1
|
Zografos LT, Konstantoulaki A, Klein C, Vatakis A, Smyrnis N. Audiovisual integration of speech: evidence for increased accuracy in "talk" versus "listen" condition. Exp Brain Res 2025; 243:154. [PMID: 40418255 DOI: 10.1007/s00221-025-07088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/16/2025] [Indexed: 05/27/2025]
Abstract
Processing of sensory stimuli generated by our own actions differs from that of externally generated stimuli. However, most evidence regarding this phenomenon concerns the processing of unisensory stimuli. A few studies have explored the effect of self-generated actions on multisensory stimuli and how it affects the integration of these stimuli. Most of them used abstract stimuli (e.g., flashes, beeps) rather than more natural ones such as sensations that are commonly correlated with actions that we perform in our everyday lives such as speech. In the current study, we explored the effect of self-generated action on the process of multisensory integration (MSI) during speech. We used a novel paradigm where participants were either listening to the echo of their own speech, while watching a video of themselves producing the same speech ("talk", active condition), or they listened to their previously recorded speech and watched the prerecorded video of themselves producing the same speech ("listen", passive condition). In both conditions, different stimulus onset asynchronies were introduced between the auditory and visual streams and participants were asked to perform simultaneity judgments. Using these judgments, we determined temporal binding windows (TBW) of integration for each participant and condition. We found that the TBW was significantly smaller in the active as compared to the passive condition indicating more accurate MSI. These results support the conclusion that sensory perception is modulated by self-generated action at the multisensory in addition to the unisensory level.
Collapse
Affiliation(s)
- Lefteris Themelis Zografos
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
- Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece
| | - Anna Konstantoulaki
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece
| | - Christoph Klein
- 2nd Psychiatry Department, National, and Kapodistrian University of Athens, Medical School, University General Hospital «AΤΤΙΚΟΝ», Athens, Greece
- Department of Child and Adolescent Psychiatry, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Argiro Vatakis
- Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece.
| | - Nikolaos Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health Neurosciences and Precision Medicine Research Institute "COSTAS STEFANIS", Athens, Greece.
- 2nd Psychiatry Department, National, and Kapodistrian University of Athens, Medical School, University General Hospital «AΤΤΙΚΟΝ», Athens, Greece.
| |
Collapse
|
2
|
Tsunada J, Eliades SJ. Frontal-auditory cortical interactions and sensory prediction during vocal production in marmoset monkeys. Curr Biol 2025; 35:2307-2322.e3. [PMID: 40250436 DOI: 10.1016/j.cub.2025.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 02/20/2025] [Accepted: 03/28/2025] [Indexed: 04/20/2025]
Abstract
The control of speech and vocal production involves the calculation of error between the intended vocal output and the resulting auditory feedback. This model has been supported by evidence that the auditory cortex (AC) is suppressed immediately before and during vocal production yet remains sensitive to differences between vocal output and altered auditory feedback. This suppression has been suggested to be the result of top-down signals about the intended vocal output, potentially originating from frontal cortical (FC) areas. However, whether FC is the source of suppressive and predictive signaling to AC during vocalization remains unknown. Here, we simultaneously recorded neural activity from both AC and FC of marmoset monkeys during self-initiated vocalizations. We found increases in neural activity in both brain areas from 1 to 0.5 s before vocal production (early pre-vocal period), specifically changes in both multi-unit activity and theta-band power. Connectivity analysis using Granger causality demonstrated that FC sends directed signaling to AC during this early pre-vocal period. Importantly, early pre-vocal activity correlated with both vocalization-induced suppression in AC as well as the structure and acoustics of subsequent calls, such as fundamental frequency. Furthermore, bidirectional auditory-frontal interactions emerged during experimentally altered vocal feedback and predicted subsequent compensatory vocal behavior. These results suggest that FC communicates with AC during vocal production, with frontal-to-auditory signals that may reflect the transmission of sensory prediction information before vocalization and bidirectional signaling during vocalization suggestive of error detection that could drive feedback-dependent vocal control.
