receptor (NgR) pathway plays a promoting effect in regulating cancer stem-like cells (CSCs) derived from glioblastoma, indicating that Nogo-A could exert different roles in CSCs than those in parental cancer cells. In the present study, CSCs were generated from the human Uppsala 87 malignant glioma (U87MG) cell line. These U87MG-CSCs were characterized by the upregulation of CD44 and CD133, which are two markers of stemness. The expression levels of Nogo-A and the differentiation of U87MG-CSCs were investigated. In addition, the proliferation, invasion and colony formation U87MG-CSCs were examined. Using culture in serum-containing medium, U87MG-CSCs were differentiated into neuron-like cells specifically expressing MAP2, β-III-tubulin and nestin. Nogo-A was upregulated in U87MG-CSCs compared with parental cells. Knockdown of Nogo-A and inhibition of the Nogo-A/NgR signaling pathway in U87MG-CSCs markedly decreased cell viability, cell cycle entry, invasion and tumor formation, indicating that Nogo-A could regulate U87MG-CSC function. Moreover, Nogo-A was involved in intracellular ATP synthesis and scavenging of accumulated reactive oxygen species. Nogo-A/NgR pathway exerted protective effects against hypoxia-induced non-apoptotic and apoptotic cell death. These results suggest that Nogo-A plays an important role in regulating U87MG-CSCs via the Nogo-A/NgR signaling pathway. Nogo-A may also different roles in U87MG-CSCs compared with their parental cells.
Collapse
Affiliation(s)
- Chengjin Ai
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Yu Zhou
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Kunming Pu
- Department of Ultrasound, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610072, P.R. China
| | - Yi Yang
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic and Technology of China, Chengdu, Sichuan 611731, P.R. China
| | - Yingying Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
2
|
Feng XF, Lei JF, Li MZ, Zhan Y, Yang L, Lu Y, Li MC, Zhuang YM, Wang L, Zhao H. Magnetic Resonance Imaging Investigation of Neuroplasticity After Ischemic Stroke in Tetramethylpyrazine-Treated Rats. Front Pharmacol 2022; 13:851746. [PMID: 35559236 PMCID: PMC9086494 DOI: 10.3389/fphar.2022.851746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke elicits white matter injury typically signed by axonal disintegration and demyelination; thus, the development of white matter reorganization is needed. 2,3,5,6-Tetramethylpyrazine (TMP) is widely used to treat ischemic stroke. This study was aimed to investigate whether TMP could protect the white matter and promote axonal repair after cerebral ischemia. Male Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO) and treated with TMP (10, 20, 40 mg/kg) intraperitoneally for 14 days. The motor function related to gait was evaluated by the gait analysis system. Multiparametric magnetic resonance imaging (MRI) was conducted to noninvasively identify gray-white matter structural integrity, axonal reorganization, and cerebral blood flow (CBF), followed by histological analysis. The expressions of axonal growth-associated protein 43 (GAP-43), synaptophysin (SYN), axonal growth-inhibitory signals, and guidance factors were measured by Western blot. Our results showed TMP reduced infarct volume, relieved gray-white matter damage, promoted axonal remodeling, and restored CBF along the peri-infarct cortex, external capsule, and internal capsule. These MRI findings were confirmed by histopathological data. Moreover, motor function, especially gait impairment, was improved by TMP treatment. Notably, TMP upregulated GAP-43 and SYN and enhanced axonal guidance cues such as Netrin-1/DCC and Slit-2/Robo-1 but downregulated intrinsic growth-inhibitory signals NogoA/NgR/RhoA/ROCK-2. Taken together, our data indicated that TMP facilitated poststroke axonal remodeling and motor functional recovery. Moreover, our findings suggested that TMP restored local CBF, augmented guidance cues, and restrained intrinsic growth-inhibitory signals, all of which might improve the intracerebral microenvironment of ischemic areas and then benefit white matter remodeling.
