1
|
Kellett EA, Bademosi AT, Walker AK. Molecular mechanisms and consequences of TDP-43 phosphorylation in neurodegeneration. Mol Neurodegener 2025; 20:53. [PMID: 40340943 PMCID: PMC12063406 DOI: 10.1186/s13024-025-00839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Increased phosphorylation of TDP-43 is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the regulation and roles of TDP-43 phosphorylation remain incompletely understood. A variety of techniques have been utilized to understand TDP-43 phosphorylation, including kinase/phosphatase manipulation, phosphomimic variants, and genetic, physical, or chemical inducement in a variety of cell cultures and animal models, and via analyses of post-mortem human tissues. These studies have produced conflicting results: suggesting incongruously that TDP-43 phosphorylation may either drive disease progression or serve a neuroprotective role. In this review, we explore the roles of regulators of TDP-43 phosphorylation including the putative TDP-43 kinases c-Abl, CDC7, CK1, CK2, IKKβ, p38α/MAPK14, MEK1, TTBK1, and TTBK2, and TDP-43 phosphatases PP1, PP2A, and PP2B, in disease. Building on recent studies, we also examine the consequences of TDP-43 phosphorylation on TDP-43 pathology, especially related to TDP-43 mislocalisation, liquid-liquid phase separation, aggregation, and neurotoxicity. By comparing conflicting findings from various techniques and models, this review highlights both the discrepancies and unresolved aspects in the understanding of TDP-43 phosphorylation. We propose that the role of TDP-43 phosphorylation is site and context dependent, and includes regulation of liquid-liquid phase separation, subcellular mislocalisation, and degradation. We further suggest that greater consideration of the normal functions of the regulators of TDP-43 phosphorylation that may be perturbed in disease is warranted. This synthesis aims to build towards a comprehensive understanding of the complex role of TDP-43 phosphorylation in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Elise A Kellett
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia
| | - Adekunle T Bademosi
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
2
|
Dang M, Wu L, Zhang X. Structural insights and milestones in TDP-43 research: A comprehensive review of its pathological and therapeutic advances. Int J Biol Macromol 2025; 306:141677. [PMID: 40032118 DOI: 10.1016/j.ijbiomac.2025.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Transactive response (TAR) DNA-binding protein 43 (TDP-43) is a critical RNA/DNA-binding protein involved in various cellular processes, including RNA splicing, transcription regulation, and RNA stability. Mislocalization and aggregation of TDP-43 in the cytoplasm are key features of the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). This review provides a comprehensive retrospective and prospective analysis of TDP-43 research, highlighting structural insights, significant milestones, and the evolving understanding of its physiological and pathological functions. We delineate five major stages in TDP-43 research, from its initial discovery as a pathological hallmark in neurodegeneration to the recent advances in understanding its liquid-liquid phase separation (LLPS) behavior and interactions with cellular processes. Furthermore, we assess therapeutic strategies targeting TDP-43 pathology, categorizing approaches into direct and indirect interventions, alongside modulating aberrant TDP-43 LLPS. We propose that future research will focus on three critical areas: targeting TDP-43 structural polymorphisms for disease-specific therapeutics, exploring dual temporal-spatial modulation of TDP-43, and advancing nano-therapy. More importantly, we emphasize the importance of understanding TDP-43's functional repertoire at the mesoscale, which bridges its molecular functions with broader cellular processes. This review offers a foundational framework for advancing TDP-43 research and therapeutic development.
Collapse
Affiliation(s)
- Mei Dang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Longjiang Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Malnar Črnigoj M, Čerček U, Yin X, Ho MT, Repic Lampret B, Neumann M, Hermann A, Rouleau G, Suter B, Mayr M, Rogelj B. Phenylalanine-tRNA aminoacylation is compromised by ALS/FTD-associated C9orf72 C4G2 repeat RNA. Nat Commun 2023; 14:5764. [PMID: 37717009 PMCID: PMC10505166 DOI: 10.1038/s41467-023-41511-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The expanded hexanucleotide GGGGCC repeat mutation in the C9orf72 gene is the main genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Under one disease mechanism, sense and antisense transcripts of the repeat are predicted to bind various RNA-binding proteins, compromise their function and cause cytotoxicity. Here we identify phenylalanine-tRNA synthetase (FARS) subunit alpha (FARSA) as the main interactor of the CCCCGG antisense repeat RNA in cytosol. The aminoacylation of tRNAPhe by FARS is inhibited by antisense RNA, leading to decreased levels of charged tRNAPhe. Remarkably, this is associated with global reduction of phenylalanine incorporation in the proteome and decrease in expression of phenylalanine-rich proteins in cellular models and patient tissues. In conclusion, this study reveals functional inhibition of FARSA in the presence of antisense RNA repeats. Compromised aminoacylation of tRNA could lead to impairments in protein synthesis and further contribute to C9orf72 mutation-associated pathology.
Collapse
Affiliation(s)
- Mirjana Malnar Črnigoj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Urša Čerček
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Xiaoke Yin
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Manh Tin Ho
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Barbka Repic Lampret
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, 72076, Germany
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, 72076, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, 18147, Rostock, Germany
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 0G4, Canada
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Manuel Mayr
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
4
|
Li J, Jaiswal MK, Chien JF, Kozlenkov A, Jung J, Zhou P, Gardashli M, Pregent LJ, Engelberg-Cook E, Dickson DW, Belzil VV, Mukamel EA, Dracheva S. Divergent single cell transcriptome and epigenome alterations in ALS and FTD patients with C9orf72 mutation. Nat Commun 2023; 14:5714. [PMID: 37714849 PMCID: PMC10504300 DOI: 10.1038/s41467-023-41033-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
A repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications. The greatest alterations occur in upper and deep layer excitatory neurons, as well as in astrocytes. In neurons, the changes imply an increase in proteostasis, metabolism, and protein expression pathways, alongside a decrease in neuronal function. In astrocytes, the alterations suggest activation and structural remodeling. Conversely, C9-FTD donors have fewer high-quality neuronal nuclei in the frontal cortex and numerous gene expression changes in glial cells. These findings highlight a context-dependent molecular disruption in C9-ALS and C9-FTD, indicating unique effects across cell types, brain regions, and diseases.
Collapse
Affiliation(s)
- Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US
| | - Manoj K Jaiswal
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jo-Fan Chien
- Department of Physics, University of California San Diego, La Jolla, CA, 92037, US
| | - Alexey Kozlenkov
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Jinyoung Jung
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | - Ping Zhou
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US
| | | | - Luc J Pregent
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, US
| | | | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, 92037, US.
| | - Stella Dracheva
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, US.
- Research & Development and VISN2 MIREC, James J, Peters VA Medical Center, Bronx, NY, 10468, US.