Collapse
Affiliation(s)
- Joji Tsunada
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 0208550, Iwate, Japan.
| | - Steven J Eliades
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
3
|
Oten S, Herr S, Ambati V, Sibih Y, Lu K, Kaur J, Hervey-Jumper SL, Brang D. BrainTRACE (Brain Tumor Registration and Cortical Electrocorticography): A Novel Tool for Localizing Electrocorticography Electrodes in Patients with Brain Tumors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.07.25327167. [PMID: 40385419 PMCID: PMC12083565 DOI: 10.1101/2025.05.07.25327167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Background Intraoperative electrocorticography (ECoG) plays a critical role in clinical care and neuroscience research, enabling precise mapping of functional cortex. However, localizing subdural electrodes in patients with brain tumors presents unique challenges due to altered neuroanatomy and the impracticality of acquiring extraoperative computed tomography (CT). To address this gap, we developed BrainTRACE, a novel MATLAB tool that combines magnetic resonance imaging (MRI), cortical vascular reconstructions, and intraoperative photography for accurate subdural electrode grid placement. Methods Preoperative MRI, cortical photography, and subdural electrode array data were recorded from patients with diffuse glioma and brain metastasis. BrainTRACE generated three-dimensional cortical surfaces, integrated vascular reconstructions, and enabled precise placement of electrode grids. Each electrode was placed based on cortical anatomy and vascular landmarks informed by intraoperative photographs. Novice and expert-level proficiency were quantified. Results Expert users achieved high consistency and accuracy, with an intraclass correlation coefficient (ICC) of 0.934 and a mean deviation of 4.3 mm from consensus placements. Novice users demonstrated lower reliability (ICC = 0.399) and greater variability, averaging a 16.3 mm deviation from consensus. These findings highlight the non-trivial nature of intraoperative ECoG localization, which requires neuroanatomical expertise for successful grid placement. Conclusion BrainTRACE enables accurate localization of intraoperative ECoG electrodes in brain tumor patients. By integrating anatomical images, intraoperative photographs, and vascular mapping, the tool addresses challenges posed by tumor-induced artifacts. While requiring that users have cortical neuroanatomical expertise, BrainTRACE provides a practical tool for neurosurgical and neuroscience applications, including brain malignancy, epilepsy, and deep brain stimulation procedures. BrainTRACE is freely available to researchers (https://github.com/dbrang/BrainTRACE).
Collapse
Affiliation(s)
- Sena Oten
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Sanjeev Herr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vardhaan Ambati
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Youssef Sibih
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Katie Lu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Jasleen Kaur
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Granget J, Niérat MC, Lehongre K, Lambrecq V, Frazzini V, Navarro V, Buonviso N, Similowski T. Corticolimbic structures activation during preparation and execution of respiratory manoeuvres in voluntary olfactory sampling: An intracranial EEG study. J Physiol 2025; 603:989-1006. [PMID: 39704560 PMCID: PMC11826067 DOI: 10.1113/jp287045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Volitional respiratory manoeuvres such as sniffing and apnoea play a key role in the active olfactory exploration of the environment. Their impairment by neurodegenerative processes could thus impair olfactory abilities with the ensuing impact on quality of life. Functional brain imaging studies have identified brain networks engaged in sniffing and voluntary apnoea, comprising the primary motor and somatosensory cortices, the insula, the anterior cingulate cortex and the amygdala. The temporal organization and the oscillatory activities of these networks are not known. To elucidate these aspects, we recorded intracranial electroencephalograms in six patients during voluntary sniffs and short apnoeas (12 s). The preparation phase of both manoeuvres involved increased alpha and theta activity in the posterior insula, amygdala and temporal regions, with a specific preparatory activity in the parahippocampus for the short apnoeas and the hippocampus for sniff. Subsequently, it narrowed to the superior and median temporal areas, immediately after the manoeuvres. During short apnoeas, a particular dynamic was observed, consisting of a rapid decline in alpha and theta activity followed by a slow recovery and increase. Volitional respiratory manoeuvres involved in olfactory control involve corticolimbic structures in both a preparatory and executive manner. Further studies are needed to determine whether diseases altering deep brain structures can disrupt these mechanisms and if such disruption contributes to the corresponding olfactory deficits. KEY POINTS: Both sniff manoeuvres and short apnoeas are associated with oscillatory activity predominantly in low-frequency bands (alpha and theta). Preparation of sniff manoeuvres and short apnoeas involve activities in low-frequency bands in the posterior insula and temporal regions that extend to amygdala during the execution of both manoeuvres. During short apnoeas, activities in low-frequency bands initially decline before continuously increasing until the apnoeas end.
