1
|
Kaur S, Kumari D, Dandekar MP. Importance of Gut Microbiota Dysbiosis and Circadian Disruption-Associated Biomarkers in Emergence of Alzheimer's Disease. Mol Neurobiol 2025; 62:6308-6316. [PMID: 39775480 DOI: 10.1007/s12035-024-04685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is a major devastating neurodegenerative disorder afflicting majorly the geriatric population. Emerging studies augur the connection of gut dysbiosis and circadian disruption with the early onset of AD. Gut dysbiosis is characterized by dysregulated gut microbiota signature and compromised intestinal integrity, which provokes the translocation of bacterial metabolites into the systemic circulation. Noteworthy, gut-derived metabolites like calprotectin, trimethylamine-N-oxide, kynurenine, isoamylamine, and short-chain fatty acids play a key role in AD pathogenesis. Circadian dysregulation also corresponds with the exacerbated AD pathogenesis by accumulating Aβ and tau proteins. Moreover, circadian dysregulation is one of the causative factors for gut dysbiosis. This review discusses the complex interplay between the microbiota-gut-brain axis, circadian rhythmicity, and the emergence of AD. We reviewed preclinical and clinical studies on AD describing potential biomarkers of gut dysbiosis and circadian dysregulation. The identification of new biomarkers associated with the microbiota-gut-brain axis and circadian rhythmicity may help in early diagnosis and development of targeted therapies for mitigating neurodegenerative AD.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India, 500037
| | - Deepali Kumari
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India, 500037
| | - Manoj P Dandekar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India, 500037.
| |
Collapse
|
2
|
Turton SM, Padgett S, Maisel MT, Johnson CE, Buzinova VA, Barth SE, Kohler K, Spearman HM, Macheda T, Manauis EC, Guo LZ, Whitlock HR, Bachstetter AD, Sunderam S, O'Hara BF, Duncan MJ, Murphy MP. Interactions between daily sleep-wake rhythms, γ-secretase, and amyloid-β peptide pathology point to complex underlying relationships. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167840. [PMID: 40222459 DOI: 10.1016/j.bbadis.2025.167840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Disrupted or insufficient sleep is a well-documented risk factor for Alzheimer's disease (AD) and related dementias. Previous studies in our lab and others have shown that chronic fragmentation of the daily sleep-wake rhythm in mice can accelerate the development of AD-related neuropathology in the brain, including increases in the levels of amyloid-β (Aβ). Although sleep is known to increase clearance of Aβ via the glymphatic system, little is known about the effect of sleep on Aβ production and the role this might play in amyloid deposition. To examine the relationship of Aβ production and its interaction with sleep and sleep dysfunction, we treated mice from an APP × PS1 mutant knock-in line (APPΔNLh/ΔNLh × PS1P264L/P264L) with an inhibitor of γ-secretase (LY-450,139; Semagacestat®) during a protocol of mild sleep fragmentation (SF). Compared to the male mice, the female mice slept less, and had more Aβ pathology. Semagacestat treatment reduced Aβ, but only in the most soluble extractable fraction. Although the female mice showed an increase in the amount of Aβ following SF, this effect was blocked by Semagacestat, an effect that was not seen in the male mice. SF also led to a significant, sex-dependent changes in the relative amounts of C-terminal fragments of the amyloid precursor protein, the immediate substrate of the γ-secretase enzyme. These findings indicate that the relationship between disruption of the daily sleep-wake rhythm and the development of AD-related pathology is complex, and may involve unappreciated interactions with biological sex. Consideration of these factors is necessary for a better understanding of AD risk, especially the elevated risk in women.
Collapse
Affiliation(s)
| | | | | | - Carrie E Johnson
- The Sanders-Brown Center on Aging, USA; Department of Molecular and Cellular Biochemistry, USA
| | - Valeria A Buzinova
- The Sanders-Brown Center on Aging, USA; Department of Molecular and Cellular Biochemistry, USA
| | | | | | | | | | | | | | | | - Adam D Bachstetter
- The Sanders-Brown Center on Aging, USA; The Spinal Cord and Brain Injury Research Center, USA; Department of Neuroscience, USA
| | | | | | | | - M Paul Murphy
- The Sanders-Brown Center on Aging, USA; Department of Molecular and Cellular Biochemistry, USA.
| |
Collapse
|
3
|
Tian ZY, Jiang B, Jin M, Yu XK, Chen QL, Wang JH. Alzheimer's disease and insomnia: a bibliometric study and visualization analysis. Front Aging Neurosci 2025; 17:1542607. [PMID: 40264463 PMCID: PMC12011777 DOI: 10.3389/fnagi.2025.1542607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Background Alzheimer's disease (AD) is the fastest-growing neurodegenerative disorder globally, with patient numbers expected to rise to 130 million by 2050. Insomnia, a prevalent comorbidity, exhibits a bidirectional relationship with AD: insomnia accelerates AD pathology, while AD worsens sleep disorders. This relationship has emerged as a key area of research. Current mechanisms involve oxidative stress, inflammatory responses, and glymphatic system dysfunction, yet a comprehensive review of these processes remains absent. Objective To conduct a visual analysis of the relationship between Alzheimer's disease and insomnia using CiteSpace. Methods Literature on "insomnia" and "Alzheimer's disease" published between January 1, 2000, and October 31, 2024, was retrieved from the Web of Science Core Collection. CiteSpace and VOSviewer software were used to analyze institutions, authors, and keywords. Results A total of 1,907 articles were analyzed, revealing a consistent upward trend in publication volume. The United States and the Mayo Clinic were identified as leading contributors, producing 704 and 57 publications, respectively. Boeve Bradley F the most prolific author contributed 30 publications. Collaboration was actively observed among countries, institutions, and authors. High-frequency keywords identified were "Parkinson's disease," "cognitive impairment," and "sleep behavior disorder." Emerging research areas are likely to focus on "sleep quality" and the "glymphatic system." Conclusion This study is the first to apply bibliometric analysis to identify three key trends in AD and insomnia research: the dominance of the United States and Mayo Clinic, strong international collaboration, and a focus on critical areas such as cognitive impairment, the glymphatic system, and sleep interventions. Insomnia may accelerate AD progression via multiple pathways, indicating that enhancing sleep quality could provide new strategies for early intervention. Future research should prioritize advancing the clinical translation of sleep interventions and investigating the mechanisms of the glymphatic system.
Collapse
Affiliation(s)
- Zi-Yue Tian
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Meng Jin
- The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Xiao-Kun Yu
- The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Qi-Lin Chen
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- KweiChow Moutai Hospital, Zunyi, Guizhou, China
| | - Jia-Hui Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
4
|
Wu Y, Bhat NR, Liu M. Reduction of orexin-expressing neurons and a unique sleep phenotype in the Tg-SwDI mouse model of Alzheimer's disease. Front Aging Neurosci 2025; 17:1529769. [PMID: 39968126 PMCID: PMC11832706 DOI: 10.3389/fnagi.2025.1529769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Sleep disturbances are common in Alzheimer's disease (AD) and AD-related dementia (ADRD). We performed a sleep study on Tg-SwDI mice, a cerebral amyloid angiopathy (CAA) model, and age-matched wild-type (WT) control mice. The results showed that at 12 months of age, the hemizygous Tg-SwDI mice spent significantly more time in non-rapid eye movement (NREM) sleep (44.6 ± 2.4% in Tg-SwDI versus 35.9 ± 2.5% in WT) and had a much shorter average length of wake bout during the dark (active) phase (148.5 ± 8.7 s in the Tg-SwDI versus 203.6 ± 13.0 s in WT). Histological analysis revealed stark decreases of orexin immunoreactive (orexin-IR) neuron number and soma size in these Tg-SwDI mice (cell number: 2187 ± 97.1 in Tg-SwDI versus 3318 ± 137.9 in WT. soma size: 109.1 ± 8.1 μm2 in Tg-SwDI versus 160.4 ± 6.6 μm2 in WT), while the number and size of melanin-concentrating hormone (MCH) immunoreactive (MCH-IR) neurons remained unchanged (cell number: 4256 ± 273.3 in Tg-SwDI versus 4494 ± 326.8 in WT. soma size: 220.1 ± 13.6 μm2 in Tg-SwDI versus 202.0 ± 7.8 μm2 in WT). The apoptotic cell death marker cleaved caspase-3 immunoreactive (Caspase-3-IR) percentage in orexin-IR neurons was significantly higher in Tg-SwDI mice than in WT controls. This selective loss of orexin-IR neurons could be associated with the abnormal sleep phenotype in these Tg-SwDI mice. Further studies are needed to determine the cause of the selective death of orexin-IR cells and relevant effects on cognition impairments in this mouse model of microvascular amyloidosis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Narayan R. Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
5
|
Mou Y, Zhang Y, Zheng Y, He G, Xu Z, Xiao X, Ping Y. Intermittent Vibration Induces Sleep via an Allatostatin A-GABA Signaling Pathway and Provides Broad Benefits in Alzheimer's Disease Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411768. [PMID: 39656885 PMCID: PMC11791986 DOI: 10.1002/advs.202411768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Indexed: 12/17/2024]
Abstract
While animals across species typically experience suppressed consciousness and an increased arousal threshold during sleep, the responsiveness to specific sensory inputs persists. Previous studies have demonstrated that rhythmic and continuous vibration can enhance sleep in both animals and humans. However, the neural circuits underlying vibration-induced sleep (VIS) and its potential therapeutic benefits on neuropathological processes in disease models remain unclear. Here, it is shown that intermittent vibration, such as cycles of 30 s on followed by 30 s off, is more effective in inducing sleep compared to continuous vibration. A clear evidence is further provided that allatostatin A (AstA)-GABA signaling mediates short-term intermittent vibration-induced sleep (iVIS) by inhibiting octopaminergic arousal neurons through activating GABAA receptors. The existence of iVIS in mice is corroborated, implicating the GABAergic system in this process. Finally, intermittent vibration not only enhances sleep but also reduces amyloid-β (Aβ) deposition and reverses memory defects in Alzheimer's disease models. In conclusion, the study defines a central neural circuit involved in mediating short-term iVIS and the potential implications of vibration in treating sleep-related brain disorders.
