1
|
Ko ES, Choi SH, Lee M, Park KS. 25KDa branched polyethylenimine increases interferon-γ production in natural killer cells via improving translation efficiency. Cell Commun Signal 2023; 21:107. [PMID: 37161542 PMCID: PMC10170831 DOI: 10.1186/s12964-023-01101-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/08/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Ex vivo cultivation is a promising strategy for increasing the number of NK cells and enhancing their antitumor activity prior to clinical application. Recent studies show that stimulation with 25KDa branched polyethylenimine (25KbPEI) generates NK cells with enhanced antitumor activity. To better understand how 25KbPEI primes NK cells, we explored the mechanism underlying increase in production of IFN-γ. METHODS Chemical priming was performed on NK-92MI cells by incubating them with 5 μg/ml of 25KbPEI. The production of IFN-γ was evaluated by RT-qPCR, ELISA, and Flow cytometry. By evaluating the effect of pharmacological inhibition of ERK/mTOR-eIF4E signaling pathways on IFN-γ translation, the function of these signaling pathways in IFN-γ translation was examined. To comprehend the level of 25KbPEI activity on immune-related components in NK cells, RNA sequencing and proteomics analyses were conducted. RESULTS 25KbPEI enhances the production of IFN-γ by NK cells without transcriptional activation. Activation of ERK and mTOR signaling pathways was found to be associated with 25KbPEI-mediated calcium influx in NK cells. The activation of ERK/mTOR signaling was linked to the phosphorylation of 4E-BP1, which resulted in the activation of translation initiation complex and subsequent IFN-γ translation. Analysis of RNA sequencing and proteomics data revealed that the activity of 25KbPEI to improve translation efficiency in NK cells could be extended to additional immune-related molecules. CONCLUSIONS This study provides substantial insight into the process by which 25KbPEI primes NK cells. Our data demonstrated that the 25KbPEI mediated activation of ERK/mTOR signaling and subsequent stimulation of eIF4E is the primary mechanism by which the chemical stimulates translation of IFN-γ in NK cells. Video abstract.
Collapse
Affiliation(s)
- Eun-Su Ko
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Minwook Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea.
| |
Collapse
|
2
|
Zhao W, Pan L, Stalin A, Xu J, Wu L, Ke X, Chen Y. Inhibitory Effects of 2-Aminoethoxydiphenyl Borate (2-APB) on Three K V1 Channel Currents. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020871. [PMID: 36677928 PMCID: PMC9865587 DOI: 10.3390/molecules28020871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
2-Aminoethoxydiphenyl borate (2-APB), a boron-containing compound, is a multitarget compound with potential as a drug precursor and exerts various effects in systems of the human body. Ion channels are among the reported targets of 2-APB. The effects of 2-APB on voltage-gated potassium channels (KV) have been reported, but the types of KV channels that 2-APB inhibits and the inhibitory mechanism remain unknown. In this paper, we discovered that 2-APB acted as an inhibitor of three representative human KV1 channels. 2-APB significantly blocked A-type Kv channel KV1.4 in a concentration-dependent manner, with an IC50 of 67.3 μM, while it inhibited the delayed outward rectifier channels KV1.2 and KV1.3, with IC50s of 310.4 μM and 454.9 μM, respectively. Further studies on KV1.4 showed that V549, T551, A553, and L554 at the cavity region and N-terminal played significant roles in 2-APB's effects on the KV1.4 channel. The results also indicated the importance of fast inactivation gating in determining the different effects of 2-APB on three channels. Interestingly, a current facilitation phenomenon by a short prepulse after 2-APB application was discovered for the first time. The docked modeling revealed that 2-APB could form hydrogen bonds with different sites in the cavity region of three channels, and the inhibition constants showed a similar trend to the experimental results. These findings revealed new molecular targets of 2-APB and demonstrated that 2-APB's effects on KV1 channels might be part of the reason for the diverse bioactivities of 2-APB in the human body and in animal models of human disease.