Collapse
Affiliation(s)
- Jules Granget
- Sorbonne UniversitéINSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et CliniqueParisFrance
- AP‐HP, Groupe Hospitalier Universitaire APHP‐Sorbonne UniversitéHôpital Pitié‐Salpêtrière, Département R3SParisFrance
| | - Marie Cécile Niérat
- Sorbonne UniversitéINSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et CliniqueParisFrance
| | - Katia Lehongre
- Paris Brain Institute, ICM, INSERM, CNRSSorbonne UniversitéParisFrance
| | - Virginie Lambrecq
- Paris Brain Institute, ICM, INSERM, CNRSSorbonne UniversitéParisFrance
- AP‐HP, Groupe Hospitalier APAH‐Sorbonne Université, Hôpital Pitié‐Salpêtrière, Unité d'Épilepsie, Centre de Référence des épilepsies raresERN‐EpiCare, Département de NeurologieParisFrance
| | - Valerio Frazzini
- Paris Brain Institute, ICM, INSERM, CNRSSorbonne UniversitéParisFrance
- AP‐HP, Groupe Hospitalier APAH‐Sorbonne Université, Hôpital Pitié‐Salpêtrière, Unité d'Épilepsie, Centre de Référence des épilepsies raresERN‐EpiCare, Département de NeurologieParisFrance
| | - Vincent Navarro
- Paris Brain Institute, ICM, INSERM, CNRSSorbonne UniversitéParisFrance
- AP‐HP, Groupe Hospitalier APAH‐Sorbonne Université, Hôpital Pitié‐Salpêtrière, Unité d'Épilepsie, Centre de Référence des épilepsies raresERN‐EpiCare, Département de NeurologieParisFrance
| | - Nathalie Buonviso
- Université Lyon 1, CNRS UMR5292 INSERM U1028, Codage Mémoire OlfactionCentre de Recherche en Neurosciences de LyonLyonFrance
| | - Thomas Similowski
- Sorbonne UniversitéINSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et CliniqueParisFrance
- AP‐HP, Groupe Hospitalier Universitaire APHP‐Sorbonne UniversitéHôpital Pitié‐Salpêtrière, Département R3SParisFrance
| |
Collapse
|
5
|
Huang LZ, Cao Y, Janse E, Piai V. Functional Roles of Sensorimotor Alpha and Beta Oscillations in Overt Speech Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611312. [PMID: 39416142 PMCID: PMC11482788 DOI: 10.1101/2024.09.04.611312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Power decreases, or desynchronization, of sensorimotor alpha and beta oscillations (i.e., alpha and beta ERD) have long been considered as indices of sensorimotor control in overt speech production. However, their specific functional roles are not well understood. Hence, we first conducted a systematic review to investigate how these two oscillations are modulated by speech motor tasks in typically fluent speakers (TFS) and in persons who stutter (PWS). Eleven EEG/MEG papers with source localization were included in our systematic review. The results revealed consistent alpha and beta ERD in the sensorimotor cortex of TFS and PWS. Furthermore, the results suggested that sensorimotor alpha and beta ERD may be functionally dissociable, with alpha related to (somato-)sensory feedback processing during articulation and beta related to motor processes throughout planning and articulation. To (partly) test this hypothesis of a potential functional dissociation between alpha and beta ERD, we then analyzed existing intracranial electro-encephalography (iEEG) data from the primary somatosensory cortex (S1) of picture naming. We found moderate evidence for alpha, but not beta, ERD's sensitivity to speech movements in S1, lending supporting evidence for the functional dissociation hypothesis identified by the systematic review.
Collapse
Affiliation(s)
- Lydia Z. Huang
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Yang Cao
- Donders Centre for Cognition, Radboud University, Nijmegen, Netherlands
| | - Esther Janse
- Centre for Language Studies, Radboud University, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
6
|
Tsunada J, Eliades SJ. Frontal-Auditory Cortical Interactions and Sensory Prediction During Vocal Production in Marmoset Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577656. [PMID: 38352422 PMCID: PMC10862695 DOI: 10.1101/2024.01.28.577656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The control of speech and vocal production involves the calculation of error between the intended vocal output and the resulting auditory feedback. Consistent with this model, recent evidence has demonstrated that the auditory cortex is suppressed immediately before and during vocal production, yet is still sensitive to differences between vocal output and altered auditory feedback. This suppression has been suggested to be the result of top-down signals containing information about the intended vocal output, potentially originating from motor or other frontal cortical areas. However, whether such frontal areas are the source of suppressive and predictive signaling to the auditory cortex during vocalization is unknown. Here, we simultaneously recorded neural activity from both the auditory and frontal cortices of marmoset monkeys while they produced self-initiated vocalizations. We found increases in neural activity in both brain areas preceding the onset of vocal production, notably changes in both multi-unit activity and local field potential theta-band power. Connectivity analysis using Granger causality demonstrated that frontal cortex sends directed signaling to the auditory cortex during this pre-vocal period. Importantly, this pre-vocal activity predicted both vocalization-induced suppression of the auditory cortex as well as the acoustics of subsequent vocalizations. These results suggest that frontal cortical areas communicate with the auditory cortex preceding vocal production, with frontal-auditory signals that may reflect the transmission of sensory prediction information. This interaction between frontal and auditory cortices may contribute to mechanisms that calculate errors between intended and actual vocal outputs during vocal communication.