Collapse
Affiliation(s)
- Xue-Feng Feng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jian-Feng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Man-Zhong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu Zhan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Le Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu-Ming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
3
|
Nogo-A Is a Potential Prognostic Marker for Spinal Cord Injury. DISEASE MARKERS 2022; 2022:2141854. [PMID: 35571610 PMCID: PMC9095389 DOI: 10.1155/2022/2141854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Objective Spinal cord injury (SCI) has become prevalent worldwide in recent years, and its prognosis is poor and the pathological mechanism has not been fully elucidated. Nogo-A is one of the isoforms of the neurite outgrowth inhibitory protein reticulon 4. The purpose of this study was to determine whether Nogo-A could be used as a marker for predicting the prognosis of SCI. Methods We screened eligible SCI patients and controls based on inclusion and exclusion criteria. We also collected baseline clinical information and peripheral venous blood of the enrolled population. Participants' baseline serum Nogo-A levels were measured by enzyme-linked immunosorbent assay (ELISA). The American Spinal Injury Association (ASIA) scale was used to evaluate the prognosis of SCI patients after 3 months. Results Baseline clinical information (age; gender; smoking; drinking; SBP, systolic blood pressure; DBP, diastolic blood pressure; fasting blood glucose; WBC, white blood cells; CRP, C-reactive protein) of SCI patients and controls were not statistically significant academic differences (p > 0.05). The baseline serum Nogo-A levels of SCI patients and controls were 192.7 ± 13.9 ng/ml and 263.1 ± 22.4 ng/ml, respectively, and there was a statistically significant difference between the two groups (p < 0.05). We divided SCI patients into 4 groups according to their baseline serum Nogo-A quartile levels and analyzed their relationship with ASIA scores. The trend test results showed that with the increase of Nogo-A level, the ASIA sensation score and ASIA motor score were significantly decreased (p < 0.001). Multivariate regression analysis showed that serum Nogo-A levels remained a potential cause affecting the prognosis of SCI after adjusting for confounding factors in multiple models. Conclusions Serum Nogo-A levels were significantly elevated in SCI patients. Moreover, elevated Nogo-A levels often indicate poor prognosis and can be used as a marker to predict the prognosis of SCI.
Collapse
|
4
|
ZHENG HZ, QIU Q, XIONG J, CHEN J, GUAN LC. Moxibustion pretreatment inhibits RhoA/ROCK signaling to prevent lung inflammation in asthmatic rats 艾灸预处理降低RhoA/ROCK信号表达预防哮喘大鼠肺炎. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Metzdorf K, Fricke S, Balia MT, Korte M, Zagrebelsky M. Nogo-A Modulates the Synaptic Excitation of Hippocampal Neurons in a Ca 2+-Dependent Manner. Cells 2021; 10:cells10092299. [PMID: 34571950 PMCID: PMC8467072 DOI: 10.3390/cells10092299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
A tight regulation of the balance between inhibitory and excitatory synaptic transmission is a prerequisite for synaptic plasticity in neuronal networks. In this context, the neurite growth inhibitor membrane protein Nogo-A modulates synaptic plasticity, strength, and neurotransmitter receptor dynamics. However, the molecular mechanisms underlying these actions are unknown. We show that Nogo-A loss-of-function in primary mouse hippocampal cultures by application of a function-blocking antibody leads to higher excitation following a decrease in GABAARs at inhibitory and an increase in the GluA1, but not GluA2 AMPAR subunit at excitatory synapses. This unbalanced regulation of AMPAR subunits results in the incorporation of Ca2+-permeable GluA2-lacking AMPARs and increased intracellular Ca2+ levels due to a higher Ca2+ influx without affecting its release from the internal stores. Increased neuronal activation upon Nogo-A loss-of-function prompts the phosphorylation of the transcription factor CREB and the expression of c-Fos. These results contribute to the understanding of the molecular mechanisms underlying the regulation of the excitation/inhibition balance and thereby of plasticity in the brain.