| |
Collapse
|
5
|
Luisier R, Andreassi C, Fournier L, Riccio A. The predicted RNA-binding protein regulome of axonal mRNAs. Genome Res 2023; 33:1497-1512. [PMID: 37582635 PMCID: PMC10620043 DOI: 10.1101/gr.277804.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Neurons are morphologically complex cells that rely on the compartmentalization of protein expression to develop and maintain their cytoarchitecture. The targeting of RNA transcripts to axons is one of the mechanisms that allows rapid local translation of proteins in response to extracellular signals. 3' Untranslated regions (UTRs) of mRNA are noncoding sequences that play a critical role in determining transcript localization and translation by interacting with specific RNA-binding proteins (RBPs). However, how 3' UTRs contribute to mRNA metabolism and the nature of RBP complexes responsible for these functions remains elusive. We performed 3' end sequencing of RNA isolated from cell bodies and axons of sympathetic neurons exposed to either nerve growth factor (NGF) or neurotrophin 3 (NTF3, also known as NT-3). NGF and NTF3 are growth factors essential for sympathetic neuron development through distinct signaling mechanisms. Whereas NTF3 acts mostly locally, NGF signal is retrogradely transported from axons to cell bodies. We discovered that both NGF and NTF3 affect transcription and alternative polyadenylation in the nucleus and induce the localization of specific 3' UTR isoforms to axons, including short 3' UTR isoforms found exclusively in axons. The integration of our data with CLIP sequencing data supports a model whereby long 3' UTR isoforms associate with RBP complexes in the nucleus and, upon reaching the axons, are remodeled locally into shorter isoforms. Our findings shed new light into the complex relationship between nuclear polyadenylation, mRNA localization, and local 3' UTR remodeling in developing neurons.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Idiap Research Institute, Martigny 1920, Switzerland;
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Catia Andreassi
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Lisa Fournier
- Idiap Research Institute, Martigny 1920, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
De Marchi F, Franjkic T, Schito P, Russo T, Nimac J, Chami AA, Mele A, Vidatic L, Kriz J, Julien JP, Apic G, Russell RB, Rogelj B, Cannon JR, Baralle M, Agosta F, Hecimovic S, Mazzini L, Buratti E, Munitic I. Emerging Trends in the Field of Inflammation and Proteinopathy in ALS/FTD Spectrum Disorder. Biomedicines 2023; 11:1599. [PMID: 37371694 PMCID: PMC10295684 DOI: 10.3390/biomedicines11061599] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative diseases. They also represent rare common events in an exceptionally broad landscape of genetic, environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed. Targeting inflammation, and the immune system in general, is of particular interest because of the high plasticity of immune cells compared to neurons.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Toni Franjkic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
- Metisox, Cambridge CB24 9NL, UK;
| | - Paride Schito
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Tommaso Russo
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Anna A. Chami
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Angelica Mele
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Jean-Pierre Julien
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | | | | | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | | | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| |
Collapse
|
7
|
Vignaroli F, Mele A, Tondo G, De Giorgis V, Manfredi M, Comi C, Mazzini L, De Marchi F. The Need for Biomarkers in the ALS-FTD Spectrum: A Clinical Point of View on the Role of Proteomics. Proteomes 2023; 11:proteomes11010001. [PMID: 36648959 PMCID: PMC9844364 DOI: 10.3390/proteomes11010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are severely debilitating and progressive neurodegenerative disorders. A distinctive pathological feature of several neurodegenerative diseases, including ALS and FTD, is the deposition of aberrant protein inclusions in neuronal cells, which leads to cellular dysfunction and neuronal damage and loss. Despite this, to date, the biological process behind developing these protein inclusions must be better clarified, making the development of disease-modifying treatment impossible until this is done. Proteomics is a powerful tool to characterize the expression, structure, functions, interactions, and modifications of proteins of tissue and biological fluid, including plasma, serum, and cerebrospinal fluid. This protein-profiling characterization aims to identify disease-specific protein alteration or specific pathology-based mechanisms which may be used as markers of these conditions. Our narrative review aims to highlight the need for biomarkers and the potential use of proteomics in clinical practice for ALS-FTD spectrum disorders, considering the emerging rationale in proteomics for new drug development. Certainly, new data will emerge in the near future in this regard and support clinicians in the development of personalized medicine.
Collapse
Affiliation(s)
| | - Angelica Mele
- Neurology Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Giacomo Tondo
- Department of Neurology, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research and Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research and Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Neurology, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- Neurology Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Fabiola De Marchi
- Neurology Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-3733962
| |
Collapse
|
8
|
Study on Tissue Homogenization Buffer Composition for Brain Mass Spectrometry-Based Proteomics. Biomedicines 2022; 10:biomedicines10102466. [PMID: 36289728 PMCID: PMC9598821 DOI: 10.3390/biomedicines10102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from brain tissue on the yield of protein extraction and the number and type of extracted proteins. Three different types of buffers were compared—detergent-based buffer (DB), chaotropic agent-based buffer (CAB) and buffer without detergent and chaotropic agent (DFB). Based on label-free quantitative protein analysis, detergent buffer was identified as the most suitable for global proteomic profiling of brain tissue. It allows the most efficient extraction of membrane proteins, synaptic and synaptic membrane proteins along with ribosomal, mitochondrial and myelin sheath proteins, which are of particular interest in the field of neurodegenerative disorders research.
Collapse
|
9
|
Cao MC, Scotter EL. Novel and known transcriptional targets of ALS/FTD protein TDP-43: Meta-analysis and interactive graphical database. Dis Model Mech 2022; 15:276263. [PMID: 35946434 PMCID: PMC9509890 DOI: 10.1242/dmm.049418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
TDP-43 proteinopathy is the major pathology in amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal dementia (FTD). Mounting evidence implicates loss of normal TDP-43 RNA processing function as a key pathomechanism. However, the RNA targets of TDP-43 differ by report, and have never been formally collated or compared between models and disease, hampering understanding of TDP-43 function. Here, we conducted re-analysis and meta-analysis of publicly available RNA-sequencing datasets from six TDP-43-knockdown models, and TDP-43-immunonegative neuronal nuclei from ALS/ FTD brain, to identify differentially expressed genes (DEGs) and exon usage (DEU) events. There was little overlap in DEGs between knockdown models, but PFKP, STMN2, CFP, KIAA1324 and TRHDE were common targets and were also differentially expressed in TDP-43-immunonegative neurons. DEG enrichment analysis revealed diverse biological pathways including immune and synaptic functions. Common DEU events in human datasets included well-known targets POLDIP3 and STMN2, and novel targets EXD3, MMAB, DLG5 and GOSR2. Our interactive database https://phpstack-449938-2576646.cloudwaysapps.com/ allows further exploration of TDP-43 DEG and DEU targets. Together, these data identify TDP-43 targets that can be exploited therapeutically or to validate loss-of-function processes.
Collapse
Affiliation(s)
- Maize C Cao
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand. 3A Symonds Street, Auckland 1010, New Zealand
| | - Emma L Scotter
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand. 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
10
|
Garrett LR, Niccoli T. Frontotemporal Dementia and Glucose Metabolism. Front Neurosci 2022; 16:812222. [PMID: 35281504 PMCID: PMC8906510 DOI: 10.3389/fnins.2022.812222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Frontotemporal dementia (FTD), hallmarked by antero-temporal degeneration in the human brain, is the second most common early onset dementia. FTD is a diverse disease with three main clinical presentations, four different identified proteinopathies and many disease-associated genes. The exact pathophysiology of FTD remains to be elucidated. One common characteristic all forms of FTD share is the dysregulation of glucose metabolism in patients’ brains. The brain consumes around 20% of the body’s energy supply and predominantly utilizes glucose as a fuel. Glucose metabolism dysregulation could therefore be extremely detrimental for neuronal health. Research into the association between glucose metabolism and dementias has recently gained interest in Alzheimer’s disease. FTD also presents with glucose metabolism dysregulation, however, this remains largely an unexplored area. A better understanding of the link between FTD and glucose metabolism may yield further insight into FTD pathophysiology and aid the development of novel therapeutics. Here we review our current understanding of FTD and glucose metabolism in the brain and discuss the evidence of impaired glucose metabolism in FTD. Lastly, we review research potentially suggesting a causal relationship between FTD proteinopathies and impaired glucose metabolism in FTD.
Collapse
|
11
|
Thompson AG, Oeckl P, Feneberg E, Bowser R, Otto M, Fischer R, Kessler B, Turner MR. Advancing mechanistic understanding and biomarker development in amyotrophic lateral sclerosis. Expert Rev Proteomics 2021; 18:977-994. [PMID: 34758687 DOI: 10.1080/14789450.2021.2004890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Proteomic analysis has contributed significantly to the study of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has helped to define the pathological change common to nearly all cases, namely intracellular aggregates of phosphorylated TDP-43, shifting the focus of pathogenesis in ALS toward RNA biology. Proteomics has also uniquely underpinned the delineation of disease mechanisms in model systems and has been central to recent advances in human ALS biomarker development. AREAS COVERED The contribution of proteomics to understanding the cellular pathological changes, disease mechanisms, and biomarker development in ALS are covered. EXPERT OPINION Proteomics has delivered unique insights into the pathogenesis of ALS and advanced the goal of objective measurements of disease activity to improve therapeutic trials. Further developments in sensitivity and quantification are expected, with application to the presymptomatic phase of human disease offering the hope of prevention strategies.