Collapse
Affiliation(s)
- Wei Zhao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Lanying Pan
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianwei Xu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Liren Wu
- Zhejiang Key Laboratory for Laboratory Animal and Safety Research, Hangzhou Medical College, Hangzhou 311300, China
| | - Xianfu Ke
- Zhejiang Key Laboratory for Laboratory Animal and Safety Research, Hangzhou Medical College, Hangzhou 311300, China
- Correspondence: (X.K.); (Y.C.)
| | - Yuan Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: (X.K.); (Y.C.)
| |
Collapse
|
3
|
Proks P, Schewe M, Conrad LJ, Rao S, Rathje K, Rödström KEJ, Carpenter EP, Baukrowitz T, Tucker SJ. Norfluoxetine inhibits TREK-2 K2P channels by multiple mechanisms including state-independent effects on the selectivity filter gate. J Gen Physiol 2021; 153:212184. [PMID: 34032848 PMCID: PMC8155809 DOI: 10.1085/jgp.202012812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/06/2021] [Indexed: 12/25/2022] Open
Abstract
The TREK subfamily of two-pore domain K+ (K2P) channels are inhibited by fluoxetine and its metabolite, norfluoxetine (NFx). Although not the principal targets of this antidepressant, TREK channel inhibition by NFx has provided important insights into the conformational changes associated with channel gating and highlighted the role of the selectivity filter in this process. However, despite the availability of TREK-2 crystal structures with NFx bound, the precise mechanisms underlying NFx inhibition remain elusive. NFx has previously been proposed to be a state-dependent inhibitor, but its binding site suggests many possible ways in which this positively charged drug might inhibit channel activity. Here we show that NFx exerts multiple effects on single-channel behavior that influence both the open and closed states of the channel and that the channel can become highly activated by 2-APB while remaining in the down conformation. We also show that the inhibitory effects of NFx are unrelated to its positive charge but can be influenced by agonists which alter filter stability, such as ML335, as well as by an intrinsic voltage-dependent gating process within the filter. NFx therefore not only inhibits channel activity by altering the equilibrium between up and down conformations but also can directly influence filter gating. These results provide further insight into the complex allosteric mechanisms that modulate filter gating in TREK K2P channels and highlight the different ways in which filter gating can be regulated to permit polymodal regulation.
Collapse
Affiliation(s)
- Peter Proks
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Marcus Schewe
- Department of Physiology, University of Kiel, Kiel, Germany
| | - Linus J Conrad
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Shanlin Rao
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Kristin Rathje
- Department of Physiology, University of Kiel, Kiel, Germany
| | | | - Elisabeth P Carpenter
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.,Centre for Medicines Discovery, University of Oxford, UK
| | | | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Huang L, Xu G, Jiang R, Luo Y, Zuo Y, Liu J. Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels. Curr Neuropharmacol 2021; 20:16-26. [PMID: 33827408 PMCID: PMC9199554 DOI: 10.2174/1570159x19666210407152528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors such as mechanical stretch, temperature, and pH. In the the peripheral nervous system (PNS), K2P channels are widely expressed in nociceptive neurons and play a critical roles in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.
Collapse
Affiliation(s)
- Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Guangyin Xu
- Department of Physiology and Neurobiology, Institute of Neuroscience, Medical College of Soochow University, Suzhou, 215123, Jiangsu. China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yunxia Zuo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| |
Collapse
|
5
|
Choi SW, Woo J, Park KS, Ko J, Jeon YK, Choi SW, Yoo HY, Kho I, Kim TJ, Kim SJ. Higher expression of KCNK10 (TREK-2) K + channels and their functional upregulation by lipopolysaccharide treatment in mouse peritoneal B1a cells. Pflugers Arch 2021; 473:659-671. [PMID: 33586023 DOI: 10.1007/s00424-021-02526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Innate-like CD5+ B1a cells localized in serous cavities are activated by innate stimuli, such as lipopolysaccharide (LPS), leading to T cell-independent antibody responses. Although ion channels play crucial roles in the homeostasis and activation of immune cells, the electrophysiological properties of B1a cells have not been investigated to date. Previously, in the mouse B cell lymphoma cells, we found that the voltage-independent two-pore-domain potassium (K2P) channels generate a negative membrane potential and drive Ca2+ influx. Here, we newly compared the expression and activities of K2P channels in mouse splenic follicular B (FoB), marginal zone B (MZB), and peritoneal B1a cells. Next-generation sequencing analysis showed higher levels of transcripts for TREK-2 and TWIK-2 in B1a cells than those in FoB or MZB cells. Electrophysiological analysis, using patch clamp technique, revealed higher activity of TREK-2 with the characteristic large unitary conductance (~ 250 pS) in B1a than that in FoB or MZB cells. TREK-2 activity was further increased by LPS treatment (>2 h), which was more prominent in B1a than that in MZB or FoB cells. The cytosolic Ca2+ concentration of B cells was decreased by high-K+-induced depolarization (ΔRKCl (%)), suggesting the basal Ca2+ influx to be driven by negative membrane potential. The LPS treatment significantly increased the ΔRKCl (%) in B1a, though not in FoB and MZB cells. Our study was the first to compare the K2P channels in mouse primary B cell subsets, elucidating the functional upregulation of TREK-2 and augmentation of Ca2+ influx by the stimulation of Toll-like receptor 4 in B1a cells.