Collapse
Affiliation(s)
- Joji Tsunada
- Chinese Institute for Brain Research, Beijing, China
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Steven J. Eliades
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
7
|
Zhao L, Wang X. Frontal cortex activity during the production of diverse social communication calls in marmoset monkeys. Nat Commun 2023; 14:6634. [PMID: 37857618 PMCID: PMC10587070 DOI: 10.1038/s41467-023-42052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Vocal communication is essential for social behaviors in humans and non-human primates. While the frontal cortex is crucial to human speech production, its role in vocal production in non-human primates has long been questioned. It is unclear whether activities in the frontal cortex represent diverse vocal signals used in non-human primate communication. Here we studied single neuron activities and local field potentials (LFP) in the frontal cortex of male marmoset monkeys while the animal engaged in vocal exchanges with conspecifics in a social environment. We found that both single neuron activities and LFP were modulated by the production of each of the four major call types. Moreover, neural activities showed distinct patterns for different call types and theta-band LFP oscillations showed phase-locking to the phrases of twitter calls, suggesting a neural representation of vocalization features. Our results suggest important functions of the marmoset frontal cortex in supporting the production of diverse vocalizations in communication.
Collapse
Affiliation(s)
- Lingyun Zhao
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, 94158, USA.
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Anand S, Cho H, Adamek M, Burton H, Moran D, Leuthardt E, Brunner P. High gamma coherence between task-responsive sensory-motor cortical regions in a motor reaction-time task. J Neurophysiol 2023; 130:628-639. [PMID: 37584101 PMCID: PMC10648945 DOI: 10.1152/jn.00172.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Electrical activity at high gamma frequencies (70-170 Hz) is thought to reflect the activity of small cortical ensembles. For example, high gamma activity (often quantified by spectral power) can increase in sensory-motor cortex in response to sensory stimuli or movement. On the other hand, synchrony of neural activity between cortical areas (often quantified by coherence) has been hypothesized as an important mechanism for inter-areal communication, thereby serving functional roles in cognition and behavior. Currently, high gamma activity has primarily been studied as a local amplitude phenomenon. We investigated the synchronization of high gamma activity within sensory-motor cortex and the extent to which underlying high gamma activity can explain coherence during motor tasks. We characterized high gamma coherence in sensory-motor networks and the relationship between coherence and power by analyzing electrocorticography (ECoG) data from human subjects as they performed a motor response to sensory cues. We found greatly increased high gamma coherence during the motor response compared with the sensory cue. High gamma power poorly predicted high gamma coherence, but the two shared a similar time course. However, high gamma coherence persisted longer than high gamma power. The results of this study suggest that high gamma coherence is a physiologically distinct phenomenon during a sensory-motor task, the emergence of which may require active task participation.NEW & NOTEWORTHY Motor action after auditory stimulus elicits high gamma responses in sensory-motor and auditory cortex, respectively. We show that high gamma coherence reliably and greatly increased during motor response, but not after auditory stimulus. Underlying high gamma power could not explain high gamma coherence. Our results indicate that high gamma coherence is a physiologically distinct sensory-motor phenomenon that may serve as an indicator of increased synaptic communication on short timescales (∼1 s).