Collapse
Affiliation(s)
- Yang Mou
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Yan Zhang
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Yuxian Zheng
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Guang He
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Zhi‐Xiang Xu
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghai200032China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceMinistry of EducationBehavioural and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain‐Inspired IntelligenceMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| | - Yong Ping
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
6
|
Kane KM, Iradukunda D, McLouth CJ, Guo LZ, Wang J, Subramoniam A, Huffman D, Donohue KD, O'Hara BF, Sunderam S, Wang QJ. Characterisation of sleep in a mouse model of CLN3 disease revealed sex-specific sleep disturbances. J Sleep Res 2025:e14461. [PMID: 39873354 DOI: 10.1111/jsr.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease. The current study utilised PiezoSleep, a non-invasive, automated piezoelectric motion sensing system, to classify sleep and wakefulness in a Cln3Δex1-6/Δex1-6 (Cln3KO) mouse model and age- and sex-matched wild-type (WT) controls. The sleep-wake classification by PiezoSleep was found to be about 90% accurate when validated against simultaneous polysomnographic recordings including electroencephalography (EEG) and electromyography (EMG) in a small cohort of WT and Cln3KO mice. Our large cohort PiezoSleep study revealed sleep abnormalities during the light period in male Cln3KO mice compared with WT male mice, and more subtle differences in Cln3KO female mice in the dark period compared with WT female mice. Our characterisation of sleep in the Cln3KO mouse model aligns with sleep abnormalities seen in CLN3 disease patients and serves as a basis to continue examining sleep disturbances commonly reported for CLN3 disease and other NCLs. As the first animal model study capturing sleep disturbances in CLN3 disease, our work will facilitate future studies into the potential mechanism behind sleep disturbances associated with the disease and the potential treatment strategies.
Collapse
Affiliation(s)
- Kelby M Kane
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Diane Iradukunda
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | | | - Landys Z Guo
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun Wang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- Signal Solutions LLC, Lexington, Kentucky, USA
| | - Sridhar Sunderam
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Chen J, Peng G, Sun B. Alzheimer's disease and sleep disorders: A bidirectional relationship. Neuroscience 2024; 557:12-23. [PMID: 39137870 DOI: 10.1016/j.neuroscience.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, pathologically featuring abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, while sleep, divided into rapid eye movement sleep (REM) and nonrapid eye movement sleep (NREM), plays a key role in consolidating social and spatial memory. Emerging evidence has revealed that sleep disorders such as circadian disturbances and disruption of neuronal rhythm activity are considered as both candidate risks and consequence of AD, suggesting a bidirectional relationship between sleep and AD. This review will firstly grasp basic knowledge of AD pathogenesis, then highlight macrostructural and microstructural alteration of sleep along with AD progression, explain the interaction between accumulation of Aβ and hyperphosphorylated tau, which are two critical neuropathological processes of AD, as well as neuroinflammation and sleep, and finally introduce several methods of sleep enhancement as strategies to reduce AD-associated neuropathology. Although theories about the bidirectional relationship and relevant therapeutic methods in mice have been well developed in recent years, the knowledge in human is still limited. More studies on how to effectively ameliorate AD pathology in patients by sleep enhancement and what specific roles of sleep play in AD are needed.
Collapse
Affiliation(s)
- Junhua Chen
- Chu Kochen Honors College of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
8
|
Zhao Q, Yokomizo S, Perle SJ, Lee YF, Zhou H, Miller MR, Li H, Gerashchenko D, Gomperts SN, Bacskai BJ, Kastanenka KV. Optogenetic targeting of cortical astrocytes selectively improves NREM sleep in an Alzheimer's disease mouse model. Sci Rep 2024; 14:23044. [PMID: 39362954 PMCID: PMC11450172 DOI: 10.1038/s41598-024-73082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory impairments and distinct histopathological features such as amyloid-beta (Aβ) accumulations. Alzheimer's patients experience sleep disturbances at early stages of the disease. APPswe/PS1dE9 (APP) mice exhibit sleep disruptions, including reductions in non-rapid eye movement (NREM) sleep, that contribute to their disease progression. In addition, astrocytic calcium transients associated with a sleep-dependent brain rhythm, slow oscillations prevalent during NREM sleep, are disrupted in APP mice. However, at present it is unclear whether restoration of circuit function by targeting astrocytic activity could improve sleep in APP mice. To that end, APP mice expressing channelrhodopsin-2 (ChR2) targeted to astrocytes underwent optogenetic stimulation at the slow oscillation frequency. Optogenetic stimulation of astrocytes significantly increased NREM sleep duration but not duration of rapid eye movement (REM) sleep. Optogenetic treatment increased delta power and reduced sleep fragmentation in APP mice. Thus, optogenetic activation of astrocytes increased sleep quantity and improved sleep quality in an AD mouse model. Astrocytic activity provides a novel therapeutic avenue to pursue for enhancing sleep and slowing AD progression.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Heng Zhou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
9
|
Kegyes-Brassai AC, Pierson-Bartel R, Bolla G, Kamondi A, Horvath AA. Disruption of sleep macro- and microstructure in Alzheimer's disease: overlaps between neuropsychology, neurophysiology, and neuroimaging. GeroScience 2024:10.1007/s11357-024-01357-z. [PMID: 39333449 DOI: 10.1007/s11357-024-01357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, often associated with impaired sleep quality and disorganized sleep structure. This study aimed to characterize changes in sleep macrostructure and K-complex density in AD, in relation to neuropsychological performance and brain structural changes. We enrolled 30 AD and 30 healthy control participants, conducting neuropsychological exams, brain MRI, and one-night polysomnography. AD patients had significantly reduced total sleep time (TST), sleep efficiency, and relative durations of non-rapid eye movement (NREM) stages 2 (S2), 3 (S3), and rapid eye movement (REM) sleep (p < 0.01). K-complex (KC) density during the entire sleep period and S2 (p < 0.001) was significantly decreased in AD. We found strong correlations between global cognitive performance and relative S3 (p < 0.001; r = 0.86) and REM durations (p < 0.001; r = 0.87). TST and NREM stage 1 (S1) durations showed a moderate negative correlation with amygdaloid and hippocampal volumes (p < 0.02; r = 0.51-0.55), while S3 and REM sleep had a moderate positive correlation with cingulate cortex volume (p < 0.02; r = 0.45-0.61). KC density strongly correlated with global cognitive function (p < 0.001; r = 0.66) and the thickness of the anterior cingulate cortex (p < 0.05; r = 0.45-0.47). Our results indicate significant sleep organization changes in AD, paralleling cognitive decline. Decreased slow wave sleep and KCs are strongly associated with cingulate cortex atrophy. Since sleep changes are prominent in early AD, they may serve as prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
| | | | - Gergo Bolla
- School of PhD Studies, Semmelweis University, Budapest, Hungary
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Semmelweis University, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry, and Addictology, Budapest, Hungary
- Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
10
|
Chen ZK, Liu YY, Zhou JC, Chen GH, Liu CF, Qu WM, Huang ZL. Insomnia-related rodent models in drug discovery. Acta Pharmacol Sin 2024; 45:1777-1792. [PMID: 38671193 PMCID: PMC11335876 DOI: 10.1038/s41401-024-01269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.
Collapse
Affiliation(s)
- Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuan-Yuan Liu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ji-Chuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Campbell KJ, Jiang P, Olker C, Lin X, Kim SY, Lee CJ, Song EJ, Turek FW, Vitaterna MH. The impacts of sex and the 5xFAD model of Alzheimer's disease on the sleep and spatial learning responses to feeding time. Front Neurol 2024; 15:1430989. [PMID: 39144714 PMCID: PMC11322461 DOI: 10.3389/fneur.2024.1430989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction The relationships between the feeding rhythm, sleep and cognition in Alzheimer's disease (AD) are incompletely understood, but meal time could provide an easy-to-implement method of curtailing disease-associated disruptions in sleep and cognition. Furthermore, known sex differences in AD incidence could relate to sex differences in circadian rhythm/sleep/cognition interactions. Methods The 5xFAD transgenic mouse model of AD and non-transgenic wild-type controls were studied. Both female and male mice were used. Food access was restricted each day to either the 12-h light phase (light-fed groups) or the 12-h dark phase (dark-fed groups). Sleep (electroencephalographic/electromyographic) recording and cognitive behavior measures were collected. Results The 5xFAD genotype reduces NREM and REM as well as the number of sleep spindles. In wild-type mice, light-fed groups had disrupted vigilance state amounts, characteristics, and rhythms relative to dark-fed groups. These feeding time differences were reduced in 5xFAD mice. Sex modulates these effects. 5xFAD mice display poorer spatial memory that, in female mice, is curtailed by dark phase feeding. Similarly, female 5xFAD mice have decreased anxiety-associated behavior. These emotional and cognitive measures are correlated with REM amount. Discussion Our study demonstrates that the timing of feeding can alter many aspects of wake, NREM and REM. Unexpectedly, 5xFAD mice are less sensitive to these feeding time effects. 5xFAD mice demonstrate deficits in cognition which are correlated with REM, suggesting that this circadian-timed aspect of sleep may link feeding time and cognition. Sex plays an important role in regulating the impact of feeding time on sleep and cognition in both wild-type and 5xFAD mice, with females showing a greater cognitive response to feeding time than males.