Collapse
Affiliation(s)
- Si Won Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joohan Woo
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea
| | - Kyung Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Woo Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Young Yoo
- Department of Nursing, Chung-Ang University, Seoul, Republic of Korea
| | - Inseong Kho
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Mathie A, Veale EL, Cunningham KP, Holden RG, Wright PD. Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annu Rev Pharmacol Toxicol 2020; 61:401-420. [PMID: 32679007 DOI: 10.1146/annurev-pharmtox-030920-111536] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two-pore domain potassium (K2P) channels stabilize the resting membrane potential of both excitable and nonexcitable cells and, as such, are important regulators of cell activity. There are many conditions where pharmacological regulation of K2P channel activity would be of therapeutic benefit, including, but not limited to, atrial fibrillation, respiratory depression, pulmonary hypertension, neuropathic pain, migraine, depression, and some forms of cancer. Up until now, few if any selective pharmacological regulators of K2P channels have been available. However, recent publications of solved structures with small-molecule activators and inhibitors bound to TREK-1, TREK-2, and TASK-1 K2P channels have given insight into the pharmacophore requirements for compound binding to these sites. Together with the increasing availability of a number of novel, active, small-molecule compounds from K2P channel screening programs, these advances have opened up the possibility of rational activator and inhibitor design to selectively target K2P channels.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Emma L Veale
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Kevin P Cunningham
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Robyn G Holden
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | | |
Collapse
|
7
|
Yelshanskaya MV, Nadezhdin KD, Kurnikova MG, Sobolevsky AI. Structure and function of the calcium-selective TRP channel TRPV6. J Physiol 2020; 599:2673-2697. [PMID: 32073143 DOI: 10.1113/jp279024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 12/23/2022] Open
Abstract
Epithelial calcium channel TRPV6 is a member of the vanilloid subfamily of TRP channels that is permeable to cations and highly selective to Ca2+ ; it shows constitutive activity regulated negatively by Ca2+ and positively by phosphoinositol and cholesterol lipids. In this review, we describe the molecular structure of TRPV6 and discuss how its structural elements define its unique functional properties. High Ca2+ selectivity of TRPV6 originates from the narrow selectivity filter, where Ca2+ ions are directly coordinated by a ring of anionic aspartate side chains. Divalent cations Ca2+ and Ba2+ permeate TRPV6 pore according to the knock-off mechanism, while tight binding of Gd3+ to the aspartate ring blocks the channel and prevents Na+ from permeating the pore. The iris-like channel opening is accompanied by an α-to-π helical transition in the pore-lining transmembrane helix S6. As a result of this transition, the intracellular halves of the S6 helices bend and rotate by about 100 deg, exposing different residues to the channel pore in the open and closed states. Channel opening is also associated with changes in occupancy of the transmembrane domain lipid binding sites. The inhibitor 2-aminoethoxydiphenyl borate (2-APB) binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1-S4 transmembrane helical bundle and shifts open-closed channel equilibrium towards the closed state by outcompeting lipids critical for activation. Ca2+ inhibits TRPV6 via binding to calmodulin (CaM), which mediates Ca2+ -dependent inactivation. The TRPV6-CaM complex exhibits 1:1 stoichiometry; one TRPV6 tetramer binds both CaM lobes, which adopt a distinct head-to-tail arrangement. The CaM C-terminal lobe plugs the channel through a unique cation-π interaction by inserting the side chain of lysine K115 into a tetra-tryptophan cage at the ion channel pore intracellular entrance. Recent studies of TRPV6 structure and function described in this review advance our understanding of the role of this channel in physiology and pathophysiology and inform new therapeutic design.