Collapse
Affiliation(s)
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (Dzne e.V.), Ulm, Germany
| | - Emily Feneberg
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Robert Bowser
- Departments of Neurology and Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Atkinson RAK, Fair HL, Wilson R, Vickers JC, King AE. Effects of TDP-43 overexpression on neuron proteome and morphology in vitro. Mol Cell Neurosci 2021; 114:103627. [PMID: 34015498 DOI: 10.1016/j.mcn.2021.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
TDP-43 is pathologically and genetically with associated amyotrophic lateral sclerosis and frontotemporal lobar degeneration. These diseases are characterized by significant neurite defects, including cytoskeletal pathology. The involvement of TDP-43 in the degeneration of neurons in these diseases are not yet well understood, however accumulating evidence shows involvement in neurite outgrowth, remodelling and in regulation of many components of the neuronal cytoskeleton. In order to investigate how alterations to TDP-43 expression levels may exert effects on the neuronal cytoskeleton, primary cortical neurons from transgenic mice overexpressing one or two copies of human wildtype TDP-43 under the prion promoter were examined. Label-free quantitative proteomic analysis, followed by functional annotation clustering to identify protein families that clustered together within up- or down-regulated protein groups, revealed that actin-binding proteins were significantly more abundant in neurons overexpressing TDP-43 compared to wildtype neurons. Morphological analysis demonstrated that during early development neurons expressing one copy of human TDP-43 had an increased number of neurite branches and alterations to growth cone morphology, while no changes were observed in neurons expressing two copies of TDP-43. These developmental processes require specific expression and organization of the cytoskeleton. The results from these studies provide further insight into the normal function of TDP-43 and how alterations in TDP-43 expression may impact the cytoskeleton.
Collapse
Affiliation(s)
- Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania 7000, Australia.
| | - Hannah L Fair
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
13
|
Malnar M, Rogelj B. SFPQ regulates the accumulation of RNA foci and dipeptide repeat proteins from the expanded repeat mutation in C9orf72. J Cell Sci 2021; 134:jcs.256602. [PMID: 33495278 PMCID: PMC7904093 DOI: 10.1242/jcs.256602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
The expanded GGGGCC repeat mutation in the C9orf72 gene is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansion is transcribed to sense and antisense RNA, which form RNA foci and bind cellular proteins. This mechanism of action is considered cytotoxic. Translation of the expanded RNA transcripts also leads to the accumulation of toxic dipeptide repeat proteins (DPRs). The RNA-binding protein splicing factor proline and glutamine rich (SFPQ), which is being increasingly associated with ALS and FTD pathology, binds to sense RNA foci. Here, we show that SFPQ plays an important role in the C9orf72 mutation. Overexpression of SFPQ resulted in higher numbers of both sense and antisense RNA foci and DPRs in transfected human embryonic kidney (HEK) cells. Conversely, reduced SPFQ levels resulted in lower numbers of RNA foci and DPRs in both transfected HEK cells and C9orf72 mutation-positive patient-derived fibroblasts and lymphoblasts. Therefore, we have revealed a role of SFPQ in regulating the C9orf72 mutation that has implications for understanding and developing novel therapeutic targets for ALS and FTD. This article has an associated First Person interview with the first author of the paper. Summary: Expression level modulation of the core paraspeckle protein SFPQ regulates sense and antisense RNA foci and dipeptide repeat protein accumulation in the C9orf72 mutation; SFPQ could be a therapeutic target in C9orf72 ALS and FTD.
Collapse
Affiliation(s)
- Mirjana Malnar
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia .,Biomedical Research Institute, 1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Abstract
Abstract
Purpose of Review
Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) spectrum disorder is a rare fatal disease with strong genetic influences. The implementation of short-read sequencing methodologies in increasingly large patient cohorts has rapidly expanded our knowledge of the complex genetic architecture of the disease. We aim to convey the broad history of ALS gene discovery as context for a focused review of 11 ALS gene associations reported over the last 5 years. We also summarize the current level of genetic evidence for all previously reported genes.
Recent Findings
The history of ALS gene discovery has occurred in at least four identifiable phases, each powered by different technologies and scale of investigation. The most recent epoch, benefitting from population-scale genome data, large international consortia, and low-cost sequencing, has yielded 11 new gene associations. We summarize the current level of genetic evidence supporting these ALS genes, highlighting any genotype-phenotype or genotype-pathology correlations, and discussing preliminary understanding of molecular pathogenesis. This era has also raised uncertainty around prior ALS-associated genes and clarified the role of others.
Summary
Our understanding of the genetic underpinning of ALS has expanded rapidly over the last 25 years and has led directly to the clinical application of molecularly driven therapies. Ongoing sequencing efforts in ALS will identify new causative and risk factor genes while clarifying the status of genes reported in prior eras of research.
Collapse
|
15
|
Bajc Česnik A, Motaln H, Rogelj B. The Impact of ALS-Associated Genes hnRNPA1, MATR3, VCP and UBQLN2 on the Severity of TDP-43 Aggregation. Cells 2020; 9:cells9081791. [PMID: 32731393 PMCID: PMC7465640 DOI: 10.3390/cells9081791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder, characterized by cytoplasmic inclusions of RNA-binding protein TDP-43. Despite decades of research and identification of more than 50 genes associated with amyotrophic lateral sclerosis (ALS), the cause of TDP-43 translocation from the nucleus and its aggregation in the cytoplasm still remains unknown. Our study addressed the impact of selected ALS-associated genes on TDP-43 aggregation behavior in wild-type and aggregation prone TDP-43 in vitro cell models. These were developed by deleting TDP-43 nuclear localization signal and stepwise shortening its low-complexity region. The SH-SY5Y cells were co-transfected with the constructs of aggregation-prone TDP-43 and wild-type or mutant ALS-associated genes hnRNPA1, MATR3, VCP or UBQLN2. The investigated genes displayed a unique impact on TDP-43 aggregation, generating distinct types of cytoplasmic inclusions, similar to those already described as resembling prion strains, which could represent the basis for neurodegenerative disease heterogeneity.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (A.B.Č.); (H.M.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (A.B.Č.); (H.M.)
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (A.B.Č.); (H.M.)
- Biomedical Research Institute BRIS, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-477-3611
| |
Collapse
|
16
|
Revealing the Proteome of Motor Cortex Derived Extracellular Vesicles Isolated from Amyotrophic Lateral Sclerosis Human Postmortem Tissues. Cells 2020; 9:cells9071709. [PMID: 32708779 PMCID: PMC7407138 DOI: 10.3390/cells9071709] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by the deposition of misfolded proteins in the motor cortex and motor neurons. Although a multitude of ALS-associated mutated proteins have been identified, several have been linked to small extracellular vesicles such as exosomes involved in cell-cell communication. This study aims to determine the proteome of extracellular vesicles isolated from the motor cortex of ALS subjects and to identify novel ALS-associated deregulated proteins. Motor cortex extracellular vesicles (MCEVs) were isolated from human postmortem ALS (n = 10) and neurological control (NC, n = 5) motor cortex brain tissues and the MCEVs protein content subsequently underwent mass spectrometry analysis, allowing for a panel of ALS-associated proteins to be identified. This panel consists of 16 statistically significant differentially packaged proteins identified in the ALS MCEVs. This includes several upregulated RNA-binding proteins which were determined through pathway analysis to be associated with stress granule dynamics. The identification of these RNA-binding proteins in the ALS MCEVs suggests there may be a relationship between ALS-associated stress granules and ALS MCEV packaging, highlighting a potential role for small extracellular vesicles such as exosomes in the pathogenesis of ALS and as potential peripheral biomarkers for ALS.
Collapse
|
17
|
Ishiguro A, Kimura N, Noma T, Shimo-Kon R, Ishihama A, Kon T. Molecular dissection of ALS-linked TDP-43 - involvement of the Gly-rich domain in interaction with G-quadruplex mRNA. FEBS Lett 2020; 594:2254-2265. [PMID: 32337711 DOI: 10.1002/1873-3468.13800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
TDP-43 is the major pathogenic protein of amyotrophic lateral sclerosis (ALS). Previously, we identified that TDP-43 interacts with G-quadruplex (G4)-containing RNA and is involved in their long-distance transport in neurons. For the molecular dissection of the TDP-43 and G4-RNA interaction, we analyzed it here in vitro and in cultured cells using a set of 10 mutant TDP-43 proteins from familial and sporadic ALS patients as well as using the TDP-43 C-terminal Gly-rich domain alone. Our results altogether indicate the involvement of the Gly-rich region of TDP-43 in the initial recognition and binding of G4-RNA, which then induces tight binding of TDP-43 with target RNAs, supposedly in conjunction with its RNA recognition motifs.