Collapse
Affiliation(s)
- Katrina J. Campbell
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher Olker
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Xuanyi Lin
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Sarah Y. Kim
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher J. Lee
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Eun Joo Song
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
12
|
Cushing SD, Moseley SC, Stimmell AC, Schatschneider C, Wilber AA. Rescuing impaired hippocampal-cortical interactions and spatial reorientation learning and memory during sleep in a mouse model of Alzheimer's disease using hippocampal 40 Hz stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599921. [PMID: 38979221 PMCID: PMC11230253 DOI: 10.1101/2024.06.20.599921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In preclinical Alzheimer's disease (AD), spatial learning and memory is impaired. We reported similar impairments in 3xTg-AD mice on a virtual maze (VM) spatial-reorientation-task that requires using landmarks to navigate. Hippocampal (HPC)-cortical dysfunction during sleep (important for memory consolidation) is a potential mechanism for memory impairments in AD. We previously found deficits in HPC-cortical coordination during sleep coinciding with VM impairments the next day. Some forms of 40 Hz stimulation seem to clear AD pathology in mice, and improve functional connectivity in AD patients. Thus, we implanted a recording array targeting parietal cortex (PC) and HPC to assess HPC-PC coordination, and an optical fiber targeting HPC for 40 Hz or sham optogenetic stimulation in 3xTg/PV cre mice. We assessed PC delta waves (DW) and HPC sharp wave ripples (SWRs). In sham mice, SWR-DW cross-correlations were reduced, similar to 3xTg-AD mice. In 40 Hz mice, this phase-locking was rescued, as was performance on the VM. However, rescued HPC-PC coupling no longer predicted performance as in NonTg animals. Instead, DWs and SWRs independently predicted performance in 40 Hz mice. Thus, 40 Hz stimulation of HPC rescued functional interactions in the HPC-PC network, and rescued impairments in spatial navigation, but did not rescue the correlation between HPC-PC coordination during sleep and learning and memory. Together this pattern of results could inform AD treatment timing by suggesting that despite applying 40 Hz stimulation before significant tau and amyloid aggregation, pathophysiological processes led to brain changes that were not fully reversed even though cognition was recovered. Significance Statement One of the earliest symptoms of Alzheimer's disease (AD) is getting lost in space or experiencing deficits in spatial navigation, which involve navigation computations as well as learning and memory. We investigated cross brain region interactions supporting memory formation as a potential causative factor of impaired spatial learning and memory in AD. To assess this relationship between AD pathophysiology, brain changes, and behavioral alterations, we used a targeted approach for clearing amyloid beta and tau to rescue functional interactions in the brain. This research strongly connects brain activity patterns during sleep to tau and amyloid accumulation, and will aid in understanding the mechanisms underlying cognitive dysfunction in AD. Furthermore, the results offer insight for improving early identification and treatment strategies.
Collapse
|
13
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
14
|
Sato T, Ochiishi T, Higo-Yamamoto S, Oishi K. Circadian and sleep phenotypes in a mouse model of Alzheimer's disease characterized by intracellular accumulation of amyloid β oligomers. Exp Anim 2024; 73:186-192. [PMID: 38092387 PMCID: PMC11091359 DOI: 10.1538/expanim.23-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/06/2023] [Indexed: 05/08/2024] Open
Abstract
Disturbances in sleep-wake and circadian rhythms may reportedly precede the onset of cognitive symptoms in the early stages of Alzheimer's disease (AD); however, the underlying mechanisms of these AD-induced sleep disturbances remain unelucidated. To specifically evaluate the involvement of amyloid beta (Aβ) oligomers in AD-induced sleep disturbances, we examined circadian and sleep phenotypes using an Aβ-GFP transgenic (Aβ-GFP Tg) mouse characterized by intracellular accumulation of Aβ oligomers. The circadian rhythm and free-running period of wheel running activity were identical between Aβ-GFP Tg and littermate wild-type mice. The durations of rapid eye movement (REM) sleep were elongated in Aβ-GFP Tg mice; however, the durations of non-REM sleep and wakefulness were unaffected. The Aβ-GFP Tg mice exhibited shifts in the electroencephalogram (EEG) power spectra toward higher frequencies in the inactive light phase. These findings suggest that the intracellular accumulation of Aβ oligomers might be associated with sleep quality; however, its impact on circadian systems is limited.
Collapse
Affiliation(s)
- Tomoyuki Sato
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tomoyo Ochiishi
- Molecular Neurobiology Research Group, Biomedical Research Institute (BMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular, and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
15
|
Miyanishi K, Hotta-Hirashima N, Miyoshi C, Hayakawa S, Kakizaki M, Kanno S, Ikkyu A, Funato H, Yanagisawa M. Microglia modulate sleep/wakefulness under baseline conditions and under acute social defeat stress in adult mice. Neurosci Res 2024; 202:8-19. [PMID: 38029860 DOI: 10.1016/j.neures.2023.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Although sleep is tightly regulated by multiple neuronal circuits in the brain, nonneuronal cells such as glial cells have been increasingly recognized as crucial sleep regulators. Recent studies have shown that microglia may act to maintain wakefulness. Here, we investigated the possible involvement of microglia in the regulation of sleep quantity and quality under baseline and stress conditions through electroencephalography (EEG)/electromyography (EMG) recordings, and by employing pharmacological methods to eliminate microglial cells in the adult mouse brain. We found that severe microglial depletion induced by the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX5622 (PLX) reversibly decreased the total wake time and the wake episode duration and increased the EEG slow-wave power during wakefulness under baseline conditions. To examine the role of microglia in sleep/wake regulation under mental stress, we used the acute social defeat stress (ASDS) paradigm, an ethological model for psychosocial stress. Sleep analysis under ASDS revealed that microglial depletion exacerbated the stress-induced decrease in the total wake time and increase in anxiety-like behaviors in the open field test. These results demonstrate that microglia actively modulate sleep quantity and architecture under both baseline and stress conditions. Our findings suggest that microglia may potentially provide resilience against acute psychosocial stress by regulating restorative sleep.
Collapse
Affiliation(s)
- Kazuya Miyanishi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Noriko Hotta-Hirashima
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satsuki Hayakawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satomi Kanno
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Aya Ikkyu
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Anatomy, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
16
|
Kron JOZJ, Keenan RJ, Hoyer D, Jacobson LH. Orexin Receptor Antagonism: Normalizing Sleep Architecture in Old Age and Disease. Annu Rev Pharmacol Toxicol 2024; 64:359-386. [PMID: 37708433 DOI: 10.1146/annurev-pharmtox-040323-031929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.
Collapse
Affiliation(s)
- Jarrah O-Z J Kron
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
| | - Ryan J Keenan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
17
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
18
|
Zhao Q, Maci M, Miller MR, Zhou H, Zhang F, Algamal M, Lee YF, Hou SS, Perle SJ, Le H, Russ AN, Lo EH, Gerashchenko D, Gomperts SN, Bacskai BJ, Kastanenka KV. Sleep restoration by optogenetic targeting of GABAergic neurons reprograms microglia and ameliorates pathological phenotypes in an Alzheimer's disease model. Mol Neurodegener 2023; 18:93. [PMID: 38041158 PMCID: PMC10693059 DOI: 10.1186/s13024-023-00682-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) patients exhibit memory disruptions and profound sleep disturbances, including disruption of deep non-rapid eye movement (NREM) sleep. Slow-wave activity (SWA) is a major restorative feature of NREM sleep and is important for memory consolidation. METHODS We generated a mouse model where GABAergic interneurons could be targeted in the presence of APPswe/PS1dE9 (APP) amyloidosis, APP-GAD-Cre mice. An electroencephalography (EEG) / electromyography (EMG) telemetry system was used to monitor sleep disruptions in these animals. Optogenetic stimulation of GABAergic interneurons in the anterior cortex targeted with channelrhodopsin-2 (ChR2) allowed us to examine the role GABAergic interneurons play in sleep deficits. We also examined the effect of optogenetic stimulation on amyloid plaques, neuronal calcium as well as sleep-dependent memory consolidation. In addition, microglial morphological features and functions were assessed using confocal microscopy and flow cytometry. Finally, we performed sleep deprivation during optogenetic stimulation to investigate whether sleep restoration was necessary to slow AD progression. RESULTS APP-GAD-Cre mice exhibited impairments in sleep architecture including decreased time spent in NREM sleep, decreased delta power, and increased sleep fragmentation compared to nontransgenic (NTG) NTG-GAD-Cre mice. Optogenetic stimulation of cortical GABAergic interneurons increased SWA and rescued sleep impairments in APP-GAD-Cre animals. Furthermore, it slowed AD progression by reducing amyloid deposition, normalizing neuronal calcium homeostasis, and improving memory function. These changes were accompanied by increased numbers and a morphological transformation of microglia, elevated phagocytic marker expression, and enhanced amyloid β (Aβ) phagocytic activity of microglia. Sleep was necessary for amelioration of pathophysiological phenotypes in APP-GAD-Cre mice. CONCLUSIONS In summary, our study shows that optogenetic targeting of GABAergic interneurons rescues sleep, which then ameliorates neuropathological as well as behavioral deficits by increasing clearance of Aβ by microglia in an AD mouse model.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Megi Maci
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Heng Zhou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Fang Zhang
- Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Moustafa Algamal
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hoang Le
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alyssa N Russ
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Eng H Lo
- Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
19
|
Hector A, Provost C, Delignat-Lavaud B, Bouamira K, Menaouar CA, Mongrain V, Brouillette J. Hippocampal injections of soluble amyloid-beta oligomers alter electroencephalographic activity during wake and slow-wave sleep in rats. Alzheimers Res Ther 2023; 15:174. [PMID: 37833786 PMCID: PMC10571363 DOI: 10.1186/s13195-023-01316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Soluble amyloid-beta oligomers (Aβo) begin to accumulate in the human brain one to two decades before a clinical diagnosis of Alzheimer's disease (AD). The literature supports that soluble Aβo are implicated in synapse and neuronal losses in the brain regions such as the hippocampus. This region importantly contributes to explicit memory, the first type of memory affected in AD. During AD preclinical and prodromal stages, people are also experiencing wake/sleep alterations such as insomnia (e.g., difficulty initiating sleep, decreased sleep duration), excessive daytime sleepiness, and sleep schedule modifications. In addition, changes in electroencephalographic (EEG) activity during wake and sleep have been reported in AD patients and animal models. However, the specific contribution of Aβo to wake/sleep alterations is poorly understood and was investigated in the present study. METHODS Chronic hippocampal injections of soluble Aβo were conducted in male rats and combined with EEG recording to determine the progressive impact of Aβ pathology specifically on wake/sleep architecture and EEG activity. Bilateral injections were conducted for 6 consecutive days, and EEG acquisition was done before, during, and after Aβo injections. Immunohistochemistry was used to assess neuron numbers in the hippocampal dentate gyrus (DG). RESULTS Aβo injections did not affect the time spent in wakefulness, slow wave sleep (SWS), and paradoxical sleep but altered EEG activity during wake and SWS. More precisely, Aβo increased slow-wave activity (SWA; 0.5-5 Hz) and low-beta activity (16-20 Hz) during wake and decreased theta (5-9 Hz) and alpha (9-12 Hz) activities during SWS. Moreover, the theta activity/SWA ratio during wake and SWS was decreased by Aβo. These effects were significant only after 6 days of Aβo injections and were found with alterations in neuron counts in the DG. CONCLUSIONS We found multiple modifications of the wake and SWS EEG following Aβo delivery to the hippocampus. These findings expose a specific EEG signature of Aβ pathology and can serve the development of non-invasive and cost-effective markers for the early diagnosis of AD or other amyloid-related diseases.