Collapse
Affiliation(s)
- Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
8
|
Fu X, Ye H, Jia H, Wang X, Chomiak T, Luo F. Muscarinic acetylcholine receptor-dependent persistent activity of layer 5 intrinsic-bursting and regular-spiking neurons in primary auditory cortex. J Neurophysiol 2019; 122:2344-2353. [PMID: 31596630 DOI: 10.1152/jn.00184.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic signaling coupled to sensory-driven neuronal depolarization is essential for modulating lasting changes in deep-layer neural excitability and experience-dependent plasticity in the primary auditory cortex. However, the underlying cellular mechanism(s) associated with coincident cholinergic receptor activation and neuronal depolarization of deep-layer cortical neurons remains unknown. Using in vitro whole cell patch-clamp recordings targeted to neurons (n = 151) in isolated brain slices containing the primary auditory cortex (AI), we investigated the effects of cholinergic receptor activation and neuronal depolarization on the electrophysiological properties of AI layer 5 intrinsic-bursting and regular-spiking neurons. Bath application of carbachol (5 µM; cholinergic receptor agonist) paired with suprathreshold intracellular depolarization led to persistent activity in these neurons. Persistent activity may involve similar cellular mechanisms and be generated intrinsically in both intrinsic-bursting and regular-spiking neurons given that it 1) persisted under the blockade of ionotropic glutamatergic (kynurenic acid, 2 mM) and GABAergic receptors (picrotoxin, 100 µM), 2) was fully blocked by both atropine (10 µM; nonselective muscarinic antagonist) and flufenamic acid [100 µM; nonspecific Ca2+-sensitive cationic channel (CAN) blocker], and 3) was sensitive to the voltage-gated Ca2+ channel blocker nifedipine (50 µM) and Ca2+-free artificial cerebrospinal fluid. Together, our results support a model through which coincident activation of AI layer 5 neuron muscarinic receptors and suprathreshold activation can lead to sustained changes in layer 5 excitability, providing new insight into the possible role of a calcium-CAN-dependent cholinergic mechanism of AI cortical plasticity. These findings also indicate that distinct streams of auditory processing in layer 5 intrinsic-bursting and regular-spiking neurons may run in parallel during learning-induced auditory plasticity.NEW & NOTEWORTHY Cholinergic signaling coupled to sensory-driven neuronal depolarization is essential for modulating lasting changes in experience-dependent plasticity in the primary auditory cortex. Cholinergic activation together with cellular depolarization can lead to persistent activity in both intrinsic-bursting and regular-spiking layer 5 pyramidal neurons. A similar mechanism involving muscarinic acetylcholine receptor, voltage-gated Ca2+ channel, and possible Ca2+-sensitive nonspecific cationic channel activation provides new insight into our understanding of the cellular mechanisms that govern learning-induced auditory cortical and subcortical plasticity.
Collapse
Affiliation(s)
- Xin Fu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huan Ye
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Huijuan Jia
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xin Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Taylor Chomiak
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Feng Luo
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
9
|
Al-Moubarak E, Veale EL, Mathie A. Pharmacologically reversible, loss of function mutations in the TM2 and TM4 inner pore helices of TREK-1 K2P channels. Sci Rep 2019; 9:12394. [PMID: 31455781 PMCID: PMC6712037 DOI: 10.1038/s41598-019-48855-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/09/2019] [Indexed: 01/21/2023] Open
Abstract
A better understanding of the gating of TREK two pore domain potassium (K2P) channels and their activation by compounds such as the negatively charged activator, flufenamic acid (FFA) is critical in the search for more potent and selective activators of these channels. Currents through wild-type and mutated human K2P channels expressed in tsA201 cells were measured using whole-cell patch-clamp recordings in the presence and absence of FFA. Mutation of the TM2.6 residue of TREK-1 to a phenylalanine (G171F) and a similar mutation of TM4.6 (A286F) substantially reduced current through TREK-1 channels. In complementary experiments, replacing the natural F residues at the equivalent position in TRESK channels, significantly enhanced current. Known, gain of function mutations of TREK-1 (G137I, Y284A) recovered current through these mutated channels. This reduction in current could be also be reversed pharmacologically, by FFA. However, an appropriate length MTS (MethaneThioSulfonate) cross-linking reagent (MTS14) restricted the activation of TREK-1_A286C channels by repeated application of FFA. This suggests that the cross-linker stabilises the channel in a conformation which blunts FFA activation. Pharmacologically reversible mutations of TREK channels will help to clarify the importance of these channels in pathophysiological conditions such as pain and depression.