Collapse
Affiliation(s)
- Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Nobuyuki Kimura
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Noma
- Department of Biological Science, Graduate School of Science, and Faculty of Science Osaka University, Toyonaka, Japan
| | - Rieko Shimo-Kon
- Department of Biological Science, Graduate School of Science, and Faculty of Science Osaka University, Toyonaka, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| | - Takahide Kon
- Department of Biological Science, Graduate School of Science, and Faculty of Science Osaka University, Toyonaka, Japan
| |
Collapse
|
18
|
Lavrin T, Konte T, Kostanjšek R, Sitar S, Sepčič K, Prpar Mihevc S, Žagar E, Župunski V, Lenassi M, Rogelj B, Gunde Cimerman N. The Neurotropic Black Yeast Exophiala dermatitidis Induces Neurocytotoxicity in Neuroblastoma Cells and Progressive Cell Death. Cells 2020; 9:cells9040963. [PMID: 32295162 PMCID: PMC7226985 DOI: 10.3390/cells9040963] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022] Open
Abstract
The neurotropic and extremophilic black yeast Exophiala dermatitidis (Herpotrichellaceae) inhabits diverse indoor environments, in particular bathrooms, steam baths, and dishwashers. Here, we show that the selected strain, EXF-10123, is polymorphic, can grow at 37 °C, is able to assimilate aromatic hydrocarbons (toluene, mineral oil, n-hexadecane), and shows abundant growth with selected neurotransmitters (acetylcholine, gamma-aminobutyric acid, glycine, glutamate, and dopamine) as sole carbon sources. We have for the first time demonstrated the effect of E. dermatitidis on neuroblastoma cell model SH-SY5Y. Aqueous and organic extracts of E. dermatitidis biomass reduced SH-SY5Y viability by 51% and 37%, respectively. Melanized extracellular vesicles (EVs) prepared from this strain reduced viability of the SH-SY5Y to 21%, while non-melanized EVs were considerably less neurotoxic (79% viability). We also demonstrated direct interactions of E. dermatitidis with SH-SY5Y by scanning electron and confocal fluorescence microscopy. The observed invasion and penetration of neuroblastoma cells by E. dermatitidis hyphae presumably causes the degradation of most neuroblastoma cells in only three days. This may represent a so far unknown indirect or direct cause for the development of some neurodegenerative diseases such as Alzheimer’s.
Collapse
Affiliation(s)
- Teja Lavrin
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
- Correspondence: (T.L.); (N.G.C.); Tel.: +386-(0)1-543-7652 (T.L.); +386-(0)1-320-3400 (N.G.C.)
| | - Tilen Konte
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.K.); (M.L.)
| | - Rok Kostanjšek
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
| | - Simona Sitar
- Laboratory for Polymer Chemistry and Technology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (S.S.); (E.Ž.)
| | - Kristina Sepčič
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
| | | | - Ema Žagar
- Laboratory for Polymer Chemistry and Technology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (S.S.); (E.Ž.)
| | - Vera Župunski
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.Ž.); (B.R.)
| | - Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.K.); (M.L.)
| | - Boris Rogelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.Ž.); (B.R.)
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Biomedical Research Institute, 1000 Ljubljana, Slovenia
| | - Nina Gunde Cimerman
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
- Correspondence: (T.L.); (N.G.C.); Tel.: +386-(0)1-543-7652 (T.L.); +386-(0)1-320-3400 (N.G.C.)
| |
Collapse
|
19
|
Velebit J, Horvat A, Smolič T, Prpar Mihevc S, Rogelj B, Zorec R, Vardjan N. Astrocytes with TDP-43 inclusions exhibit reduced noradrenergic cAMP and Ca 2+ signaling and dysregulated cell metabolism. Sci Rep 2020; 10:6003. [PMID: 32265469 PMCID: PMC7138839 DOI: 10.1038/s41598-020-62864-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Most cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43) in neurons and non-neuronal cells, including astrocytes, which metabolically support neurons with nutrients. Neuronal metabolism largely depends on the activation of the noradrenergic system releasing noradrenaline. Activation of astroglial adrenergic receptors with noradrenaline triggers cAMP and Ca2+ signaling and augments aerobic glycolysis with production of lactate, an important neuronal energy fuel. Astrocytes with cytoplasmic TDP-43 inclusions can cause motor neuron death, however, whether astroglial metabolism and metabolic support of neurons is altered in astrocytes with TDP-43 inclusions, is unclear. We measured lipid droplet and glucose metabolisms in astrocytes expressing the inclusion-forming C-terminal fragment of TDP-43 or the wild-type TDP-43 using fluorescent dyes or genetically encoded nanosensors. Astrocytes with TDP-43 inclusions exhibited a 3-fold increase in the accumulation of lipid droplets versus astrocytes expressing wild-type TDP-43, indicating altered lipid droplet metabolism. In these cells the noradrenaline-triggered increases in intracellular cAMP and Ca2+ levels were reduced by 35% and 31%, respectively, likely due to the downregulation of β2-adrenergic receptors. Although noradrenaline triggered a similar increase in intracellular lactate levels in astrocytes with and without TDP-43 inclusions, the probability of activating aerobic glycolysis was facilitated by 1.6-fold in astrocytes with TDP-43 inclusions and lactate MCT1 transporters were downregulated. Thus, while in astrocytes with TDP-43 inclusions noradrenergic signaling is reduced, aerobic glycolysis and lipid droplet accumulation are facilitated, suggesting dysregulated astroglial metabolism and metabolic support of neurons in TDP-43-associated ALS and FTD.
Collapse
Affiliation(s)
- Jelena Velebit
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Anemari Horvat
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tina Smolič
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Sonja Prpar Mihevc
- Department of Biotechnology, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.,Biomedical Research Institute BRIS, 1000, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, 1000, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Ciccocioppo F, Bologna G, Ercolino E, Pierdomenico L, Simeone P, Lanuti P, Pieragostino D, Del Boccio P, Marchisio M, Miscia S. Neurodegenerative diseases as proteinopathies-driven immune disorders. Neural Regen Res 2020; 15:850-856. [PMID: 31719246 PMCID: PMC6990794 DOI: 10.4103/1673-5374.268971] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the pathophysiology of neurodegenerative disorders, the role of misfolded protein deposition leading to neurodegeneration has been primarily discussed. In the last decade, however, it has been proposed a parallel involvement of innate immune activation, chronic inflammation and adaptive immunity in the neurodegeneration mechanisms triggered by proteinopathies. New insights in the neurodegenerative field strongly suggest a role for the immune system in the pathophysiology of neurodegenerative disorders. Therefore, the hypothesis underlining the modulation of the innate and the adaptive immune system in the events linked to brain deposition of misfolded proteins could open new perspectives in the setting of specific immunotherapeutic strategies for the treatment of neurodegenerative diseases. Therefore, we have reviewed the pathogenic hypothesis in neurodegenerative pathologies, underling the links between the deposition of misfolded protein mechanisms and the immune activation.
Collapse
Affiliation(s)
- Fausta Ciccocioppo
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Eva Ercolino
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Laura Pierdomenico
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Pasquale Simeone
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Damiana Pieragostino
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT); Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Del Boccio
- Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT); Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Sebastiano Miscia
- Department of Medicine and Aging Science; Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
21
|
Roczniak-Ferguson A, Ferguson SM. Pleiotropic requirements for human TDP-43 in the regulation of cell and organelle homeostasis. Life Sci Alliance 2019; 2:2/5/e201900358. [PMID: 31527135 PMCID: PMC6749094 DOI: 10.26508/lsa.201900358] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is an RNA-binding protein that forms cytoplasmic aggregates in multiple neurodegenerative diseases. Although the loss of normal TDP-43 functions likely contributes to disease pathogenesis, the cell biological consequences of human TDP-43 depletion are not well understood. We, therefore, generated human TDP-43 knockout (KO) cells and subjected them to parallel cell biological and transcriptomic analyses. These efforts yielded three important discoveries. First, complete loss of TDP-43 resulted in widespread morphological defects related to multiple organelles, including Golgi, endosomes, lysosomes, mitochondria, and the nuclear envelope. Second, we identified a new role for TDP-43 in controlling mRNA splicing of Nup188 (nuclear pore protein). Third, analysis of multiple amyotrophic lateral sclerosis causing TDP-43 mutations revealed a broad ability to support splicing of TDP-43 target genes. However, as some TDP-43 disease-causing mutants failed to fully support the regulation of specific target transcripts, our results raise the possibility of mutation-specific loss-of-function contributions to disease pathology.