Collapse
Affiliation(s)
- Audrey Hector
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Chloé Provost
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada
| | - Benoît Delignat-Lavaud
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Khadija Bouamira
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada
| | | | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada.
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada.
| | - Jonathan Brouillette
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.
- Center for Advanced Research in Sleep Medicine, CIUSSS-NIM, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Torraville SE, Flynn CM, Kendall TL, Yuan Q. Life Experience Matters: Enrichment and Stress Can Influence the Likelihood of Developing Alzheimer's Disease via Gut Microbiome. Biomedicines 2023; 11:1884. [PMID: 37509523 PMCID: PMC10377385 DOI: 10.3390/biomedicines11071884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, characterized by the presence of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) formed from abnormally phosphorylated tau proteins (ptau). To date, there is no cure for AD. Earlier therapeutic efforts have focused on the clinical stages of AD. Despite paramount efforts and costs, pharmaceutical interventions including antibody therapies targeting Aβ have largely failed. This highlights the need to alternate treatment strategies and a shift of focus to early pre-clinical stages. Approximately 25-40% of AD cases can be attributed to environmental factors including chronic stress. Gut dysbiosis has been associated with stress and the pathogenesis of AD and can increase both Aβ and NFTs in animal models of the disease. Both stress and enrichment have been shown to alter AD progression and gut health. Targeting stress-induced gut dysbiosis through probiotic supplementation could provide a promising intervention to delay disease progression. In this review, we discuss the effects of stress, enrichment, and gut dysbiosis in AD models and the promising evidence from probiotic intervention studies.
Collapse
Affiliation(s)
- Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Cassandra M Flynn
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Tori L Kendall
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
21
|
Berry AS, Harrison TM. New perspectives on the basal forebrain cholinergic system in Alzheimer's disease. Neurosci Biobehav Rev 2023; 150:105192. [PMID: 37086935 PMCID: PMC10249144 DOI: 10.1016/j.neubiorev.2023.105192] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
The basal forebrain cholinergic system (BFCS) has long been implicated in age-related cognitive changes and the pathophysiology of Alzheimer's disease (AD). Limitations of cholinergic interventions helped to inspire a shift away from BFCS in AD research. A resurgence in interest in the BFCS following methodological and analytical advances has resulted in a call for the BFCS to be examined in novel frameworks. We outline the basic structure and function of the BFCS, its role in supporting cognitive and affective function, and its vulnerability to aging and AD. We consider the BFCS in the context of the amyloid hypothesis and evolving concepts in AD research: resilience and resistance to pathology, selective neuronal vulnerability, trans-synaptic pathology spread and sleep health. We highlight 1) the potential role of the BFCS in cognitive resilience, 2) recent work refining understanding about the selective vulnerability of BFCS to AD, 3) BFCS connectivity that suggests it is related to tau spreading and neurodegeneration and 4) the gap between BFCS involvement in AD and sleep-wake cycles.
Collapse
Affiliation(s)
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Drew VJ, Park M, Kim T. GABA-Positive Astrogliosis in Sleep-Promoting Areas Associated with Sleep Disturbance in 5XFAD Mice. Int J Mol Sci 2023; 24:9695. [PMID: 37298646 PMCID: PMC10253883 DOI: 10.3390/ijms24119695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Sleep disturbances, a debilitating symptom of Alzheimer's disease (AD), are associated with neuropathological changes. However, the relationship between these disturbances and regional neuron and astrocyte pathologies remains unclear. This study examined whether sleep disturbances in AD result from pathological changes in sleep-promoting brain areas. Male 5XFAD mice underwent electroencephalography (EEG) recordings at 3, 6, and 10 months, followed by an immunohistochemical analysis of three brain regions associated with sleep promotion. The findings showed that 5XFAD mice demonstrated reduced duration and bout counts of nonrapid eye movement (NREM) sleep by 6 months and reduced duration and bout counts of rapid eye movement (REM) sleep by 10 months. Additionally, peak theta EEG power frequency during REM sleep decreased by 10 months. Sleep disturbances correlated with the total number of GFAP-positive astrocytes and the ratio of GFAP- and GABA-positive astrocytes across all three sleep-associated regions corresponding to their roles in sleep promotion. The presence of GABRD in sleep-promoting neurons indicated their susceptibility to inhibition by extrasynaptic GABA. This study reveals that neurotoxic reactive astrogliosis in NREM and REM sleep-promoting areas is linked to sleep disturbances in 5XFAD mice, which suggests a potential target for the treatment of sleep disorders in AD.
Collapse
Affiliation(s)
| | | | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (V.J.D.); (M.P.)
| |
Collapse
|
23
|
Drew VJ, Wang C, Kim T. Progressive sleep disturbance in various transgenic mouse models of Alzheimer's disease. Front Aging Neurosci 2023; 15:1119810. [PMID: 37273656 PMCID: PMC10235623 DOI: 10.3389/fnagi.2023.1119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The relationship between AD and sleep dysfunction has received increased attention over the past decade. The use of genetically engineered mouse models with enhanced production of amyloid beta (Aβ) or hyperphosphorylated tau has played a critical role in the understanding of the pathophysiology of AD. However, their revelations regarding the progression of sleep impairment in AD have been highly dependent on the mouse model used and the specific techniques employed to examine sleep. Here, we discuss the sleep disturbances and general pathology of 15 mouse models of AD. Sleep disturbances covered in this review include changes to NREM and REM sleep duration, bout lengths, bout counts and power spectra. Our aim is to describe in detail the severity and chronology of sleep disturbances within individual mouse models of AD, as well as reveal broader trends of sleep deterioration that are shared among most models. This review also explores a variety of potential mechanisms relating Aβ accumulation and tau neurofibrillary tangles to the progressive deterioration of sleep observed in AD. Lastly, this review offers perspective on how study design might impact our current understanding of sleep disturbances in AD and provides strategies for future research.
Collapse
Affiliation(s)
- Victor J. Drew
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chanung Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
24
|
Faisal M, Aid J, Nodirov B, Lee B, Hickey MA. Preclinical trials in Alzheimer's disease: Sample size and effect size for behavioural and neuropathological outcomes in 5xFAD mice. PLoS One 2023; 18:e0281003. [PMID: 37036878 PMCID: PMC10085059 DOI: 10.1371/journal.pone.0281003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/13/2023] [Indexed: 04/11/2023] Open
Abstract
5xFAD transgenic (TG) mice are used widely in AD preclinical trials; however, data on sample sizes are largely unaddressed. We therefore performed estimates of sample sizes and effect sizes for typical behavioural and neuropathological outcome measures in TG 5xFAD mice, based upon data from single-sex (female) groups. Group-size estimates to detect normalisation of TG body weight to WT littermate levels at 5.5m of age were N = 9-15 depending upon algorithm. However, by 1 year of age, group sizes were small (N = 1 -<6), likely reflecting the large difference between genotypes at this age. To detect normalisation of TG open-field hyperactivity to WT levels at 13-14m, group sizes were also small (N = 6-8). Cued learning in the Morris water maze (MWM) was normal in Young TG mice (5m of age). Mild deficits were noted during MWM spatial learning and memory. MWM reversal learning and memory revealed greater impairment, and groups of up to 22 TG mice were estimated to detect normalisation to WT performance. In contrast, Aged TG mice (tested between 13 and 14m) failed to complete the visual learning (non-spatial) phase of MWM learning, likely due to a failure to recognise the platform as an escape. Estimates of group size to detect normalisation of this severe impairment were small (N = 6-9, depending upon algorithm). Other cognitive tests including spontaneous and forced alternation and novel-object recognition either failed to reveal deficits in TG mice or deficits were negligible. For neuropathological outcomes, plaque load, astrocytosis and microgliosis in frontal cortex and hippocampus were quantified in TG mice aged 2m, 4m and 6m. Sample-size estimates were ≤9 to detect the equivalent of a reduction in plaque load to the level of 2m-old TG mice or the equivalent of normalisation of neuroinflammation outcomes. However, for a smaller effect size of 30%, larger groups of up to 21 mice were estimated. In light of published guidelines on preclinical trial design, these data may be used to provide provisional sample sizes and optimise preclinical trials in 5xFAD TG mice.
Collapse
Affiliation(s)
- Mahvish Faisal
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jana Aid
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bekzod Nodirov
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| | - Benjamin Lee
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| | - Miriam A. Hickey
- Department of Pharmacology, Institute of Biomedicine and
Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
25
|
Zhang F, Niu L, Zhong R, Li S, Le W. Chronic Sleep Disturbances Alters Sleep Structure and Tau Phosphorylation in AβPP/PS1 AD Mice and Their Wild-Type Littermates. J Alzheimers Dis 2023; 92:1341-1355. [PMID: 37038814 DOI: 10.3233/jad-221048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Background: Emerging evidence indicates that sleep disorders are the common non-cognitive symptoms of Alzheimer’s disease (AD), and they may contribute to the pathogenesis of this disease. Objective: In this study, we aim to investigate the effect of chronic sleep deprivation (CSD) on AD-related pathologies with a focus on tau phosphorylation and the underlying DNA methylation regulation. Methods: AβPPswe/PS1ΔE9 AD mice and their wild-type (WT) littermates were subjected to a two-month CSD followed by electroencephalography and electromyography recording. The mice were examined for learning and memory evaluation, then pathological, biochemical, and epigenetic assessments including western blotting, immunofluorescence, dot blotting, and bisulfite sequencing. Results: The results show that CSD caused sleep disorders shown as sleep pattern change, poor sleep maintenance, and increased sleep fragmentation. CSD increased tau phosphorylation at different sites and increased the level of tau kinases in AD and WT mice. The increased expression of cyclin-dependent kinase 5 (CDK5) may result from decreased DNA methylation of CpG sites in the promoter region of CDK5 gene, which might be associated with the downregulation of DNA methyltransferase 3A and 3B. Conclusion: CSD altered AD-related tau phosphorylation through epigenetic modification of tau kinase gene. The findings in this study may give insights into the mechanisms underlying the effects of sleep disorders on AD pathology and provide new therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Rujia Zhong
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
B Szabo A, Cattaud V, Bezzina C, Dard RF, Sayegh F, Gauzin S, Lejards C, Valton L, Rampon C, Verret L, Dahan L. Neuronal hyperexcitability in the Tg2576 mouse model of Alzheimer's disease - the influence of sleep and noradrenergic transmission. Neurobiol Aging 2023; 123:35-48. [PMID: 36634385 DOI: 10.1016/j.neurobiolaging.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
The link between Alzheimer's disease (AD) and network hypersynchrony - manifesting as epileptic activities - received considerable attention in the past decade. However, several questions remain unanswered as to its mechanistic underpinnings. Therefore, our objectives were (1) to better characterise epileptic events in the Tg2576 mouse model throughout the sleep-wake cycle and disease progression via electrophysiological recordings and (2) to explore the involvement of noradrenergic transmission in this pathological hypersynchrony. Over and above confirming the previously described early presence and predominance of epileptic events during rapid-eye-movement (REM) sleep, we also show that these events do not worsen with age and are highly phase-locked to the section of the theta cycle during REM sleep where hippocampal pyramidal cells reach their highest firing probability. Finally, we reveal an antiepileptic mechanism of noradrenergic transmission via α1-adrenoreceptors that could explain the intriguing distribution of epileptic events over the sleep-wake cycle in this model, with potential therapeutic implications in the treatment of the epileptic events occurring in many AD patients.