Collapse
Affiliation(s)
- Ehab Al-Moubarak
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
10
|
Şterbuleac D. Molecular determinants of chemical modulation of two-pore domain potassium channels. Chem Biol Drug Des 2019; 94:1596-1614. [PMID: 31124599 DOI: 10.1111/cbdd.13571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
The K+ ion channels comprising the two-pore domain (K2P) family have specific biophysical roles in generating the critical regulatory K+ current. Ion flow through K2P channels and, implicitly, channel regulation is mediated by diverse metabolic and physical inputs such as mechanical stimulation, interaction with lipids or endogenous regulators, intra- or extracellular pH, and phosphorylation, while their function can be finely tuned by chemical compounds. In the latter category, some drug-channel interactions can lead to side effects or have clinical action, while identifying novel chemical modulators of K2Ps is an area of intense research. Due to their cellular and therapeutic importance, much attention was turned to these channels in recent years and several experimental approaches have pinpointed the molecular determinants of K2P chemical modulation. Given their unique structural features and properties, chemical modulators act on K2P channels in multiple and diverse ways. In this review, the particularities of K2P modulation by chemical compounds, such as binding modality, affinity, or position, are identified, synthesized, and linked to structural and functional properties in order to refer to how activators and blockers modify channel function and vice versa, focusing on specificity related to protein structure (and its modification) and cross-linking information among different subfamilies.
Collapse
Affiliation(s)
- Daniel Şterbuleac
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania
| |
Collapse
|
11
|
Farfán-García ED, Castillo-García EL, Soriano-Ursúa MA. More than boric acid: Increasing relevance of boron in medicine. World J Transl Med 2018; 7:1-4. [DOI: 10.5528/wjtm.v7.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Although boron has been a chemical element of interest since the ancient times, only a few boron-containing compounds (BCCs) had been used for medicinal purposes before the 21st century. Among these, only boric acid has been explored in multiple therapeutic applications. Hence, it is common to extrapolate from boric acid to all BCCs, supposing a similar biological effect. However, boric acid is just one of dozens of BCCs in nature and thousands available from chemical synthesis. Nowadays, there is a boom in research on new BCCs as potential tools in the prevention, diagnosis and therapy of human disease. We herein discuss the new role of BCCs in drug development, with emphasis on the compounds for which a mechanism of action has been proposed or demonstrated. Because of data gathered in recent years, BCCs have expanded beyond the well-known fields of antimicrobial and antineoplastic agents, now being explored for their possible use as enzyme inhibitors, regulators of protein expression and modulators of the immune response, as well as in biomaterials. We suggest that translational medicine can accelerate the medicinal applications of BCCs, which is especially important for the human diseases that are generating a high global burden.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Emily L Castillo-García
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
12
|
Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB. Nat Commun 2018; 9:2465. [PMID: 29941865 PMCID: PMC6018633 DOI: 10.1038/s41467-018-04828-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 01/16/2023] Open
Abstract
Transient receptor potential (TRP) channels are involved in various physiological processes, including sensory transduction. The TRP channel TRPV6 mediates calcium uptake in epithelia and its expression is dramatically increased in numerous types of cancer. TRPV6 inhibitors suppress tumor growth, but the molecular mechanism of inhibition remains unknown. Here, we present crystal and cryo-EM structures of human and rat TRPV6 bound to 2-aminoethoxydiphenyl borate (2-APB), a TRPV6 inhibitor and modulator of numerous TRP channels. 2-APB binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1-S4 transmembrane helix bundle. Comparing human wild-type and high-affinity mutant Y467A structures, we show that 2-APB induces TRPV6 channel closure by modulating protein-lipid interactions. Mutagenesis and functional analyses suggest that the identified 2-APB binding site might be present in other members of vanilloid subfamily TRP channels. Our findings reveal a mechanism of ion channel allosteric modulation that can be exploited for therapeutic design.