Collapse
Affiliation(s)
- Agnes Roczniak-Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
23
|
Hedl TJ, San Gil R, Cheng F, Rayner SL, Davidson JM, De Luca A, Villalva MD, Ecroyd H, Walker AK, Lee A. Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Front Neurosci 2019; 13:548. [PMID: 31244593 PMCID: PMC6579929 DOI: 10.3389/fnins.2019.00548] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are increasing in prevalence but lack targeted therapeutics. Although the pathological mechanisms behind these diseases remain unclear, both ALS and FTD are characterized pathologically by aberrant protein aggregation and inclusion formation within neurons, which correlates with neurodegeneration. Notably, aggregation of several key proteins, including TAR DNA binding protein of 43 kDa (TDP-43), superoxide dismutase 1 (SOD1), and tau, have been implicated in these diseases. Proteomics methods are being increasingly applied to better understand disease-related mechanisms and to identify biomarkers of disease, using model systems as well as human samples. Proteomics-based approaches offer unbiased, high-throughput, and quantitative results with numerous applications for investigating proteins of interest. Here, we review recent advances in the understanding of ALS and FTD pathophysiology obtained using proteomics approaches, and we assess technical and experimental limitations. We compare findings from various mass spectrometry (MS) approaches including quantitative proteomics methods such as stable isotope labeling by amino acids in cell culture (SILAC) and tandem mass tagging (TMT) to approaches such as label-free quantitation (LFQ) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) in studies of ALS and FTD. Similarly, we describe disease-related protein-protein interaction (PPI) studies using approaches including immunoprecipitation mass spectrometry (IP-MS) and proximity-dependent biotin identification (BioID) and discuss future application of new techniques including proximity-dependent ascorbic acid peroxidase labeling (APEX), and biotinylation by antibody recognition (BAR). Furthermore, we explore the use of MS to detect post-translational modifications (PTMs), such as ubiquitination and phosphorylation, of disease-relevant proteins in ALS and FTD. We also discuss upstream technologies that enable enrichment of proteins of interest, highlighting the contributions of new techniques to isolate disease-relevant protein inclusions including flow cytometric analysis of inclusions and trafficking (FloIT). These recently developed approaches, as well as related advances yet to be applied to studies of these neurodegenerative diseases, offer numerous opportunities for discovery of potential therapeutic targets and biomarkers for ALS and FTD.
Collapse
Affiliation(s)
- Thomas J Hedl
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rebecca San Gil
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Maria D Villalva
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Heath Ecroyd
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
24
|
Parakh S, Perri ER, Jagaraj CJ, Ragagnin AMG, Atkin JD. Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 2019; 53:623-651. [PMID: 30741580 DOI: 10.1080/10409238.2018.1553926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rab GTPases are becoming increasingly implicated in neurodegenerative disorders, although their role in amyotrophic lateral sclerosis (ALS) has been somewhat overlooked. However, dysfunction of intracellular transport is gaining increasing attention as a pathogenic mechanism in ALS. Many previous studies have focused axonal trafficking, and the extreme length of axons in motor neurons may contribute to their unique susceptibility in this disorder. In contrast, the role of transport defects within the cell body has been relatively neglected. Similarly, whilst Rab GTPases control all intracellular membrane trafficking events, their role in ALS is poorly understood. Emerging evidence now highlights this family of proteins in ALS, particularly the discovery that C9orf72 functions in intra transport in conjunction with several Rab GTPases. Here, we summarize recent updates on cellular transport defects in ALS, with a focus on Rab GTPases and how their dysfunction may specifically target neurons and contribute to pathophysiology. We discuss the molecular mechanisms associated with dysfunction of Rab proteins in ALS. Finally, we also discuss dysfunction in other modes of transport recently implicated in ALS, including nucleocytoplasmic transport and the ER-mitochondrial contact regions (MAM compartment), and speculate whether these may also involve Rab GTPases.
Collapse
Affiliation(s)
- S Parakh
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - E R Perri
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - C J Jagaraj
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - A M G Ragagnin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - J D Atkin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
25
|
Gautam M, Jara JH, Kocak N, Rylaarsdam LE, Kim KD, Bigio EH, Hande Özdinler P. Mitochondria, ER, and nuclear membrane defects reveal early mechanisms for upper motor neuron vulnerability with respect to TDP-43 pathology. Acta Neuropathol 2019; 137:47-69. [PMID: 30450515 DOI: 10.1007/s00401-018-1934-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 12/11/2022]
Abstract
Insoluble aggregates containing TDP-43 are widely observed in the diseased brain, and defined as "TDP-43 pathology" in a spectrum of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease and ALS with frontotemporal dementia. Here we report that Betz cells of patients with TDP-43 pathology display a distinct set of intracellular defects especially at the site of nuclear membrane, mitochondria and endoplasmic reticulum (ER). Numerous TDP-43 mouse models have been generated to discern the cellular and molecular basis of the disease, but mechanisms of neuronal vulnerability remain unknown. In an effort to define the underlying causes of corticospinal motor neuron (CSMN) degeneration, we generated and characterized a novel CSMN reporter line with TDP-43 pathology, the prp-TDP-43A315T-UeGFP mice. We find that TDP-43 pathology related intracellular problems emerge very early in the disease. The Betz cells in humans and CSMN in mice both have impaired mitochondria, and display nuclear membrane and ER defects with respect to TDP-43 pathology.
Collapse
|
26
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
27
|
Nana AL, Sidhu M, Gaus SE, Hwang JHL, Li L, Park Y, Kim EJ, Pasquini L, Allen IE, Rankin KP, Toller G, Kramer JH, Geschwind DH, Coppola G, Huang EJ, Grinberg LT, Miller BL, Seeley WW. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol 2019; 137:27-46. [PMID: 30511086 PMCID: PMC6339592 DOI: 10.1007/s00401-018-1942-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/26/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) aggregation is the most common pathological hallmark in frontotemporal dementia (FTD) and characterizes nearly all patients with motor neuron disease (MND). The earliest stages of TDP-43 pathobiology are not well-characterized, and whether neurodegeneration results from TDP-43 loss-of-function or aggregation remains unclear. In the behavioral variant of FTD (bvFTD), patients undergo selective dropout of von Economo neurons (VENs) and fork cells within the frontoinsular (FI) and anterior cingulate cortices. Here, we examined TDP-43 pathobiology within these vulnerable neurons in the FI across a clinical spectrum including 17 patients with sporadic bvFTD, MND, or both. In an exploratory analysis based on our initial observations, we further assessed ten patients with C9orf72-associated bvFTD/MND. VENs and fork cells showed early, disproportionate TDP-43 aggregation that correlated with anatomical and clinical severity, including loss of emotional empathy. The presence of a TDP-43 inclusion was associated with striking nuclear and somatodendritic atrophy. An intriguing minority of neurons lacked detectable nuclear TDP-43 despite the apparent absence of a cytoplasmic TDP-43 inclusion. These cells showed neuronal atrophy comparable to inclusion-bearing neurons, suggesting that the loss of nuclear TDP-43 function promotes neurodegeneration, even when TDP-43 aggregation is inconspicuous or absent.
Collapse
Affiliation(s)
- Alissa L Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Manu Sidhu
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie E Gaus
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ji-Hye L Hwang
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Libo Li
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, China
| | - Youngsoon Park
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eun-Joo Kim
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lorenzo Pasquini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Katherine P Rankin
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gianina Toller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joel H Kramer
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric J Huang
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Šoltić D, Bowerman M, Stock J, Shorrock HK, Gillingwater TH, Fuller HR. Multi-Study Proteomic and Bioinformatic Identification of Molecular Overlap between Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). Brain Sci 2018; 8:brainsci8120212. [PMID: 30518112 PMCID: PMC6315439 DOI: 10.3390/brainsci8120212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022] Open
Abstract
Unravelling the complex molecular pathways responsible for motor neuron degeneration in amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) remains a persistent challenge. Interest is growing in the potential molecular similarities between these two diseases, with the hope of better understanding disease pathology for the guidance of therapeutic development. The aim of this study was to conduct a comparative analysis of published proteomic studies of ALS and SMA, seeking commonly dysregulated molecules to be prioritized as future therapeutic targets. Fifteen proteins were found to be differentially expressed in two or more proteomic studies of both ALS and SMA, and bioinformatics analysis identified over-representation of proteins known to associate in vesicles and molecular pathways, including metabolism of proteins and vesicle-mediated transport—both of which converge on endoplasmic reticulum (ER)-Golgi trafficking processes. Calreticulin, a calcium-binding chaperone found in the ER, was associated with both pathways and we independently confirm that its expression was decreased in spinal cords from SMA and increased in spinal cords from ALS mice. Together, these findings offer significant insights into potential common targets that may help to guide the development of new therapies for both diseases.