Collapse
Affiliation(s)
- Anna B Szabo
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France; Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France.
| | - Vanessa Cattaud
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Bezzina
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Robin F Dard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fares Sayegh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sebastien Gauzin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France; Department of Neurology, Hôpital Pierre Paul Riquet - Purpan, Toulouse University Hospital, University of Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
27
|
Lee YY, Endale M, Wu G, Ruben MD, Francey LJ, Morris AR, Choo NY, Anafi RC, Smith DF, Liu AC, Hogenesch JB. Integration of genome-scale data identifies candidate sleep regulators. Sleep 2023; 46:zsac279. [PMID: 36462188 PMCID: PMC9905783 DOI: 10.1093/sleep/zsac279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Indexed: 12/05/2022] Open
Abstract
STUDY OBJECTIVES Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep. METHODS We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes. RESULTS Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up studies. As an example, we focused on the NF-κB pathway and showed that chronic activation of NF-κB in a genetic mouse model impacted the sleep-wake patterns. CONCLUSION Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study genetic regulation of complex behaviors such as sleep.
Collapse
Affiliation(s)
- Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Gang Wu
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew R Morris
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Natalie Y Choo
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ron C Anafi
- Department of Medicine, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David F Smith
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
28
|
Mesoscopic Mapping of Visual Pathway in a Female 5XFAD Mouse Model of Alzheimer's Disease. Cells 2022; 11:cells11233901. [PMID: 36497159 PMCID: PMC9740259 DOI: 10.3390/cells11233901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Amyloid-β (Aβ) deposition and Aβ-induced neurodegeneration appear in the retina and retinorecipient areas in the early stages of Alzheimer's disease (AD). Although these Aβ-related changes in the retina cause damage to the visual functions, no studies have yet revealed the alterations in the visual pathways of AD. Therefore, we investigated the alterations of visual circuits in the AD mouse model using anterograde tracer cholera toxin β subunits (CTβ). Moreover, we investigated the Aβ accumulation in the retina and retinorecipient areas and the neuronal loss, and synaptic degeneration in retinorecipient areas by immunofluorescent staining of 4- and 12-month-old female 5XFAD transgenic mice. Our results demonstrated that Aβ accumulation and neurodegeneration occurred in the retina and retinorecipient regions of early and late stages of the 5XFAD mice. Retinal efferents to the suprachiasmatic nucleus and lateral geniculate nucleus were impaired in the early stage of AD. Moreover, retinal connections to the dorsal lateral geniculate nucleus and superior colliculus were degenerated in the late-stage of AD. These findings reveal the Aβ-related pathology induced visual circuit disturbances at the mesoscale level in both the early and late stages of AD and provide anatomical and functional insights into the visual circuitry of AD.
Collapse
|
29
|
Barabas AJ, Robbins LA, Gaskill BN. Home cage measures of Alzheimer's disease in the rTg4510 mouse model. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12795. [PMID: 35044727 PMCID: PMC9744509 DOI: 10.1111/gbb.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease affects an array of activities in patients' daily lives but measures other than memory are rarely evaluated in animal models. Home cage behavior, however, may provide an opportunity to back translate a variety of measures seen in human disease progression to animal models, providing external and face validity. The aim of this study was to evaluate if home cage measures could indicate disease in the rTg4510 mouse model. We hypothesized that sleep, nesting, and smell discrimination would be altered in mutant mice. Thirty-two transgenic mice were used in a Latin square design of four genotypes x both sexes x two diets. Half the mice received a doxycycline diet to suppress tauopathy and evaluate tau severity on various measures. At 8-, 12-, and 16-weeks old, 24 h activity/sleep patterns, nest complexity, and odor discrimination were measured. After 16-weeks, tau concentration in the brain was quantified. Mutant mice had increased tau concentration in brain tissue, but it was reduced by the doxycycline diet. However, only nest complexity was different between mutant mice and controls. Overall, tauopathy in rTg4510 mice does seem to affect these commonly observed symptoms in human patients. However, while running this study, a report showed that the rTg4510 mutant phenotype is not caused by the mutation itself, but confounding factors from transgene insertion. Combined with report findings and our data, the rTg4510 model may not be an ideal model for all aspects of human Alzheimer's disease.
Collapse
Affiliation(s)
- Amanda J. Barabas
- Department of Animal SciencePurdue UniversityWest LafayetteIndianaUSA
| | | | | |
Collapse
|
30
|
Duncan M, Guerriero L, Kohler K, Beechem L, Gillis B, Salisbury F, Wessel C, Wang J, Sunderam S, Bachstetter A, O’Hara B, Murphy M. Chronic Fragmentation of the Daily Sleep-Wake Rhythm Increases Amyloid-beta Levels and Neuroinflammation in the 3xTg-AD Mouse Model of Alzheimer's Disease. Neuroscience 2022; 481:111-122. [PMID: 34856352 PMCID: PMC8941625 DOI: 10.1016/j.neuroscience.2021.11.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/17/2023]
Abstract
Fragmentation of the daily sleep-wake rhythm with increased nighttime awakenings and more daytime naps is correlated with the risk of development of Alzheimer's disease (AD). To explore whether a causal relationship underlies this correlation, the present study tested the hypothesis that chronic fragmentation of the daily sleep-wake rhythm stimulates brain amyloid-beta (Aβ) levels and neuroinflammation in the 3xTg-AD mouse model of AD. Female 3xTg-AD mice were allowed to sleep undisturbed or were subjected to chronic sleep fragmentation consisting of four daily sessions of enforced wakefulness (one hour each) evenly distributed during the light phase, five days a week for four weeks. Piezoelectric sleep recording revealed that sleep fragmentation altered the daily sleep-wake rhythm to resemble the pattern observed in AD. Levels of amyloid-beta (Aβ40 and Aβ42) determined by ELISA were higher in hippocampal tissue collected from sleep-fragmented mice than from undisturbed controls. In contrast, hippocampal levels of tau and phospho-tau differed minimally between sleep fragmented and undisturbed control mice. Sleep fragmentation also stimulated neuroinflammation as shown by increased expression of markers of microglial activation and proinflammatory cytokines measured by q-RT-PCR analysis of hippocampal samples. No significant effects of sleep fragmentation on Aβ, tau, or neuroinflammation were observed in the cerebral cortex. These studies support the concept that improving sleep consolidation in individuals at risk for AD may be beneficial for slowing the onset or progression of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- M.J. Duncan
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536,Co-senior authors, address correspondence to M.J. Duncan at
| | - L.E. Guerriero
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - K. Kohler
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536,Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536
| | - L.E. Beechem
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536
| | - B.D. Gillis
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536
| | - F. Salisbury
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - C. Wessel
- Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536
| | - J. Wang
- Dept. of Biomedical Engineering, University of Kentucky, Lexington, KY 40506
| | - S. Sunderam
- Dept. of Biomedical Engineering, University of Kentucky, Lexington, KY 40506
| | - A.D. Bachstetter
- Dept. of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536,Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536
| | - B.F. O’Hara
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - M.P. Murphy
- Dept. of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536,Sanders-Brown Center on Aging and Alzheimer’s Disease Center, University of Kentucky College of Medicine, Lexington, KY 40536,Co-senior authors, address correspondence to M.J. Duncan at
| |
Collapse
|
31
|
Topchiy I, Fink AM, Maki KA, Calik MW. Validation of PiezoSleep Scoring Against EEG/EMG Sleep Scoring in Rats. Nat Sci Sleep 2022; 14:1877-1886. [PMID: 36300015 PMCID: PMC9590343 DOI: 10.2147/nss.s381367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Current methods of sleep research in rodents involve invasive surgical procedures of EEG and EMG electrodes implantation. Recently, a new method of measuring sleep, PiezoSleep, has been validated against implanted electrodes in mice and rats. PiezoSleep uses a piezoelectric film transducer to detect the rodent's movements and respiration and employs an algorithm to automatically score sleep. Here, we validate PiezoSleep scoring versus EEG/EMG implanted electrodes sleep scoring in rats. METHODS Adult male Brown Norway and Wistar Kyoto rats were implanted with bilateral stainless-steel screws into the skull for EEG recording and bilateral wire electrodes into the nuchal muscles for EMG assessment. In Brown Norway rats, the EEG/EMG electrode leads were soldered to a miniature connector plug and fixed to the skull. In Wistar Kyoto rats, the EEG/EMG leads were tunneled subcutaneously to a telemetry transmitter implanted in the flank. Rats were allowed to recover from surgery for one week. Brown Norway rats were placed in PiezoSleep cages, and had their headsets connected to cable for recording EEG/EMG signals, which were then manually scored by a human scorer in 10-sec epochs. Wistar Kyoto rats were placed in PiezoSleep cages, and EEG/EMG signals were recorded using a telemetry system (DSI). Sleep was scored automatically in 4-sec epochs using NeuroScore software. PiezoSleep software recorded and scored sleep in the rats. RESULTS Rats implanted with corded EEG/EMG headsets had 85.6% concurrence of sleep-wake scoring with PiezoSleep. Rats implanted with EEG/EMG telemetry had 80.8% concurrence sleep-wake scoring with PiezoSleep. Sensitivity and specificity rates were similar between the EEG/EMG recording systems. Total sleep time and hourly sleep times did not differ in all three systems. However, automatic sleep detection by NeuroScore classified more sleep during the light period compared to the PiezoSleep. CONCLUSION We showed that PiezoSleep system can be a reliable alternative to both automatic and visual EEG/EMG- based sleep-wake scoring in rat.