Collapse
Affiliation(s)
- Kristin Metzdorf
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Steffen Fricke
- Division of Cell Physiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany;
| | - Maria Teresa Balia
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
- Correspondence: ; Tel.: +49-(0)-531-3913225
| |
Collapse
|
6
|
Yang M, Jian L, Fan W, Chen X, Zou H, Huang Y, Chen X, Zhou YG, Yuan R. Axon regeneration after optic nerve injury in rats can be improved via PirB knockdown in the retina. Cell Biosci 2021; 11:158. [PMID: 34380548 PMCID: PMC8359350 DOI: 10.1186/s13578-021-00670-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/25/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) exert major inhibitory effects on nerve regeneration: Nogo-A, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). MAIs have two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Existing studies confirm that inhibiting NgR only exerted a modest disinhibitory effect in CNS. However, the inhibitory effects of PirB on nerve regeneration after binding to MAIs are controversial too. We aimed to further investigate the effect of PirB knockdown on the neuroprotection and axonal regeneration of retinal ganglion cells (RGCs) after optic nerve injury in rats. METHODS The differential expression of PirB in the retina was observed via immunofluorescence and western blotting after 1, 3, and 7 days of optic nerve injury (ONI). The retina was locally transfected with adeno-associated virus (AAV) PirB shRNA, then, the distribution of virus in tissues and cells was observed 21 days after AAV transfection to confirm the efficiency of PirB knockdown. Level of P-Stat3 and expressions of ciliary neurotrophic factor (CNTF) were detected via western blotting. RGCs were directly labeled with cholera toxin subunit B (CTB). The new axons of the optic nerve were specifically labeled with growth associated protein-43 (GAP43) via immunofluorescence. Flash visual evoked potential (FVEP) was used to detect the P1 and N1 latency, as well as N1-P1, P1-N2 amplitude to confirm visual function. RESULTS PirB expression in the retina was significantly increased after ONI. PirB knockdown was successful and significantly promoted P-Stat3 level and CNTF expression in the retina. PirB knockdown promoted the regeneration of optic nerve axons and improved the visual function indexes such as N1-P1 and P1-N2 amplitude. CONCLUSIONS PirB is one of the key molecules that inhibit the regeneration of the optic nerve, and inhibition of PirB has an excellent effect on promoting nerve regeneration, which allows the use of PirB as a target molecule to promote functional recovery after ONI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Lan Jian
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Xing Chen
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, 10 Changjiang Zhilu, Chongqing, 400042, People's Republic of China
| | - Huan Zou
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yanming Huang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Xiaofan Chen
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yuan-Guo Zhou
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, 10 Changjiang Zhilu, Chongqing, 400042, People's Republic of China.
| | - Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
7
|
Stehle JH, Sheng Z, Hausmann L, Bechstein P, Weinmann O, Hernesniemi J, Neimat JS, Schwab ME, Zemmar A. Exercise-induced Nogo-A influences rodent motor learning in a time-dependent manner. PLoS One 2021; 16:e0250743. [PMID: 33951058 PMCID: PMC8099082 DOI: 10.1371/journal.pone.0250743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
The adult, mature central nervous system (CNS) has limited plasticity. Physical exercising can counteract this limitation by inducing plasticity and fostering processes such as learning, memory consolidation and formation. Little is known about the molecular factors that govern these mechanisms, and how they are connected with exercise. In this study, we used immunohistochemical and behavioral analyses to investigate how running wheel exercise affects expression of the neuronal plasticity-inhibiting protein Nogo-A in the rat cortex, and how it influences motor learning in vivo. Following one week of exercise, rats exhibited a decrease in Nogo-A levels, selectively in motor cortex layer 2/3, but not in layer 5. Nogo-A protein levels returned to baseline after two weeks of running wheel exercise. In a skilled motor task (forelimb-reaching), administration of Nogo-A function-blocking antibodies over the course of the first training week led to improved motor learning. By contrast, Nogo-A antibody application over two weeks of training resulted in impaired learning. Our findings imply a bimodal, time-dependent function of Nogo-A in exercise-induced neuronal plasticity: While an activity-induced suppression of the plasticity-inhibiting protein Nogo-A appears initially beneficial for enhanced motor learning, presumably by allowing greater plasticity in establishing novel synaptic connections, this process is not sustained throughout continued exercise. Instead, upregulation of Nogo-A over the course of the second week of running wheel exercise in rats implies that Nogo-A is required for consolidation of acquired motor skills during the delayed memory consolidation process, possibly by inhibiting ongoing neuronal morphological reorganization to stabilize established synaptic pathways. Our findings suggest that Nogo-A downregulation allows leaning to occur, i.e. opens a 'learning window', while its later upregulation stabilizes the learnt engrams. These findings underline the importance of appropriately timing of application of Nogo-A antibodies in future clinical trials that aim to foster memory performance while avoiding adverse effects.