Collapse
Affiliation(s)
- Darija Šoltić
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Melissa Bowerman
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Joanne Stock
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Hannah K. Shorrock
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9AG, UK; (H.K.S.); (T.H.G.)
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Thomas H. Gillingwater
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9AG, UK; (H.K.S.); (T.H.G.)
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Heidi R. Fuller
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- Correspondence: ; Tel.: +44-169-140-4693; Fax: +44-169-140-4065
| |
Collapse
|
29
|
Boehringer A, Bowser R. RNA Nucleocytoplasmic Transport Defects in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2018; 20:85-101. [PMID: 29916017 DOI: 10.1007/978-3-319-89689-2_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, transcription and translation are compartmentalized by the nuclear membrane, requiring an active transport of RNA from the nucleus into the cytoplasm. This is accomplished by a variety of transport complexes that contain either a member of the exportin family of proteins and translocation fueled by GTP hydrolysis or in the case of mRNA by complexes containing the export protein NXF1. Recent evidence indicates that RNA transport is altered in a number of different neurodegenerative diseases including Huntington's disease, Alzheimer's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Alterations in RNA transport predominately fall into three categories: Alterations in the nuclear membrane and mislocalization and aggregation of the nucleoporins that make up the nuclear pore; alterations in the Ran gradient and the proteins that control it which impacts exportin based nuclear export; and alterations of proteins that are required for the export of mRNA leading nuclear accumulation of mRNA.
Collapse
Affiliation(s)
- Ashley Boehringer
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.,School of Life Sciences, Arizona State University, Phoenix, AZ, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
30
|
Yamashita T, Kwak S. Cell death cascade and molecular therapy in ADAR2-deficient motor neurons of ALS. Neurosci Res 2018; 144:4-13. [PMID: 29944911 DOI: 10.1016/j.neures.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/19/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
TAR DNA-binding protein (TDP-43) pathology in the motor neurons is the most reliable pathological hallmark of amyotrophic lateral sclerosis (ALS), and motor neurons bearing TDP-43 pathology invariably exhibit failure in RNA editing at the GluA2 glutamine/arginine (Q/R) site due to down-regulation of adenosine deaminase acting on RNA 2 (ADAR2). Conditional ADAR2 knockout (AR2) mice display ALS-like phenotype, including progressive motor dysfunction due to loss of motor neurons. Motor neurons devoid of ADAR2 express Q/R site-unedited GluA2, and AMPA receptors with unedited GluA2 in their subunit assembly are abnormally permeable to Ca2+, which results in progressive neuronal death. Moreover, analysis of AR2 mice has demonstrated that exaggerated Ca2+ influx through the abnormal AMPA receptors overactivates calpain, a Ca2+-dependent protease, that cleaves TDP-43 into aggregation-prone fragments, which serve as seeds for TDP-43 pathology. Activated calpain also disrupts nucleo-cytoplasmic transport and gene expression by cleaving molecules involved in nucleocytoplasmic transport, including nucleoporins. These lines of evidence prompted us to develop molecular targeting therapy for ALS by normalization of disrupted intracellular environment due to ADAR2 down-regulation. In this review, we have summarized the work from our group on the cell death cascade in sporadic ALS and discussed a potential therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Takenari Yamashita
- Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin Kwak
- Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Neurology, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
31
|
Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep 2018; 8:5609. [PMID: 29618798 PMCID: PMC5884852 DOI: 10.1038/s41598-018-23139-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/05/2018] [Indexed: 02/08/2023] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset disorder primarily affecting motor neurons and leading to progressive and lethal skeletal muscle atrophy. Small RNAs, including microRNAs (miRNAs), can serve as important regulators of gene expression and can act both globally and in a tissue-/cell-type-specific manner. In muscle, miRNAs called myomiRs govern important processes and are deregulated in various disorders. Several myomiRs have shown promise for therapeutic use in cellular and animal models of ALS; however, the exact miRNA species differentially expressed in muscle tissue of ALS patients remain unknown. Following small RNA-Seq, we compared the expression of small RNAs in muscle tissue of ALS patients and healthy age-matched controls. The identified snoRNAs, mtRNAs and other small RNAs provide possible molecular links between insulin signaling and ALS. Furthermore, the identified miRNAs are predicted to target proteins that are involved in both normal processes and various muscle disorders and indicate muscle tissue is undergoing active reinnervation/compensatory attempts thus providing targets for further research and therapy development in ALS.
Collapse
|
32
|
Appocher C, Mohagheghi F, Cappelli S, Stuani C, Romano M, Feiguin F, Buratti E. Major hnRNP proteins act as general TDP-43 functional modifiers both in Drosophila and human neuronal cells. Nucleic Acids Res 2017; 45:8026-8045. [PMID: 28575377 PMCID: PMC5570092 DOI: 10.1093/nar/gkx477] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor TDP-43 is known to play an important role in several neurodegenerative pathologies. In general, TDP-43 is an abundant protein within the eukaryotic nucleus that binds to many coding and non-coding RNAs and influence their processing. Using Drosophila, we have performed a functional screening to establish the ability of major hnRNP proteins to affect TDP-43 overexpression/depletion phenotypes. Interestingly, we observed that lowering hnRNP and TDP-43 expression has a generally harmful effect on flies locomotor abilities. In parallel, our study has also identified a distinct set of hnRNPs that is capable of powerfully rescuing TDP-43 toxicity in the fly eye (Hrb27c, CG42458, Glo and Syp). Most importantly, removing the human orthologs of Hrb27c (DAZAP1) in human neuronal cell lines can correct several pre-mRNA splicing events altered by TDP-43 depletion. Moreover, using RNA sequencing analysis we show that DAZAP1 and TDP-43 can co-regulate an extensive number of biological processes and molecular functions potentially important for the neuron/motor neuron pathophysiology. Our results suggest that changes in hnRNP expression levels can significantly modulate TDP-43 functions and affect pathological outcomes.
Collapse
Affiliation(s)
- Chiara Appocher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Fatemeh Mohagheghi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| | - Fabian Feiguin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| |
Collapse
|
33
|
Gao FB, Almeida S, Lopez-Gonzalez R. Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder. EMBO J 2017; 36:2931-2950. [PMID: 28916614 DOI: 10.15252/embj.201797568] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/15/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD), the second most common form of dementia in people under 65 years of age, is characterized by progressive atrophy of the frontal and/or temporal lobes. FTD overlaps extensively with the motor neuron disease amyotrophic lateral sclerosis (ALS), especially at the genetic level. Both FTD and ALS can be caused by many mutations in the same set of genes; the most prevalent of these mutations is a GGGGCC repeat expansion in the first intron of C9ORF72 As shown by recent intensive studies, some key cellular pathways are dysregulated in the ALS-FTD spectrum disorder, including autophagy, nucleocytoplasmic transport, DNA damage repair, pre-mRNA splicing, stress granule dynamics, and others. These exciting advances reveal the complexity of the pathogenic mechanisms of FTD and ALS and suggest promising molecular targets for future therapeutic interventions in these devastating disorders.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
34
|
Humphrey J, Emmett W, Fratta P, Isaacs AM, Plagnol V. Quantitative analysis of cryptic splicing associated with TDP-43 depletion. BMC Med Genomics 2017; 10:38. [PMID: 28549443 PMCID: PMC5446763 DOI: 10.1186/s12920-017-0274-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Reliable exon recognition is key to the splicing of pre-mRNAs into mature mRNAs. TDP-43 is an RNA-binding protein whose nuclear loss and cytoplasmic aggregation are a hallmark pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). TDP-43 depletion causes the aberrant inclusion of cryptic exons into a range of transcripts, but their extent, relevance to disease pathogenesis and whether they are caused by other RNA-binding proteins implicated in ALS/FTD are unknown. METHODS We developed an analysis pipeline to discover and quantify cryptic exon inclusion and applied it to publicly available human and murine RNA-sequencing data. RESULTS We detected widespread cryptic splicing in TDP-43 depletion datasets but almost none in another ALS/FTD-linked protein FUS. Sequence motif and iCLIP analysis of cryptic exons demonstrated that they are bound by TDP-43. Unlike the cryptic exons seen in hnRNP C depletion, those repressed by TDP-43 cannot be linked to transposable elements. Cryptic exons are poorly conserved and inclusion overwhelmingly leads to nonsense-mediated decay of the host transcript, with reduced transcript levels observed in differential expression analysis. RNA-protein interaction data on 73 different RNA-binding proteins showed that, in addition to TDP-43, 7 specifically bind TDP-43 linked cryptic exons. This suggests that TDP-43 competes with other splicing factors for binding to cryptic exons and can repress cryptic exon inclusion. CONCLUSIONS Our quantitative analysis pipeline confirms the presence of cryptic exons during the depletion of TDP-43 but not FUS providing new insight into to RNA-processing dysfunction as a cause or consequence in ALS/FTD.