Collapse
|
13
|
Loucif AJC, Saintot P, Liu J, Antonio BM, Zellmer SG, Yoger K, Veale EL, Wilbrey A, Omoto K, Cao L, Gutteridge A, Castle NA, Stevens EB, Mathie A. GI-530159, a novel, selective, mechanosensitive two-pore-domain potassium (K 2P ) channel opener, reduces rat dorsal root ganglion neuron excitability. Br J Pharmacol 2018; 175:2272-2283. [PMID: 29150838 PMCID: PMC5980259 DOI: 10.1111/bph.14098] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE TREK two-pore-domain potassium (K2P ) channels play a critical role in regulating the excitability of somatosensory nociceptive neurons and are important mediators of pain perception. An understanding of the roles of TREK channels in pain perception and, indeed, in other pathophysiological conditions, has been severely hampered by the lack of potent and/or selective activators and inhibitors. In this study, we describe a new, selective opener of TREK channels, GI-530159. EXPERIMENTAL APPROACH The effect of GI-530159 on TREK channels was demonstrated using 86 Rb efflux assays, whole-cell and single-channel patch-clamp recordings from recombinant TREK channels. The expression of K2P 2.1 (TREK1), K2P 10.1 (TREK2) and K2P 4.1 (TRAAK) channels was determined using transcriptome analysis from single dorsal root ganglion (DRG) cells. Current-clamp recordings from cultured rat DRG neurons were used to measure the effect of GI-530159 on neuronal excitability. KEY RESULTS For recombinant human TREK1 channels, GI-530159 had similar low EC50 values in Rb efflux experiments and electrophysiological recordings. It activated TREK2 channels, but it had no detectable action on TRAAK channels nor any significant effect on other K channels tested. Current-clamp recordings from cultured rat DRG neurones showed that application of GI-530159 at 1 μM resulted in a significant reduction in firing frequency and a small hyperpolarization of resting membrane potential. CONCLUSIONS AND IMPLICATIONS This study provides pharmacological evidence for the presence of mechanosensitive TREK K2P channels in sensory neurones and suggests that development of selective K2P channel openers like GI-530159 could aid in the development of novel analgesic agents. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emma L Veale
- Medway School of PharmacyUniversity of KentChatham MaritimeKentUK
| | | | | | | | | | | | | | - Alistair Mathie
- Medway School of PharmacyUniversity of KentChatham MaritimeKentUK
| |
Collapse
|
14
|
The glycine hinge of transmembrane segment 2 modulates the subcellular localization and gating properties in TREK channels. Biochem Biophys Res Commun 2017; 490:1125-1131. [DOI: 10.1016/j.bbrc.2017.06.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023]
|
15
|
Dadi PK, Vierra NC, Days E, Dickerson MT, Vinson PN, Weaver CD, Jacobson DA. Selective Small Molecule Activators of TREK-2 Channels Stimulate Dorsal Root Ganglion c-Fiber Nociceptor Two-Pore-Domain Potassium Channel Currents and Limit Calcium Influx. ACS Chem Neurosci 2017; 8:558-568. [PMID: 27805811 PMCID: PMC5901755 DOI: 10.1021/acschemneuro.6b00301] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The two-pore-domain potassium (K2P) channel TREK-2 serves to modulate plasma membrane potential in dorsal root ganglia c-fiber nociceptors, which tunes electrical excitability and nociception. Thus, TREK-2 channels are considered a potential therapeutic target for treating pain; however, there are currently no selective pharmacological tools for TREK-2 channels. Here we report the identification of the first TREK-2 selective activators using a high-throughput fluorescence-based thallium (Tl+) flux screen (HTS). An initial pilot screen with a bioactive lipid library identified 11-deoxy prostaglandin F2α as a potent activator of TREK-2 channels (EC50 ≈ 0.294 μM), which was utilized to optimize the TREK-2 Tl+ flux assay (Z' = 0.752). A HTS was then performed with 76 575 structurally diverse small molecules. Many small molecules that selectively activate TREK-2 were discovered. As these molecules were able to activate single TREK-2 channels in excised membrane patches, they are likely direct TREK-2 activators. Furthermore, TREK-2 activators reduced primary dorsal root ganglion (DRG) c-fiber Ca2+ influx. Interestingly, some of the selective TREK-2 activators such as 11-deoxy prostaglandin F2α were found to inhibit the K2P channel TREK-1. Utilizing chimeric channels containing portions of TREK-1 and TREK-2, the region of the TREK channels that allows for either small molecule activation or inhibition was identified. This region lies within the second pore domain containing extracellular loop and is predicted to play an important role in modulating TREK channel activity. Moreover, the selective TREK-2 activators identified in this HTS provide important tools for assessing human TREK-2 channel function and investigating their therapeutic potential for treating chronic pain.