Collapse
Affiliation(s)
- Jörg H. Stehle
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Dr. Senckenbergische Anatomie, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Zhiyuan Sheng
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Laura Hausmann
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Bechstein
- Dr. Senckenbergische Anatomie, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Juha Hernesniemi
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Joseph S. Neimat
- Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, Kentucky, United States of America
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Tang H, Xu Y, Liu L, He L, Huang J, Pan J, He W, Wang Y, Yang X, Hou X, Xu K. Nogo-A/S1PR2 Signaling Pathway Inactivation Decreases Microvascular Damage and Enhances Microvascular Regeneration in PDMCI Mice. Neuroscience 2020; 449:21-34. [PMID: 33039527 DOI: 10.1016/j.neuroscience.2020.09.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 11/19/2022]
Abstract
The incidence of mild cognitive impairment in Parkinson's disease (PDMCI) is as high as 18-55%. However, the pathological mechanism of PDMCI is not yet clear. Our previous research showed that microvascular pathology and chronic cerebral hypoperfusion participated in the occurrence and development of PDMCI. Nogo-A has been suggested to be a negative regulator of microvascular regeneration in the central nervous system. Moreover, few insights have illuminated the mechanisms of Nogo-A and microvascular pathology in PDMCI. Therefore, we hypothesized that Nogo-A might be involved in the negative regulation of PDMCI angiogenesis. In this study, C57BL/6J mice were injected with Nogo-A-specific short hairpin RNA (shRNA-Nogo-A) in the lateral ventricle and intraperitoneally injected with a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid. Subjects were classified into the following five groups for the Morris water maze test: control (CON), CON + shRNA-GFP, CON + shRNA-Nogo-A, PDMCI, and PDMCI + shRNA-Nogo-A. Furthermore, blood-brain barrier (BBB) permeability, fluorescein isothiocyanate (FITC)-conjugated dextran, transmission electron microscopy (TEM), immunofluorescence and Western blot analyses were performed. The results showed that MPTP could cause spatial memory and behavioral impairment, significant microvascular impairment and increased Nogo-A expression. When Nogo-A expression was downregulated, the cognitive and microvascular impairments were alleviated, and the expression of sphingosine-1-phosphate receptor 2 (S1PR2) and the RhoA/ROCK signaling pathway were inhibited. These findings suggested that Nogo-A could bind to S1PR2, activate related signaling pathways, and lead to the inhibition of vascular remodeling in PDMCI mice. This study indicated that Nogo-A downregulation could mediate microvascular remodeling and provide further insights into the pathogenesis of PDMCI.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China; Department of Sports and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jingyu Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jing Pan
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China; Department of Sports and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Wenjie He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yuxin Wang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China; School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaohui Hou
- Department of Sports and Health, Guangzhou Sport University, Guangzhou 510500, China; School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
9
|
Liu H, Su D, Liu L, Chen L, Zhao Y, Chan SO, Zhang W, Wang Y, Wang J. Identification of a new functional domain of Nogo-A that promotes inflammatory pain and inhibits neurite growth through binding to NgR1. FASEB J 2020; 34:10948-10965. [PMID: 32598099 DOI: 10.1096/fj.202000377r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023]
Abstract
Nogo-A is a key inhibitory molecule to axon regeneration, and plays diverse roles in other pathological conditions, such as stroke, schizophrenia, and neurodegenerative diseases. Nogo-66 and Nogo-Δ20 fragments are two known functional domains of Nogo-A, which act through the Nogo-66 receptor (NgR1) and sphingosine-1-phosphate receptor 2 (S1PR2), respectively. Here, we reported a new functional domain of Nogo-A, Nogo-A aa 846-861, was identified in the Nogo-A-specific segment that promotes complete Freund's adjuvant (CFA)-induced inflammatory pain. Intrathecal injection of its antagonist peptide 846-861PE or the specific antibody attenuated the CFA-induced inflammatory heat hyperalgesia. The 846-861 PE reduced the content of transient receptor potential vanilloid subfamily member 1 (TRPV1) in dorsal root ganglia (DRG) and decreased the response of DRG neurons to capsaicin. These effects were accompanied by a reduction in LIMK/cofilin phosphorylation and actin polymerization. GST pull-down and fluorescence resonance energy transfer (FRET) assays both showed that Nogo-A aa 846-861 bound to NgR1. Moreover, we demonstrated that Nogo-A aa 846-861 inhibited neurite outgrowth from cortical neurons and DRG explants. We concluded that Nogo-A aa 846-861 is a novel ligand of NgR1, which activates the downstream signaling pathways that inhibit axon growth and promote inflammatory pain.