Collapse
Affiliation(s)
- Irina Topchiy
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.,Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA
| | - Anne M Fink
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.,Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA
| | - Katherine A Maki
- Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA.,Translational Biobehavioral and Health Disparities Branch, Clinical Center; National Institutes of Health, Bethesda, MD, USA
| | - Michael W Calik
- Center for Sleep and Health Research, University of Illinois Chicago, Chicago, IL, USA.,Department of Biobehavioral Nursing Science; University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
32
|
Ulland TK, Ewald AC, Knutson AO, Marino KM, Smith SMC, Watters JJ. Alzheimer's Disease, Sleep Disordered Breathing, and Microglia: Puzzling out a Common Link. Cells 2021; 10:2907. [PMID: 34831129 PMCID: PMC8616348 DOI: 10.3390/cells10112907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/14/2022] Open
Abstract
Sleep Disordered Breathing (SDB) and Alzheimer's Disease (AD) are strongly associated clinically, but it is unknown if they are mechanistically associated. Here, we review data covering both the cellular and molecular responses in SDB and AD with an emphasis on the overlapping neuroimmune responses in both diseases. We extensively discuss the use of animal models of both diseases and their relative utilities in modeling human disease. Data presented here from mice exposed to intermittent hypoxia indicate that microglia become more activated following exposure to hypoxia. This also supports the idea that intermittent hypoxia can activate the neuroimmune system in a manner like that seen in AD. Finally, we highlight similarities in the cellular and neuroimmune responses between SDB and AD and propose that these similarities may lead to a pathological synergy between SDB and AD.
Collapse
Affiliation(s)
- Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI 53705, USA; (T.K.U.); (K.M.M.)
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Andrea C. Ewald
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Andrew O. Knutson
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Kaitlyn M. Marino
- Department of Pathology and Laboratory Medicine, University of Wisconsin Madison, Madison, WI 53705, USA; (T.K.U.); (K.M.M.)
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Stephanie M. C. Smith
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| | - Jyoti J. Watters
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI 53706, USA; (A.C.E.); (A.O.K.); (S.M.C.S.)
| |
Collapse
|
33
|
Kuang H, Zhu YG, Zhou ZF, Yang MW, Hong FF, Yang SL. Sleep disorders in Alzheimer's disease: the predictive roles and potential mechanisms. Neural Regen Res 2021; 16:1965-1972. [PMID: 33642368 PMCID: PMC8343328 DOI: 10.4103/1673-5374.308071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sleep disorders are common in patients with Alzheimer's disease, and can even occur in patients with amnestic mild cognitive impairment, which appears before Alzheimer's disease. Sleep disorders further impair cognitive function and accelerate the accumulation of amyloid-β and tau in patients with Alzheimer's disease. At present, sleep disorders are considered as a risk factor for, and may be a predictor of, Alzheimer's disease development. Given that sleep disorders are encountered in other types of dementia and psychiatric conditions, sleep-related biomarkers to predict Alzheimer's disease need to have high specificity and sensitivity. Here, we summarize the major Alzheimer's disease-specific sleep changes, including abnormal non-rapid eye movement sleep, sleep fragmentation, and sleep-disordered breathing, and describe their ability to predict the onset of Alzheimer's disease at its earliest stages. Understanding the mechanisms underlying these sleep changes is also crucial if we are to clarify the role of sleep in Alzheimer's disease. This paper therefore explores some potential mechanisms that may contribute to sleep disorders, including dysregulation of the orexinergic, glutamatergic, and γ-aminobutyric acid systems and the circadian rhythm, together with amyloid-β accumulation. This review could provide a theoretical basis for the development of drugs to treat Alzheimer's disease based on sleep disorders in future work.
Collapse
Affiliation(s)
- Huang Kuang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Ge Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Feng Zhou
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang, Jiangxi Province, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
34
|
Kylkilahti TM, Berends E, Ramos M, Shanbhag NC, Töger J, Markenroth Bloch K, Lundgaard I. Achieving brain clearance and preventing neurodegenerative diseases-A glymphatic perspective. J Cereb Blood Flow Metab 2021; 41:2137-2149. [PMID: 33461408 PMCID: PMC8392766 DOI: 10.1177/0271678x20982388] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle's control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.
Collapse
Affiliation(s)
- Tekla Maria Kylkilahti
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eline Berends
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Marta Ramos
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Johannes Töger
- Diagnostic Radiology, Department of Clinical Sciences, Lund University and Skane University Hospital Lund, Lund, Sweden
| | | | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. Sleep Med Rev 2021; 60:101541. [PMID: 34500400 DOI: 10.1016/j.smrv.2021.101541] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Disturbances of the sleep/wake cycle in Alzheimer's disease (AD) are common, frequently precede cognitive decline, and tend to worsen with disease progression. Sleep is critical to the maintenance of homeostatic and circadian function, and chronic sleep disturbances have significant cognitive and physical health consequences that likely exacerbate disease severity. Sleep-wake cycles are regulated by neuromodulatory centers located in the brainstem, the hypothalamus, and the basal forebrain, many of which are vulnerable to the accumulation of abnormal protein deposits associated with neurodegenerative conditions. In AD, while sleep disturbances are commonly attributed to the accumulation of amyloid beta, patients often first experience sleep issues prior to the appearance of amyloid beta plaques, on a timeline that more closely corresponds to the first appearance of abnormal tau neurofibrillary tangles in sleep/wake regulating areas of the brainstem. Sleep disturbances also occur in pure tauopathies, providing further support that tau is a major contributor. Here, we provide an overview of the neuroanatomy of sleep/wake centers discovered in animal models, and review the evidence that tau-driven neuropathology is a primary driver of sleep disturbance in AD.
Collapse
|
36
|
Liu H, Wang X, Chen L, Chen L, Tsirka SE, Ge S, Xiong Q. Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice. Nat Commun 2021; 12:4646. [PMID: 34330901 PMCID: PMC8324895 DOI: 10.1038/s41467-021-24915-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Microglia are important for brain homeostasis and immunity, but their role in regulating vigilance remains unclear. We employed genetic, physiological, and metabolomic methods to examine microglial involvement in the regulation of wakefulness and sleep. Microglial depletion decreased stable nighttime wakefulness in mice by increasing transitions between wakefulness and non-rapid eye movement (NREM) sleep. Metabolomic analysis revealed that the sleep-wake behavior closely correlated with diurnal variation of the brain ceramide, which disappeared in microglia-depleted mice. Ceramide preferentially influenced microglia in the thalamic reticular nucleus (TRN), and local depletion of TRN microglia produced similar impaired wakefulness. Chemogenetic manipulations of anterior TRN neurons showed that they regulated transitions between wakefulness and NREM sleep. Their firing capacity was suppressed by both microglial depletion and added ceramide. In microglia-depleted mice, activating anterior TRN neurons or inhibiting ceramide production both restored stable wakefulness. These findings demonstrate that microglia can modulate stable wakefulness through anterior TRN neurons via ceramide signaling.
Collapse
Affiliation(s)
- Hanxiao Liu
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Liang Chen
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
37
|
A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci 2021; 22:ijms22105365. [PMID: 34065168 PMCID: PMC8161294 DOI: 10.3390/ijms22105365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence links metabolic disorders with neurodegenerative processes including Alzheimer’s disease (AD). Late AD is associated with amyloid (Aβ) plaque accumulation, neuroinflammation, and central insulin resistance. Here, a humanized AD model, the 5xFAD mouse model, was used to further explore food intake, energy expenditure, neuroinflammation, and neuroendocrine signaling in the hypothalamus. Experiments were performed on 6-month-old male and female full transgenic (Tg5xFAD/5xFAD), heterozygous (Tg5xFAD/-), and non-transgenic (Non-Tg) littermates. Although histological analysis showed absence of Aβ plaques in the hypothalamus of 5xFAD mice, this brain region displayed increased protein levels of GFAP and IBA1 in both Tg5xFAD/- and Tg5xFAD/5xFAD mice and increased expression of IL-1β in Tg5xFAD/5xFAD mice, suggesting neuroinflammation. This condition was accompanied by decreased body weight, food intake, and energy expenditure in both Tg5xFAD/- and Tg5xFAD/5xFAD mice. Negative energy balance was associated with altered circulating levels of insulin, GLP-1, GIP, ghrelin, and resistin; decreased insulin and leptin hypothalamic signaling; dysregulation in main metabolic sensors (phosphorylated IRS1, STAT5, AMPK, mTOR, ERK2); and neuropeptides controlling energy balance (NPY, AgRP, orexin, MCH). These results suggest that glial activation and metabolic dysfunctions in the hypothalamus of a mouse model of AD likely result in negative energy balance, which may contribute to AD pathogenesis development.
Collapse
|
38
|
Earl RK, Ward T, Gerdts J, Eichler EE, Bernier RA, Hudac CM. Sleep Problems in Children with ASD and Gene Disrupting Mutations. The Journal of Genetic Psychology 2021; 182:317-334. [PMID: 33998396 DOI: 10.1080/00221325.2021.1922869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sleep difficulties are pervasive in autism spectrum disorder (ASD), yet how sleep problems relate to underlying biological mechanisms such as genetic etiology is unclear, despite recent reports of profound sleep problems in children with ASD-associated de novo likely gene disrupting (dnLGD) mutations, CHD8, DYRK1A, and ADNP. We aimed to inform etiological contributions to ASD and sleep by characterizing sleep problems in individuals with dnLGD mutations. Participants (N = 2886) were families who completed dichotomous questions about sleep problems within a medical history interview for their child with ASD (age 3-28 years). Confirmatory factor analyses compared between those with ASD and a dnLGD mutation and those with idiopathic ASD (i.e., no known genetic event, NON) highlighted four domains (sleep onset, breathing issues, nighttime awakenings, and daytime tiredness) with sleep onset as a strong factor for both groups. Overall, participant predictors indicated that internalizing behavioral problems and lower cognitive scores were related to increased sleep problems. Internalizing problems were also related to increase nighttime awakenings in the dnLGD group. As an exploratory aim, patterns of sleep issues are described for genetic subgroups with unique patterns including more overall sleep issues in ADNP (n = 19), problems falling asleep in CHD8 (n = 22), and increased daytime naps in DYRK1A (n = 23). Implications for considering genetically defined subgroups when approaching sleep problems in children with ASD are discussed.