Collapse
Affiliation(s)
- Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Nicholas C. Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Emily Days
- Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Paige N. Vinson
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
16
|
Woo J, Shin DH, Kim HJ, Yoo HY, Zhang YH, Nam JH, Kim WK, Kim SJ. Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase. Pflugers Arch 2016; 468:1389-402. [PMID: 27283411 DOI: 10.1007/s00424-016-1847-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 11/28/2022]
Abstract
TWIK-related two-pore domain K(+) channels 1 and 2 (TREKs) are activated under various physicochemical conditions. However, the directions in which they are regulated by PI(4,5)P2 and intracellular ATP are not clearly presented yet. In this study, we investigated the effects of ATP and PI(4,5)P2 on overexpressed TREKs (HEK293T and COS-7) and endogenously expressed TREK-2 (mouse astrocytes and WEHI-231 B cells). In all of these cells, both TREK-1 and TREK-2 currents were spontaneously increased by dialysis with ATP-free pipette solution for whole-cell recording (ITREK-1,w-c and ITREK-2w-c) or by membrane excision for inside-out patch clamping without ATP (ITREK-1,i-o and ITREK-2,i-o). Steady state ITREK-2,i-o was reversibly decreased by 3 mM ATP applied to the cytoplasmic side, and this reduction was prevented by wortmannin, a PI-kinase inhibitor. An exogenous application of PI(4,5)P2 inhibited the spontaneously increased ITREKs,i-o, suggesting that intrinsic PI(4,5)P2 maintained by intracellular ATP and PI kinase may set the basal activity of TREKs in the intact cells. The inhibition of intrinsic TREK-2 by ATP was more prominent in WEHI-231 cells than astrocytes. Interestingly, unspecific screening of negative charges by poly-L-lysine also inhibited ITREK-2,i-o. Application of PI(4,5)P2 after the poly-L-lysine treatment showed dose-dependent dual effects, initial activation and subsequent inhibition of ITREK-2,i-o at low and high concentrations, respectively. In HEK293T cells coexpressing TREK-2 and a voltage-sensitive PI(4,5)P2 phosphatase, sustained depolarization increased ITREK-2,w-c initially (<5 s) but then decreased the current below the control level. In HEK293T cells coexpressing TREK-2 and type 3 muscarinic receptor, application of carbachol induced transient activation and sustained suppression of ITREK-2,w-c and cell-attached ITREK-2. The inhibition of TREK-2 by unspecific electrostatic quenching, extensive dephosphorylation, or sustained hydrolysis of PI(4,5)P2 suggests the existence of dual regulatory modes that depend on PI(4,5)P2 concentration.
Collapse
Affiliation(s)
- Joohan Woo
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea
| | - Dong Hoon Shin
- Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwang-Ju, 501-759, South Korea
| | - Hyun Jong Kim
- Department of Physiology and Ion Channel Disease Research Center, College of Medicine, Dongguk University, Kyungju, 780-714, South Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul, 100-031, South Korea
| | - Yin-Hua Zhang
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea
| | - Joo Hyun Nam
- Department of Physiology and Ion Channel Disease Research Center, College of Medicine, Dongguk University, Kyungju, 780-714, South Korea
| | - Woo Kyung Kim
- Department of Physiology and Ion Channel Disease Research Center, College of Medicine, Dongguk University, Kyungju, 780-714, South Korea
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, South Korea.
| |
Collapse
|
17
|
Zhuo RG, Peng P, Liu XY, Yan HT, Xu JP, Zheng JQ, Wei XL, Ma XY. Intersubunit Concerted Cooperative and cis-Type Mechanisms Modulate Allosteric Gating in Two-Pore-Domain Potassium Channel TREK-2. Front Cell Neurosci 2016; 10:127. [PMID: 27242438 PMCID: PMC4865513 DOI: 10.3389/fncel.2016.00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
In response to diverse stimuli, two-pore-domain potassium channel TREK-2 regulates cellular excitability, and hence plays a key role in mediating neuropathic pain, mood disorders and ischemia through. Although more and more input modalities are found to achieve their modulations via acting on the channel, the potential role of subunit interaction in these modulations remains to be explored. In the current study, the deletion (lack of proximal C-terminus, ΔpCt) or point mutation (G312A) was introduced into TREK-2 subunits to limit K+ conductance and used to report subunit stoichiometry. The constructs were then combined with wild type (WT) subunit to produce concatenated dimers with defined composition, and the gating kinetics of these channels to 2-Aminoethoxydiphenyl borate (2-APB) and extracellular pH (pHo) were characterized. Our results show that combination of WT and ΔpCt/G312A subunits reserves similar gating properties to that of WT dimmers, suggesting that the WT subunit exerts dominant and positive effects on the mutated one, and thus the two subunits controls channel gating via a concerted cooperative manner. Further introduction of ΔpCt into the latter subunit of heterodimeric channel G312A-WT or G312A-G312A attenuated their sensitivity to 2-APB and pHo alkalization, implicating that these signals were transduced by a cis-type mechanism. Together, our findings elucidate the mechanisms for how the two subunits control the pore gating of TREK-2, in which both intersubunit concerted cooperative and cis-type manners modulate the allosteric regulations induced by 2-APB and pHo alkalization.