Collapse
Affiliation(s)
- Huaicun Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dongqiang Su
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lei Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Ling Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiguang Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jun Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Zhang J, Li Z, Liu W, Zeng W, Duan C, He X. Effects of bone marrow mesenchymal stem cells transplantation on the recovery of neurological functions and the expression of Nogo-A, NgR, Rhoa, and ROCK in rats with experimentally-induced convalescent cerebral ischemia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:390. [PMID: 32355834 PMCID: PMC7186734 DOI: 10.21037/atm.2020.03.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background To investigate the effects of intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) on neurological function in rats with experimentally-induced convalescent cerebral ischemia and the expression of Nogo-A, NgR, Rhoa, and ROCK expression. Methods BMSCs were isolated and cultured in vitro using the whole bone marrow adherent method. Eighty-one adult male Sprague-Dawley rats were divided at random into three groups: the sham-operated group, the cerebral ischemia group, and the BMSC treatment group (n=27 rats per group). In the latter two groups, the middle cerebral artery occlusion (MCAO) model was performed by the modified Zea Longa method. After MCAO, rats in the sham-operated and cerebral ischemic groups were injected with 1 mL of phosphate buffered saline (PBS) via the tail vein. In the BMSC-treatment group, 1 mL of the BMSC suspension (containing 3×106 BMSCs) was injected through the rats’ femoral vein. At 12, 24, and 72 h after BMSC transplantation, modified neurological deficit scores (mNSS) were used to assess neurological function. TTC (2,3,5-triphenyl tetrazolium chloride) staining was used to measure the ischemic lesion volume, and the distribution of Nogo-A protein was observed by immunohistochemistry. The expressions of Nogo-A, NgR, Rhoa, and ROCK were detected by Western blot. Results At 72 h after BMSC transplantation, the mNSS scores were significantly lower in the BMSC treatment group than those in the cerebral ischemia group (7.50±0.55 vs. 8.67±0.52, P<0.01), and the ischemic lesions volume was significantly reduced. The expressions of Nogo-A, NgR, RhoA, and ROCK were significantly decreased compared with the controls (P<0.05). Conclusions The transplantation of BMSCs can improve neurological function in rats after convalescent cerebral ischemia, and their therapeutic effect may be related to the downregulation of Nogo-A, NgR, RhoA, and ROCK expression.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenjun Li
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenxian Zeng
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xuying He
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,Department of Neurosurgery, Southern Medical University, Zhujiang Hospital, Guangzhou 510282, China
| |
Collapse
|
11
|
Kovrazhkina EA, Stakhovskaya LV, Razinskaya OD, Serdyuk AV. [Inhibitors of CNS regeneration, their physiological role and participation in pathogenesis of diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:143-149. [PMID: 29927419 DOI: 10.17116/jnevro201811851143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The review is devoted to axon growth inhibitors in the CNS, including a physiological role of myelin-associated proteins (Nogo-A, MAG, OMgp) and their involvement in the pathogenesis of various diseases (spinal injuries, stroke, neurodegenerations).