Collapse
Affiliation(s)
- Jack Humphrey
- University College London Genetics Institute, Gower Street, London, UK.
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.
| | - Warren Emmett
- University College London Genetics Institute, Gower Street, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- The Francis Crick Institute, Midland Road, London, UK
| | - Pietro Fratta
- Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Vincent Plagnol
- University College London Genetics Institute, Gower Street, London, UK
| |
Collapse
|
35
|
Lojk J, Prpar Mihevc S, Bregar VB, Pavlin M, Rogelj B. The Effect of Different Types of Nanoparticles on FUS and TDP-43 Solubility and Subcellular Localization. Neurotox Res 2017; 32:325-339. [PMID: 28444573 DOI: 10.1007/s12640-017-9734-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022]
Abstract
Increased environmental pollution has been suggested as one of the possible causes for increased incidence of neurodegenerative and developmental disorders. Through the environmental pollution, everyday consumer products and nanomedical applications, we are also exposed to various nanoparticles (NPs). Specific types of NPs have been shown to be able to cause neural damage in vivo through processes such as disruption of the blood-brain barrier, induction of neuroinflammation, increase in oxidative stress and protein aggregation. In this study, we analysed the influence of PEI-coated magnetic NPs designed for biotechnological applications and industrial SiO2, TiO2 N and TiO2 P25 NPs on intracellular localization and solubility of fused in farcoma (FUS) and TAR-DNA binding protein 43 (TDP-43) that are important pathological hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). SH-SY5Y neuroblastoma cells and B16 mouse melanoma cells were exposed to NPs for 24 h and analysed using confocal microscopy and Western blot. Exposure to 50 μg/ml TiO2 N and 4 μg/ml PEI NPs in SH-SY5Y cells caused cell toxicity-induced changes in expression in different biochemical/cellular fractions for both FUS and TDP-43 proteins. TiO2 N induced a drop in nuclear levels of TDP-43 and increase in cytoplasmic levels of FUS, while PEI NPs increased nuclear levels of FUS. Furthermore, TiO2 N and PEI induced a reduction of FUS and TDP-43 quantity in the less soluble urea fraction. No formation of stress granules was observed. These results demonstrate that TiO2 N and PEI NPs can affect the behaviour of FUS and TDP-43 proteins; however, the changes were relatively minor compared to pathological changes even for the high NP concentrations (50 μg/ml) used in this study.
Collapse
Affiliation(s)
- Jasna Lojk
- Biomedical Research Institute (BRIS), Puhova 10, 1000, Ljubljana, Slovenia.,Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Sonja Prpar Mihevc
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Vladimir Boštjan Bregar
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia. .,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Boris Rogelj
- Biomedical Research Institute (BRIS), Puhova 10, 1000, Ljubljana, Slovenia. .,Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia. .,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
36
|
Ederle H, Dormann D. TDP-43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett 2017; 591:1489-1507. [PMID: 28380257 DOI: 10.1002/1873-3468.12646] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 12/13/2022]
Abstract
Misfolded or mislocalized RNA-binding proteins (RBPs) and, consequently, altered mRNA processing, can cause neuronal dysfunction, eventually leading to neurodegeneration. Two prominent examples are the RBPs TAR DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS), which form pathological messenger ribonucleoprotein aggregates in patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating neurodegenerative disorders. Here, we review the multiple functions of TDP-43 and FUS in mRNA processing, both in the nucleus and in the cytoplasm. We discuss how TDP-43 and FUS may exit the nucleus and how defects in both nuclear and cytosolic mRNA processing events, and possibly nuclear export defects, may contribute to neurodegeneration and ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Helena Ederle
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Germany
| |
Collapse
|
37
|
Yamashita T, Aizawa H, Teramoto S, Akamatsu M, Kwak S. Calpain-dependent disruption of nucleo-cytoplasmic transport in ALS motor neurons. Sci Rep 2017; 7:39994. [PMID: 28045133 PMCID: PMC5206745 DOI: 10.1038/srep39994] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
Nuclear dysfunction in motor neurons has been hypothesized to be a principal cause of amyotrophic lateral sclerosis (ALS) pathogenesis. Here, we investigated the mechanism by which the nuclear pore complex (NPC) is disrupted in dying motor neurons in a mechanistic ALS mouse model (adenosine deaminase acting on RNA 2 (ADAR2) conditional knockout (AR2) mice) and in ALS patients. We showed that nucleoporins (Nups) that constituted the NPC were cleaved by activated calpain via a Ca2+-permeable AMPA receptor-mediated mechanism in dying motor neurons lacking ADAR2 expression in AR2 mice. In these neurons, nucleo-cytoplasmic transport was disrupted, and the level of the transcript elongation enzyme RNA polymerase II phosphorylated at Ser2 was significantly decreased. Analogous changes were observed in motor neurons lacking ADAR2 immunoreactivity in sporadic ALS patients. Therefore, calpain-dependent NPC disruption may participate in ALS pathogenesis, and inhibiting Ca2+-mediated cell death signals may be a therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Takenari Yamashita
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Sayaka Teramoto
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Megumi Akamatsu
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin Kwak
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Clinical Research Center for Medicine, International University of Health and Welfare, 6-1-14 Konodai, Ichikawa, Chiba 272-0827, Japan
| |
Collapse
|
38
|
TDP-43 aggregation mirrors TDP-43 knockdown, affecting the expression levels of a common set of proteins. Sci Rep 2016; 6:33996. [PMID: 27665936 PMCID: PMC5036055 DOI: 10.1038/srep33996] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
TDP-43 protein plays an important role in regulating transcriptional repression, RNA metabolism, and splicing. Typically it shuttles between the nucleus and the cytoplasm to perform its functions, while abnormal cytoplasmic aggregation of TDP-43 has been associated with neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). For the purpose of this study we selected a set of proteins that were misregulated following silencing of TDP-43 and analysed their expression in a TDP-43-aggregation model cell line HEK293 Flp-in Flag-TDP-43-12x-Q/N F4L. Following TDP-43 sequestration in insoluble aggregates, we observed higher nuclear levels of EIF4A3, and POLDIP3β, whereas nuclear levels of DNMT3A, HNRNPA3, PABPC1 and POLDIP3α dropped, and cytoplasmic levels of RANBP1 dropped. In addition, immunofluorescence signal intensity quantifications showed increased nuclear expression of HNRNPL and YARS, and downregulation of cytoplasmic DPCD. Furthermore, cytoplasmic levels of predominantly nuclear protein ALYREF increased. In conclusion, by identifying a common set of proteins that are differentially expressed in a similar manner in these two different conditions, we show that TDP-43 aggregation has a comparable effect to TDP-43 knockdown.