Collapse
Affiliation(s)
- Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Tracey Ward
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, Seattle, Washington, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Caitlin M Hudac
- Center for Youth Development and Intervention and Department of Psychology, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
39
|
Saber M, Murphy SM, Cho Y, Lifshitz J, Rowe RK. Experimental diffuse brain injury and a model of Alzheimer's disease exhibit disease-specific changes in sleep and incongruous peripheral inflammation. J Neurosci Res 2021; 99:1136-1160. [PMID: 33319441 PMCID: PMC7897258 DOI: 10.1002/jnr.24771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Elderly populations (≥65 years old) have the highest risk of developing Alzheimer's disease (AD) and/or obtaining a traumatic brain injury (TBI). Using translational mouse models, we investigated sleep disturbances and inflammation associated with normal aging, TBI and aging, and AD. We hypothesized that aging results in marked changes in sleep compared with adult mice, and that TBI and aging would result in sleep and inflammation levels similar to AD mice. We used female 16-month-old wild-type (WT Aged) and 3xTg-AD mice, as well as a 2-month-old reference group (WT Adult), to evaluate sleep changes. WT Aged mice received diffuse TBI by midline fluid percussion, and blood was collected from both WT Aged (pre- and post-TBI) and 3xTg-AD mice to evaluate inflammation. Cognitive behavior was tested, and tissue was collected for histology. Bayesian generalized additive and mixed-effects models were used for analyses. Both normal aging and AD led to increases in sleep compared with adult mice. WT Aged mice with TBI slept substantially more, with fragmented shorter bouts, than they did pre-TBI and compared with AD mice. However, differences between WT Aged and 3xTg-AD mice in immune cell populations and plasma cytokine levels were incongruous, cognitive deficits were similar, and cumulative sleep was not predictive of inflammation or behavior for either group. Our results suggest that in similarly aged individuals, TBI immediately induces more profound sleep alterations than in AD, although both diseases likely include cognitive impairments. Unique pathological sleep pathways may exist in elderly individuals who incur TBI compared with similarly aged individuals who have AD, which may warrant disease-specific treatments in clinical settings.
Collapse
Affiliation(s)
- Maha Saber
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Yerin Cho
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ
| | - Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ
| |
Collapse
|
40
|
Gao Q, Khan S, Zhang L. Brain activity and transcriptional profiling in mice under chronic jet lag. Sci Data 2020; 7:361. [PMID: 33087702 PMCID: PMC7578042 DOI: 10.1038/s41597-020-00709-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Shift work is known to be associated with an increased risk of neurological and psychiatric diseases, but how it contributes to the development of these diseases remains unclear. Chronic jet lag (CJL) induced by shifting light-dark cycles repeatedly is a commonly used protocol to mimic the environmental light/dark changes encountered by shift workers. Here we subjected wildtype mice to CJL and performed positron emission tomography imaging of glucose metabolism to monitor brain activities. We also conducted RNA sequencing using prefrontal cortex and nucleus accumbens tissues from these animals, which are brain regions strongly implicated in the pathology of various neurological and psychiatric conditions. Our results reveal the alterations of brain activities and systematic reprogramming of gene expression in brain tissues under CJL, building hypothesis for how CJL increases the susceptibility to neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Suliman Khan
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450014, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
41
|
Kim S, Nam Y, Shin SJ, Park YH, Jeon SG, Kim JI, Kim MJ, Moon M. The Potential Roles of Ghrelin in Metabolic Syndrome and Secondary Symptoms of Alzheimer's Disease. Front Neurosci 2020; 14:583097. [PMID: 33071750 PMCID: PMC7543232 DOI: 10.3389/fnins.2020.583097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Although the major causative factors of Alzheimer's disease (AD) are the accumulation of amyloid β and hyperphosphorylated tau, AD can also be caused by metabolic dysfunction. The major clinical symptom of AD is cognitive dysfunction. However, AD is also accompanied by various secondary symptoms such as depression, sleep-wake disturbances, and abnormal eating behaviors. Interestingly, the orexigenic hormone ghrelin has been suggested to have beneficial effects on AD-related metabolic syndrome and secondary symptoms. Ghrelin improves lipid distribution and alters insulin sensitivity, effects that are hypothesized to delay the progression of AD. Furthermore, ghrelin can relieve depression by enhancing the secretion of hormones such as serotonin, noradrenaline, and orexin. Moreover, ghrelin can upregulate the expression of neurotrophic factors such as brain-derived neurotrophic factor and modulate the release of proinflammatory cytokines such as tumor necrosis factor α and interleukin 1β. Ghrelin alleviates sleep-wake disturbances by increasing the levels of melatonin, melanin-concentrating hormone. Ghrelin reduces the risk of abnormal eating behaviors by increasing neuropeptide Y and γ-aminobutyric acid. In addition, ghrelin increases food intake by inhibiting fatty acid biosynthesis. However, despite the numerous studies on the role of ghrelin in the AD-related pathology and metabolic disorders, there are only a few studies that investigate the effects of ghrelin on secondary symptoms associated with AD. In this mini review, our purpose is to provide the insights of future study by organizing the previous studies for the role of ghrelin in AD-related pathology and metabolic disorders.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea.,Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si, South Korea
| | - Min-Jeong Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, South Korea
| |
Collapse
|
42
|
Tapp ZM, Kumar JE, Witcher KG, Atluri RR, Velasquez JA, O'Neil SM, Dziabis JE, Bray CE, Sheridan JF, Godbout JP, Kokiko-Cochran ON. Sleep Disruption Exacerbates and Prolongs the Inflammatory Response to Traumatic Brain Injury. J Neurotrauma 2020; 37:1829-1843. [PMID: 32164485 PMCID: PMC7404833 DOI: 10.1089/neu.2020.7010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) alters stress responses, which may influence neuroinflammation and behavioral outcome. Sleep disruption (SD) is an understudied post-injury environmental stressor that directly engages stress-immune pathways. Thus, we predicted that maladaptive changes in the hypothalamic-pituitary-adrenal (HPA) axis after TBI compromise the neuroendocrine response to SD and exacerbate neuroinflammation. To test this, we induced lateral fluid percussion TBI or sham injury in female and male C57BL/6 mice aged 8-10 weeks that were then left undisturbed or exposed to 3 days of transient SD. At 3 days post-injury (DPI) plasma corticosterone (CORT) was reduced in TBI compared with sham mice, indicating altered HPA-mediated stress response to SD. This response was associated with approach-avoid conflict behavior and exaggerated cortical neuroinflammation. Post-injury SD specifically enhanced neutrophil trafficking to the injured brain in conjunction with dysregulated aquaporin-4 (AQP4) polarization. Delayed and persistent effects of post-injury SD were determined 4 days after SD concluded at 7 DPI. SD prolonged anxiety-like behavior regardless of injury and was associated with increased cortical Iba1 labeling in both sham and TBI mice. Strikingly, TBI SD mice displayed an increased number of CD45+ cells near the site of injury, enhanced cortical glial fibrillary acidic protein (GFAP) immunolabeling, and persistent expression of Trem2 and Tlr4 7 DPI compared with TBI mice. These results support the hypothesis that post-injury SD alters stress-immune pathways and inflammatory outcomes after TBI. These data provide new insight to the dynamic interplay between TBI, stress, and inflammation.
Collapse
Affiliation(s)
- Zoe M. Tapp
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Julia E. Kumar
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kristina G. Witcher
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Ravitej R. Atluri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - John A. Velasquez
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Shane M. O'Neil
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Julia E. Dziabis
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chelsea E. Bray
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - John F. Sheridan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Neurological Institute, Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P. Godbout
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Neurological Institute, Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Neurological Institute, Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
43
|
Lippi SLP, Kakalec PA, Smith ML, Flinn JM. Wheel-Running Behavior Is Negatively Impacted by Zinc Administration in a Novel Dual Transgenic Mouse Model of AD. Front Neurosci 2020; 14:854. [PMID: 32922260 PMCID: PMC7456872 DOI: 10.3389/fnins.2020.00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurocognitive disorder that impacts both the brain and behavior. Metal ions, including zinc (Zn), have been seen to play an important role in AD-related pathology. In this study, we show alterations in wheel-running behavior both early and late in disease progression in a novel dual Tg mouse model of AD. This mouse includes both amyloid and tau pathology through its cross with the J20 (hAPP) and P301L (Tau) parentage. Animals were given either lab water or water that had been supplemented with 10 ppm Zn. Wheel running was assessed through individually housing mice and measuring wheel-running activity in both the light and dark cycles. Dual Tg mice showed significantly less activity in the first part of the dark cycle than WT mice at both 3.5 and 7 months of age (p < 0.05). Dual Tg mice given Zn water showed less activity compared to dual Tg mice on lab water, tau mice on Zn water, or WT mice given either lab or Zn water (p < 0.05) at 7 months. Female mice in this study consistently showed higher activity compared to male mice in all groups whereas Zn led to reduced activity. Daily activity rhythm was altered in both the tau and dual Tg mice, and Zn impacted this alteration through effects on amyloid, tau, and through circadian pathways.