Collapse
Affiliation(s)
- E A Kovrazhkina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - L V Stakhovskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O D Razinskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Serdyuk
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
12
|
Iobbi C, Korte M, Zagrebelsky M. Nogo-66 Restricts Synaptic Strengthening via Lingo1 and the ROCK2-Cofilin Pathway to Control Actin Dynamics. Cereb Cortex 2018; 27:2779-2792. [PMID: 27166169 DOI: 10.1093/cercor/bhw122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nogo-A restricts long-term potentiation (LTP) at the Schaffer collateral-CA1 pathway in the adult hippocampus via 2 extracellular domains: Nogo-A-Δ20 and Nogo-66. Nogo-66 signals via Nogo Receptor 1 (NgR1) to regulate synaptic function. Whether the NgR1 coreceptors Lingo1 and p75NTR are involved in the signaling in this context is still not known. Moreover, the intracellular cascade mediating the activity of Nogo-66 in restricting LTP is unexplored. We combine electrophysiology and biochemistry in acute hippocampal slices and demonstrate that a loss of function for Lingo1 results in a significant increase in LTP levels at the Schaffer collateral-CA1 pathway, and that Lingo1 is the NgR1 coreceptor mediating the role of Nogo-66 in restricting LTP. Our data show that p75NTR is not involved in mediating the Nogo-66 effect on LTP. Moreover, loss of function for p75NTR and NgR1 equally attenuate LTD, suggesting that p75NTR might mediate the NgR1-dependent regulation of LTD, independently of Nogo-66. Finally, our results indicate that Nogo-66 signaling limits LTP via the ROCK2-Cofilin pathway to control the dynamics of the actin cytoskeleton. The present results elucidate the signaling pathway activated by Nogo-66 to control LTP and contribute to the understanding of how Nogo-A stabilizes the neural circuits to limit activity-dependent plasticity events in the mature hippocampus.
Collapse
Affiliation(s)
- Cristina Iobbi
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany.,Helmholtz Centre for Infection Research, AG NIND, 38124, Braunschweig, Germany
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
13
|
The Adiponectin Homolog Osmotin Enhances Neurite Outgrowth and Synaptic Complexity via AdipoR1/NgR1 Signaling in Alzheimer’s Disease. Mol Neurobiol 2018; 55:6673-6686. [DOI: 10.1007/s12035-017-0847-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
|
14
|
Huang S, Huang D, Zhao J, Chen L. Electroacupuncture promotes axonal regeneration in rats with focal cerebral ischemia through the downregulation of Nogo-A/NgR/RhoA/ROCK signaling. Exp Ther Med 2017; 14:905-912. [PMID: 28810542 PMCID: PMC5526169 DOI: 10.3892/etm.2017.4621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/06/2017] [Indexed: 12/30/2022] Open
Abstract
The purpose of the present study was to evaluate the effect of electroacupuncture (EA) on the axonal regeneration environment following cerebral ischemia injury and to investigate whether it was associated with Nogo-A/Nogo receptor (NgR)/RhoA/Rho-associated protein kinase (ROCK) signaling. Using a rat model of focal cerebral ischemia, the effects of EA at the Quchi (LI11) and Zusanli (ST36) acupoints on axonal growth inhibitory protein and axonal growth factors were assessed and the underlying molecular mechanisms were investigated. It was found that EA at the Quchi and Zusanli acupoints significantly improved neurological deficit scores following ischemia (P<0.05), and reduced the cerebral infarct volume. Moreover, it was demonstrated that crucial signaling molecules in the Nogo-A signaling pathway were regulated by EA. These results suggest that EA provides a less inhibitory environment for axonal regeneration following cerebral ischemia through inhibition of Nogo-A/NgR/RhoA/ROCK signaling.