Collapse
Affiliation(s)
- Ren-Gong Zhuo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Peng Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and ToxicologyBeijing, China; Anesthesia and Operation Center, PLA General HospitalBeijing, China
| | - Xiao-Yan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Hai-Tao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Jiang-Ping Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University Guangzhou, China
| | - Jian-Quan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiao-Li Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiao-Yun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| |
Collapse
|
18
|
Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci Rep 2016; 6:21248. [PMID: 26879043 PMCID: PMC4754649 DOI: 10.1038/srep21248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
TREK-2, a member of two-pore-domain potassium channel family, regulates cellular excitability in response to diverse stimuli. However, how such stimuli control channel function remains unclear. Here, by characterizing the responses of cytosolic proximal C-terminus deletant (ΔpCt) and transmembrane segment 4 (M4)-glycine hinge mutant (G312A) to 2-Aminoethoxydiphenyl borate (2-APB), an activator of TREK-2, we show that the transduction initiated from pCt domain is allosterically coupled with the conformation of selectivity filter (SF) via the movements of M4, without depending on the original status of SF. Moreover, ΔpCt and G312A also exhibited blunted responses to extracellular alkalization, a model to induce SF conformational transition. These results suggest that the coupling between pCt domain and SF is bidirectional, and M4 movements are involved in both processes. Further mechanistic exploration reveals that the function of Phe316, a residue close to the C-terminus of M4, is associated with such communications. However, unlike TREK-2, M4-hinge of TREK-1 only controls the transmission from pCt to SF, rather than SF conformational changes triggered by pHo changes. Together, our findings uncover the unique gating properties of TREK-2, and elucidate the mechanisms for how the extracellular and intracellular stimuli harness the pore gating allosterically.
Collapse
|
19
|
Zhuo RG, Peng P, Liu XY, Zhang SZ, Xu JP, Zheng JQ, Wei XL, Ma XY. The isoforms generated by alternative translation initiation adopt similar conformation in the selectivity filter in TREK-2. J Physiol Biochem 2015; 71:601-10. [PMID: 26271386 DOI: 10.1007/s13105-015-0422-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/03/2015] [Indexed: 12/19/2022]
Abstract
TREK-2 (TWIK-related K(+) channel-2), a member of two-pore domain potassium (K2P) channel family, tunes cellular excitability via conducting leak or background currents. In TREK-2, the isoforms generated by alternative translation initiation (ATI) mechanism exhibit large divergence in unitary conductance, but similar in selectivity to K(+). Up to now, the structural basis for this similarity in ion selectivity is unknown. Here, we report that externally applied Ba(2+) inhibits the currents of TREK-2 in a concentration- and time-dependent manner. The blocking effect is blunted by elevated extracellular K(+) or mutation of S4 K(+) binding site, which suggests that the inhibitory mechanism of Ba(2+) is due to its competitive docking properties within the selectivity filter (SF). Next, we demonstrate that all the ATI isoforms exhibit analogous behaviors upon the application of Ba(2+) and alteration of extracellular pH (pHo), which acts on the outer position of the SF. These results strongly support the notion that all the ATI isoforms of TREK-2 possess resembled SF conformation in S4 site and the position defined by pHo, which implicates that neither the role of N-terminus (Nt) nor the unitary conductance is associated with SF conformation. Our findings might help to understand the detail gating mechanism of TREK-2 and K2P channels.
Collapse
Affiliation(s)
- Ren-Gong Zhuo
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Peng Peng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Xiao-Yan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Shu-Zhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Jiang-Ping Xu
- Department of Neuropharmacology, School of Pharmaceutical Sciences, Southern Medical University, No.1838, North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jian-Quan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Li Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Xiao-Yun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|