Collapse
Affiliation(s)
| | | | | | - Jane M Flinn
- George Mason University, Fairfax, VA, United States
| |
Collapse
|
44
|
Robust light-dark patterns and reduced amyloid load in an Alzheimer's disease transgenic mouse model. Sci Rep 2020; 10:11436. [PMID: 32651420 PMCID: PMC7351709 DOI: 10.1038/s41598-020-68199-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/05/2020] [Indexed: 12/01/2022] Open
Abstract
Circadian disruption resulting from exposure to irregular light–dark patterns and sleep deprivation has been associated with beta amyloid peptide (Aβ) aggregation, which is a major event in Alzheimer’s disease (AD) pathology. We exposed 5XFAD mice and littermate controls to dim-light vs. bright-light photophases to investigate the effects of altering photophase strength on AD-associated differences in cortical Aβ42 levels, wheel-running activity, and circadian free-running period (tauDD). We found that increasing light levels significantly reduced cortical Aβ42 accumulation and activity levels during the light phase of the light:dark cycle, the latter being consistent with decreased sleep fragmentation and increased sleep duration for mice exposed to the more robust light–dark pattern. No significant changes were observed for tauDD. Our results are consistent with circadian pacemaker period being relatively unaffected by Aβ pathology in AD, and with reductions in cortical Aβ loads in AD through tailored lighting interventions.
Collapse
|
45
|
Progressive Changes in Sleep and Its Relations to Amyloid-β Distribution and Learning in Single App Knock-In Mice. eNeuro 2020; 7:ENEURO.0093-20.2020. [PMID: 32321771 PMCID: PMC7196722 DOI: 10.1523/eneuro.0093-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) patients often suffer from sleep disturbances. Alterations in sleep, especially rapid eye movement sleep (REMS), can precede the onset of dementia. To accurately characterize the sleep impairments accompanying AD and their underlying mechanisms using animal models, it is crucial to use models in which brain areas are affected in a manner similar to that observed in the actual patients. Here, we focused on AppNL-G-F mice, in which expression levels and patterns of mutated amyloid precursor protein (APP) follow the endogenous patterns. We characterized the sleep architecture of male AppNL-G-F homozygous and heterozygous mice at two ages (six and 12 months). At six months, homozygous mice exhibited reduced REMS, which was further reduced at 12 months together with a slight reduction in non-REMS (NREMS). By contrast, heterozygous mice exhibited an overall normal sleep architecture. Homozygous mice also exhibited decreased electroencephalogram γ to δ power ratio during REMS from six months, resembling the electroencephalogram slowing phenomenon observed in preclinical or early stages of AD. In addition, homozygous mice showed learning and memory impairments in the trace fear conditioning (FC) at both ages, and task performance strongly correlated with REMS amount at 12 months. Finally, histologic analyses revealed that amyloid-β accumulation in the pontine tegmental area and ventral medulla followed a course similar to that of the REMS reduction. These findings support the notion that changes in REMS are an early marker of AD and provide a starting point to address the mechanism of sleep deficits in AD and the effects on cognition.
Collapse
|
46
|
Yao Y, Ying Y, Deng Q, Zhang W, Zhu H, Lin Z, Zhang S, Ma J, Zhao Y. Non-invasive 40-Hz Light Flicker Ameliorates Alzheimer's-Associated Rhythm Disorder via Regulating Central Circadian Clock in Mice. Front Physiol 2020; 11:294. [PMID: 32390857 PMCID: PMC7193101 DOI: 10.3389/fphys.2020.00294] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) patients often exhibit perturbed circadian rhythm with fragmented sleep before disease onset. This study was designed to evaluate the effect of a 40-Hz light flicker on circadian rhythm in an AD mouse model (APP/PS1). Locomotor rhythms recordings were conducted to examine the circadian clock rhythm in APP/PS1 mice. Molecular biology analyses, including western blot and real-time qPCR assays, were conducted to assess the changes in circadian locomotor output cycles kaput (CLOCK), brain and muscle arnt-like protein-1 (BMAL1), and period 2 (PER2). In addition to determining the direct effect of a 40-Hz light flicker on hypothalamic central clock, whole-cell voltage-clamp electrophysiology was employed to record individual neurons of suprachiasmatic nucleus (SCN) sections. The results reported herein demonstrate that a 40-Hz light flicker relieves circadian rhythm disorders in APP/PS1 mice and returns the expression levels of key players in the central circadian clock, including Clock, Bmal1, and Per2, to baseline. Moreover, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in SCN neurons is significantly lower in APP/PS1 mice than in the control, and the amplitude of sIPSCs is decreased. Exposure to a 40-Hz light flicker significantly increases the sIPSC frequency in SCN neurons of APP/PS1 mice, with little effect on the amplitude. However, the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) are both unaffected by a 40-Hz light flicker. The data suggest that a 40-Hz light flicker can ameliorate AD-associated circadian rhythm disorders, presenting a new type of therapeutic treatment for rhythm disorders caused by AD.
Collapse
Affiliation(s)
- Youli Yao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China.,College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Ying Ying
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Qiyu Deng
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Wenjiang Zhang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Huazhang Zhu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhenglong Lin
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Shengli Zhang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Junxian Ma
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yingying Zhao
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
47
|
Kosel F, Pelley JMS, Franklin TB. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer's disease-related pathology. Neurosci Biobehav Rev 2020; 112:634-647. [PMID: 32070692 DOI: 10.1016/j.neubiorev.2020.02.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Transgenic mouse models have been used extensively to model the cognitive impairments arising from Alzheimer's disease (AD)-related pathology. However, less is known about the relationship between AD-related pathology and the behavioural and psychological symptoms of dementia (BPSD) commonly presented by patients. This review discusses the BPSD-like behaviours recapitulated by several mouse models of AD-related pathology, including the APP/PS1, Tg2576, 3xTg-AD, 5xFAD, and APP23 models. Current evidence suggests that social withdrawal and depressive-like behaviours increase with progressive neuropathology, and increased aggression and sleep-wake disturbances are present even at early stages; however, there is no clear evidence to support increased anxiety-like behaviours, agitation (hyperactivity), or general apathy. Overall, transgenic mouse models of AD-related pathology recapitulate some of the BPSD-like behaviours associated with AD, but these behaviours vary by model. This reflects the patient population, where AD patients typically exhibit one or more BPSD, but rarely all symptoms at once. As a result, we suggest that transgenic mouse models are an important tool to investigate the pathology underlying BPSD in human AD patients.
Collapse
Affiliation(s)
- Filip Kosel
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Jessica M S Pelley
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Tamara B Franklin
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
48
|
Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer's disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 2020; 45:104-120. [PMID: 31408876 PMCID: PMC6879647 DOI: 10.1038/s41386-019-0478-5] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 01/04/2023]
Abstract
As we age, we experience changes in our nighttime sleep and daytime wakefulness. Individuals afflicted with Alzheimer's disease (AD) can develop sleep problems even before memory and other cognitive deficits are reported. As the disease progresses and cognitive changes ensue, sleep disturbances become even more debilitating. Thus, it is imperative to gain a better understanding of the relationship between sleep and AD pathogenesis. We postulate a bidirectional relationship between sleep and the neuropathological hallmarks of AD; in particular, the accumulation of amyloid-β (Aβ) and tau. Our research group has shown that extracellular levels of both Aβ and tau fluctuate during the normal sleep-wake cycle. Disturbed sleep and increased wakefulness acutely lead to increased Aβ production and decreased Aβ clearance, whereas Aβ aggregation and deposition is enhanced by chronic increased wakefulness in animal models. Once Aβ accumulates, there is evidence in both mice and humans that this results in disturbed sleep. New findings from our group reveal that acute sleep deprivation increases levels of tau in mouse brain interstitial fluid (ISF) and human cerebrospinal fluid (CSF) and chronic sleep deprivation accelerates the spread of tau protein aggregates in neural networks. Finally, recent evidence also suggests that accumulation of tau aggregates in the brain correlates with decreased nonrapid eye movement (NREM) sleep slow wave activity. In this review, we first provide a brief overview of the AD and sleep literature and then highlight recent advances in the understanding of the relationship between sleep and AD pathogenesis. Importantly, the effects of the bidirectional relationship between the sleep-wake cycle and tau have not been previously discussed in other reviews on this topic. Lastly, we provide possible directions for future studies on the role of sleep in AD.
Collapse
Affiliation(s)
- Chanung Wang
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
49
|
Song J. Pineal gland dysfunction in Alzheimer's disease: relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol Neurodegener 2019; 14:28. [PMID: 31296240 PMCID: PMC6624939 DOI: 10.1186/s13024-019-0330-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a globally common neurodegenerative disease, which is accompanied by alterations to various lifestyle patterns, such as sleep disturbance. The pineal gland is the primary endocrine organ that secretes hormones, such as melatonin, and controls the circadian rhythms. The decrease in pineal gland volume and pineal calcification leads to the reduction of melatonin production. Melatonin has been reported to have multiple roles in the central nervous system (CNS), including improving neurogenesis and synaptic plasticity, suppressing neuroinflammation, enhancing memory function, and protecting against oxidative stress. Recently, reduced pineal gland volume and pineal calcification, accompanied by cognitive decline and sleep disturbances have been observed in AD patients. Here, I review current significant evidence of the contribution of pineal dysfunction in AD to the progress of AD neuropathology. I suggest new insights to understanding the relationship between AD pathogenesis and pineal gland function.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
50
|
Gür E, Fertan E, Alkins K, Wong AA, Brown RE, Balcı F. Interval timing is disrupted in female 5xFAD mice: An indication of altered memory processes. J Neurosci Res 2019; 97:817-827. [PMID: 30973189 DOI: 10.1002/jnr.24418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
Temporal information processing in the seconds-to-minutes range is disrupted in patients with Alzheimer's disease (AD). In this study, we investigated the timing behavior of the 5xFAD mouse model of AD in the peak interval (PI) procedure. Nine-month-old female mice were trained with sucrose solution reinforcement for their first response after a fixed-interval (FI) and tested in the inter-mixed non-reinforced PI trials that lasted longer than FI. Timing performance indices were estimated from steady-state timed anticipatory nose-poking responses in the PI trials. We found that the time of maximal reward expectancy (peak time) of the 5xFAD mice was significantly earlier than that of the wild-type (WT) controls with no differences in other indices of timing performance. These behavioral differences corroborate the findings of previous studies on the disruption of temporal associative memory abilities of 5xFAD mice and can be accounted for by the scalar timing theory based on altered long-term memory consolidation of temporal information in the 5xFAD mice. This is the first study to directly show an interval timing phenotype in a genetic mouse model of AD.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kindree Alkins
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fuat Balcı
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|