Collapse
Affiliation(s)
- Saie Huang
- Department of Neurological Rehabilitation, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, Fujian 350003, P.R. China
| | - Danxia Huang
- Department of Clinical Medicine, Quanzhou Medical College, Quzhou, Fujian 362000, P.R. China
| | - Jiapei Zhao
- Fujian Provincial Rehabilitation Industrial Institution, Department of Rehabilitation Medicine, College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- Department of Neurological Rehabilitation, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, Fujian 350003, P.R. China
| |
Collapse
|
15
|
Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus. Neurobiol Learn Mem 2017; 138:154-163. [DOI: 10.1016/j.nlm.2016.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022]
|
16
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Cao Y, Dong YX, Xu J, Chu GL, Yang ZH, Liu YM. Spatiotemporal expression of Nogo-66 receptor after focal cerebral ischemia. Neural Regen Res 2016; 11:132-6. [PMID: 26981102 PMCID: PMC4774206 DOI: 10.4103/1673-5374.175059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
NgR, the receptor for the neurite outgrowth inhibitor Nogo-66, plays a critical role in the plasticity and regeneration of the nervous system after injury such as ischemic stroke. In the present study, we used immunohistochemistry to investigate the regional expression of NgR in rat brain following middle cerebral artery occlusion (MCAO). NgR protein expression was not observed in the center of the lesion, but was elevated in the marginal zone compared with control and sham-operated rats. The cerebral cortex and hippocampus (CA1, CA2, and CA3) showed the greatest expression of NgR. Furthermore, NgR expression was higher in the ipsilesional hemisphere than on the control side in the same coronal section. Although time-dependent changes in NgR expression across brain regions had their own characteristics, the overall trend complied with the following rules: NgR expression changes with time showed two peaks and one trough; the first peak in expression appeared between 1 and 3 days after MCAO; expression declined at 5 days; and the second peak occurred at 28 days.
Collapse
Affiliation(s)
- Yue Cao
- Department of Medical Technology, Medical College of Shaoguan University, Shaoguan, Guangdong Province, China
| | - Ya-Xian Dong
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jie Xu
- Department of Human Anatomy, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Guo-Liang Chu
- Department of Human Anatomy, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Hua Yang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yan-Ming Liu
- Department of Clinical Laboratory, Yue Bei People's Hospital, Shaoguan, Guangdong Province, China
| |
Collapse
|
18
|
A novel Nogo-66 receptor antagonist peptide promotes neurite regeneration in vitro. Mol Cell Neurosci 2016; 71:80-91. [DOI: 10.1016/j.mcn.2015.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022] Open
|
19
|
Seiler S, Di Santo S, Widmer HR. Non-canonical actions of Nogo-A and its receptors. Biochem Pharmacol 2015; 100:28-39. [PMID: 26348872 DOI: 10.1016/j.bcp.2015.08.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Nogo-A is a myelin associated protein and one of the most potent neurite growth inhibitors in the central nervous system. Interference with Nogo-A signaling has thus been investigated as therapeutic target to promote functional recovery in CNS injuries. Still, the finding that Nogo-A presents a fairly ubiquitous expression in many types of neurons in different brain regions, in the eye and even in the inner ear suggests for further functions besides the neurite growth repression. Indeed, a growing number of studies identified a variety of functions including regulation of neuronal stem cells, modulation of microglial activity, inhibition of angiogenesis and interference with memory formation. Aim of the present commentary is to draw attention on these less well-known and sometimes controversial roles of Nogo-A. Furthermore, we are addressing the role of Nogo-A in neuropathological conditions such as ischemic stroke, schizophrenia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefanie Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern and University of Bern, CH-3010 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern and University of Bern, CH-3010 Bern, Switzerland
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University Hospital Bern and University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|
20
|
Baldwin KT, Giger RJ. Insights into the physiological role of CNS regeneration inhibitors. Front Mol Neurosci 2015; 8:23. [PMID: 26113809 PMCID: PMC4462676 DOI: 10.3389/fnmol.2015.00023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022] Open
Abstract