Collapse
|
39
|
Prpar Mihevc S, Darovic S, Kovanda A, Bajc Česnik A, Župunski V, Rogelj B. Nuclear trafficking in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Brain 2016; 140:13-26. [PMID: 27497493 DOI: 10.1093/brain/aww197] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are two ends of a phenotypic spectrum of disabling, relentlessly progressive and ultimately fatal diseases. A key characteristic of both conditions is the presence of TDP-43 (encoded by TARDBP) or FUS immunoreactive cytoplasmic inclusions in neuronal and glial cells. This cytoplasmic mislocalization of otherwise predominantly nuclear RNA binding proteins implies a perturbation of the nucleocytoplasmic shuttling as a possible event in the pathogenesis. Compromised nucleocytoplasmic shuttling has recently also been associated with a hexanucleotide repeat expansion mutation in C9orf72, which is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and leads to accumulation of cytoplasmic TDP-43 inclusions. Mutation in C9orf72 may disrupt nucleocytoplasmic shuttling on the level of C9ORF72 protein, the transcribed hexanucleotide repeat RNA, and/or dipeptide repeat proteins translated form the hexanucleotide repeat RNA. These defects of nucleocytoplasmic shuttling may therefore, constitute the common ground of the underlying disease mechanisms in different molecular subtypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Sonja Prpar Mihevc
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Simona Darovic
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Anja Kovanda
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Ana Bajc Česnik
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Vera Župunski
- 2 Faculty of Chemistry and Chemical Technology, Večna pot 113, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Boris Rogelj
- 1 Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia .,2 Faculty of Chemistry and Chemical Technology, Večna pot 113, University of Ljubljana, SI-1000 Ljubljana, Slovenia.,3 Biomedical Research Institute BRIS, Puhova 10, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Boeynaems S, Bogaert E, Van Damme P, Van Den Bosch L. Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol 2016; 132:159-173. [PMID: 27271576 PMCID: PMC4947127 DOI: 10.1007/s00401-016-1586-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are characterized by the presence of protein inclusions with a different protein content depending on the type of disease. Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are no exceptions to this common theme. In most ALS and FTLD cases, the predominant pathological species are RNA-binding proteins. Interestingly, these proteins are both depleted from their normal nuclear localization and aggregated in the cytoplasm. This key pathological feature has suggested a potential dual mechanism with both nuclear loss of function and cytoplasmic gain of function being at play. Yet, why and how this pathological cascade is initiated in most patients, and especially sporadic cases, is currently unresolved. Recent breakthroughs in C9orf72 ALS/FTLD disease models point at a pivotal role for the nuclear transport system in toxicity. To address whether defects in nuclear transport are indeed implicated in the disease, we reviewed two decades of ALS/FTLD literature and combined this with bioinformatic analyses. We find that both RNA-binding proteins and nuclear transport factors are key players in ALS/FTLD pathology. Moreover, our analyses suggest that disturbances in nucleocytoplasmic transport play a crucial initiating role in the disease, by bridging both nuclear loss and cytoplasmic gain of functions. These findings highlight this process as a novel and promising therapeutic target for ALS and FTLD.
Collapse
Affiliation(s)
- Steven Boeynaems
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
| | - Elke Bogaert
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
| | - Philip Van Damme
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- />Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- />Laboratory of Neurobiology, Vesalius Research Center, VIB, Campus Gasthuisberg O&N4, PB912, Herestraat 49, 3000 Leuven, Belgium
- />Department of Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
41
|
Ratti A, Buratti E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 2016; 138 Suppl 1:95-111. [PMID: 27015757 DOI: 10.1111/jnc.13625] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and transport/stability to the formation of cytoplasmic and nuclear stress granules. For this reason, the aberrant aggregation of these factors during disease can impair multiple RNA metabolic pathways and eventually lead to neuronal death/inactivation. The purpose of this review is to provide an up-to-date perspective on what we know about this issue at the molecular level. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan, Italy.,Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
42
|
Lin PY, Folorunso O, Taglialatela G, Pierce A. Overexpression of heat shock factor 1 maintains TAR DNA binding protein 43 solubility via induction of inducible heat shock protein 70 in cultured cells. J Neurosci Res 2016; 94:671-82. [PMID: 26994698 DOI: 10.1002/jnr.23725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
Abstract
TAR DNA binding protein 43 (TDP-43) is a nuclear protein that has been shown to have altered homeostasis in the form of neuronal nuclear and cytoplasmic aggregates in some familial and almost all cases of sporadic amyotrophic lateral sclerosis as well as 51% of frontotemporal lobar degeneration and 57% of Alzheimer's disease cases. Heat shock proteins (HSPs), such as HSP70, recognize misfolded or aggregated proteins and refold, disaggregate, or turn them over and are upregulated by the master transcription factor heat shock factor 1 (HSF1). Here, we explore the effect of HSF1 overexpression on proteotoxic stress-related alterations in TDP-43 solubility, proteolytic processing, and cytotoxicity. HSF1 overexpression reduced TDP-43-positive puncta concomitantly with upregulating HSP70 and HSP90 protein levels. HSF1 overexpression or pharmacological activation sustained TDP-43 solubility and significantly reduced truncation of TDP-43 in response to inhibition of the proteasome with Z-Leu-Leu-Leu-al, and this was reversed by HSF1 inhibition. HSF1 activation conferred protection against toxicity associated with TDP-43 C-terminal fragments without globally increasing the activity of the ubiquitin proteasome system (UPS) while concomitantly reducing the induction of autophagy, suggesting that HSF1 protection is an early event. In support of this, inhibition of HSP70 ATPase activity further reduced TDP-43 solubility. HSF1 knockout significantly increased TDP-43 insolubility and accelerated TDP-43 fragmentation in response to proteotoxic stress. Overall, this study shows that HSF1 overexpression protects against TDP-43 pathology by upregulation of chaperones, especially HSP70, rather than enhancing autophagy or the UPS during times of proteotoxic stress. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pei-Yi Lin
- George and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas.,Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas.,Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Oluwarotimi Folorunso
- George and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas.,Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas.,Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Giulio Taglialatela
- George and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas.,Department of Neurology, The University of Texas Medical Branch, Galveston, Texas
| | - Anson Pierce
- George and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, Texas.,Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas.,Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
43
|
Caballero-Hernandez D, Toscano MG, Cejudo-Guillen M, Garcia-Martin ML, Lopez S, Franco JM, Quintana FJ, Roodveldt C, Pozo D. The ‘Omics’ of Amyotrophic Lateral Sclerosis. Trends Mol Med 2016; 22:53-67. [DOI: 10.1016/j.molmed.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
44
|
Tang AY. RNA processing-associated molecular mechanisms of neurodegenerative diseases. J Appl Genet 2015; 57:323-33. [DOI: 10.1007/s13353-015-0330-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/22/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
|
45
|
Colombrita C, Onesto E, Buratti E, de la Grange P, Gumina V, Baralle FE, Silani V, Ratti A. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1398-410. [PMID: 26514432 DOI: 10.1016/j.bbagrm.2015.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
The full definition of the physiological RNA targets regulated by TDP-43 and FUS RNA-binding proteins (RBPs) represents an important issue in understanding the pathogenic mechanisms associated to these two proteins in amyotrophic lateral sclerosis and frontotemporal dementia. In the last few years several high-throughput screenings have generated a plethora of data, which are difficult to compare due to the different experimental designs and models explored. In this study by using the Affymetrix Exon Arrays, we were able to assess and compare the effects of both TDP-43 and FUS loss-of-function on the whole transcriptome using the same human neuronal SK-N-BE cell model. We showed that TDP-43 and FUS depletion induces splicing and gene expression changes mainly distinct for the two RBPs, although they may regulate common pathways, including neuron differentiation and cytoskeleton organization as evidenced by functional annotation analysis. In particular, TDP-43 and FUS were found to regulate splicing and expression of genes related to neuronal (SEPT6, SULT4A1, TNIK) and RNA metabolism (DICER, ELAVL3/HuC, POLDIP3). Our extended analysis at protein level revealed that these changes have also impact on the protein isoform ratio and content, not always in a direct correlation with transcriptomic data. Contrarily to a loss-of-function mechanism, we showed that mutant TDP-43 proteins maintained their splicing activity in human ALS fibroblasts and experimental cell lines. Our findings further contribute to define the biological functions of these two RBPs in physiological and disease state, strongly encouraging the evaluation of the identified transcriptomic changes at protein level in neuronal experimental models.
Collapse
Affiliation(s)
- Claudia Colombrita
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Elisa Onesto
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy
| | | | - Valentina Gumina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Francisco E Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Trieste 34149, Italy
| | - Vincenzo Silani
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy
| | - Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan 20122, Italy; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy.
| |
Collapse
|
46
|
Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, Strauss BE, Krieger JE, Callegaro D, Chadi G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci 2015; 9:289. [PMID: 26300727 PMCID: PMC4523944 DOI: 10.3389/fncel.2015.00289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 01/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Frederico M Jorge
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Matheus R Monteiro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Roberto S Martins
- Department of Neurosurgery, Surgical Center of Functional Neurosurgery, Clinics Hospital of University of São Paulo São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, University of São Paulo School of Medicine São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| |
Collapse
|