The growth inhibitory nature of injured adult mammalian central nervous system (CNS) tissue constitutes a major barrier to robust axonal outgrowth and functional recovery following trauma or disease. Prototypic CNS regeneration inhibitors are broadly expressed in the healthy and injured brain and spinal cord and include myelin-associated glycoprotein (MAG), the reticulon family member NogoA, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs). These structurally diverse molecules strongly inhibit neurite outgrowth in vitro, and have been most extensively studied in the context of nervous system injury in vivo. The physiological role of CNS regeneration inhibitors in the naïve, or uninjured, CNS remains less well understood, but has received growing attention in recent years and is the focus of this review. CNS regeneration inhibitors regulate myelin development and axon stability, consolidate neuronal structure shaped by experience, and limit activity-dependent modification of synaptic strength. Altered function of CNS regeneration inhibitors is associated with neuropsychiatric disorders, suggesting crucial roles in brain development and health.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine Ann Arbor, MI, USA ; Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine Ann Arbor, MI, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine Ann Arbor, MI, USA ; Department of Neurology, University of Michigan School of Medicine Ann Arbor, MI, USA
| |
Collapse
|
21
|
Abstract
The endocannabinoid system negatively regulates the release of various neurotransmitters in an activity-dependent manner, thereby influencing the excitability of neuronal circuits. In the hippocampus, cannabinoid type 1 (CB1) receptor is present on both GABAergic and glutamatergic axon terminals. CB1 receptor-deficient mice were previously shown to have increased hippocampal long-term potentiation (LTP). In this study, we have investigated the consequences of cell-type-specific deletion of the CB1 receptor on the induction of hippocampal LTP and on CA1 pyramidal cell morphology. Deletion of CB1 receptor in GABAergic neurons in GABA-CB1-KO mice leads to a significantly decreased hippocampal LTP compared with WT controls. Concomitantly, CA1 pyramidal neurons have a significantly reduced dendritic branching both on the apical and on the basal dendrites. Moreover, the average spine density on the apical dendrites of CA1 pyramidal neurons is significantly diminished. In contrast, in mice lacking CB1 receptor in glutamatergic cells (Glu-CB1-KO), hippocampal LTP is significantly enhanced and CA1 pyramidal neurons show an increased branching and an increased spine density in the apical dendritic region. Together, these results indicate that the CB1 receptor signaling system both on inhibitory and excitatory neurons controls functional and structural synaptic plasticity of pyramidal neurons in the hippocampal CA1 region to maintain an appropriate homeostatic state upon neuronal activation. Consequently, if the CB1 receptor is lost in either neuronal population, an allostatic shift will occur leading to a long-term dysregulation of neuronal functions.
Collapse
|
22
|
Xu YQ, Sun ZQ, Wang YT, Xiao F, Chen MW. Function of Nogo-A/Nogo-A receptor in Alzheimer's disease. CNS Neurosci Ther 2015; 21:479-85. [PMID: 25732725 DOI: 10.1111/cns.12387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 12/11/2022] Open
Abstract
Nogo-A is a protein inhibiting axonal regeneration, which is considered a major obstacle to nerve regeneration after injury in mammals. Rapid progress has been achieved in new physiopathological function of Nogo-A in Alzheimer's disease in the past decade. Recent research shows that through binding to Nogo-A receptor, Nogo-A plays an important role in Alzheimer's disease (AD) pathogenesis. Particularly, Nogo-A/Nogo-A receptors modulate the generation of amyloid β-protein (Aβ), which is thought to be a major cause of AD. This review describes the recent development of Nogo-A, Nogo-A receptor, and downstream signaling involved in AD and pharmacological basis of therapeutic drugs. We concluded the Nogo-A/Nogo-A receptor provide new insight into potential mechanisms and promising therapy strategies in AD.
Collapse
Affiliation(s)
- Ying-Qi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhong-Qing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Fei Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
23
|
Lynch AM, Cleveland M, Prinjha R, Kumar U, Stubbs R, Wuerthner J. Non-clinical development of ozanezumab: a humanised antibody targeting the amino terminus of neurite outgrowth inhibitor A (Nogo-A). Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00179j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ozanezumab (GSK1223249) is a humanised, Fc-disabled, monoclonal antibody (mAb) which targets the amino terminus of Neurite Outgrowth Inhibitor A (Nogo-A) which is currently being developed for the treatment of amyotrophic lateral sclerosis (ALS).
Collapse
|
24
|
Knipper M. Introduction to "Compensation after injury: always for good?". Neuroscience 2014; 283:1-3. [PMID: 25196462 DOI: 10.1016/j.neuroscience.2014.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 01/12/2023]
Affiliation(s)
- M Knipper
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen, THRC Elfriede Aulhornstr. 5, 72076 Tübingen, Germany. http://thrc.hno.medizin.uni-tuebingen.de
| |
Collapse
|