Collapse
Affiliation(s)
- Shashank Anand
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Hohyun Cho
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- National Center for Adaptive Neurotechnologies, St. Louis, Missouri, United States
| | - Markus Adamek
- National Center for Adaptive Neurotechnologies, St. Louis, Missouri, United States
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Harold Burton
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Daniel Moran
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Eric Leuthardt
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- National Center for Adaptive Neurotechnologies, St. Louis, Missouri, United States
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Peter Brunner
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- National Center for Adaptive Neurotechnologies, St. Louis, Missouri, United States
- Department of Neurology, Albany Medical College, Albany, New York, United States
| |
Collapse
|
9
|
Boerger TF, Pahapill P, Butts AM, Arocho-Quinones E, Raghavan M, Krucoff MO. Large-scale brain networks and intra-axial tumor surgery: a narrative review of functional mapping techniques, critical needs, and scientific opportunities. Front Hum Neurosci 2023; 17:1170419. [PMID: 37520929 PMCID: PMC10372448 DOI: 10.3389/fnhum.2023.1170419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, a paradigm shift in neuroscience has been occurring from "localizationism," or the idea that the brain is organized into separately functioning modules, toward "connectomics," or the idea that interconnected nodes form networks as the underlying substrates of behavior and thought. Accordingly, our understanding of mechanisms of neurological function, dysfunction, and recovery has evolved to include connections, disconnections, and reconnections. Brain tumors provide a unique opportunity to probe large-scale neural networks with focal and sometimes reversible lesions, allowing neuroscientists the unique opportunity to directly test newly formed hypotheses about underlying brain structural-functional relationships and network properties. Moreover, if a more complete model of neurological dysfunction is to be defined as a "disconnectome," potential avenues for recovery might be mapped through a "reconnectome." Such insight may open the door to novel therapeutic approaches where previous attempts have failed. In this review, we briefly delve into the most clinically relevant neural networks and brain mapping techniques, and we examine how they are being applied to modern neurosurgical brain tumor practices. We then explore how brain tumors might teach us more about mechanisms of global brain dysfunction and recovery through pre- and postoperative longitudinal connectomic and behavioral analyses.
Collapse
Affiliation(s)
- Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Peter Pahapill
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alissa M. Butts
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
- Mayo Clinic, Rochester, MN, United States
| | - Elsa Arocho-Quinones
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
10
|
Cole RC, Espinoza AI, Singh A, Berger JI, Cavanagh JF, Wessel JR, Greenlee JD, Narayanan NS. Novelty-induced frontal-STN networks in Parkinson's disease. Cereb Cortex 2022; 33:469-485. [PMID: 35297483 PMCID: PMC9837604 DOI: 10.1093/cercor/bhac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Novelty detection is a primitive subcomponent of cognitive control that can be deficient in Parkinson's disease (PD) patients. Here, we studied the corticostriatal mechanisms underlying novelty-response deficits. In participants with PD, we recorded from cortical circuits with scalp-based electroencephalography (EEG) and from subcortical circuits using intraoperative neurophysiology during surgeries for implantation of deep brain stimulation (DBS) electrodes. We report three major results. First, novel auditory stimuli triggered midfrontal low-frequency rhythms; of these, 1-4 Hz "delta" rhythms were linked to novelty-associated slowing, whereas 4-7 Hz "theta" rhythms were specifically attenuated in PD. Second, 32% of subthalamic nucleus (STN) neurons were response-modulated; nearly all (94%) of these were also modulated by novel stimuli. Third, response-modulated STN neurons were coherent with midfrontal 1-4 Hz activity. These findings link scalp-based measurements of neural activity with neuronal activity in the STN. Our results provide insight into midfrontal cognitive control mechanisms and how purported hyperdirect frontobasal ganglia circuits evaluate new information.
Collapse
Affiliation(s)
- Rachel C Cole
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
| | - Arturo I Espinoza
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, 57069, SD, United States
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa, 340 Iowa Ave, Iowa City, IA, 52242, United States
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, 2001 Redondo S Dr, Albuquerque, NM 87106, United States
| | - Jan R Wessel
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Jeremy D Greenlee
- Department of Neurosurgery, University of Iowa, 340 Iowa Ave, Iowa City, IA, 52242, United States
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, United States
- Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
11
|
Li T, Chang Y, Zhao S, Jones JA, Chen X, Gan C, Wu X, Dai G, Li J, Shen Y, Liu P, Liu H. The left inferior frontal gyrus is causally linked to vocal feedback control: evidence from high-definition transcranial alternating current stimulation. Cereb Cortex 2022; 33:5625-5635. [PMID: 36376991 DOI: 10.1093/cercor/bhac447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Current models of speech motor control propose a role for the left inferior frontal gyrus (IFG) in feedforward control of speech production. There is evidence, however, that has implicated the functional relevance of the left IFG for the neuromotor processing of vocal feedback errors. The present event-related potential (ERP) study examined whether the left IFG is causally linked to auditory feedback control of vocal production with high-definition transcranial alternating current stimulation (HD-tACS). After receiving active or sham HD-tACS over the left IFG at 6 or 70 Hz, 20 healthy adults vocalized the vowel sounds while hearing their voice unexpectedly pitch-shifted by ±200 cents. The results showed that 6 or 70 Hz HD-tACS over the left IFG led to larger magnitudes and longer latencies of vocal compensations for pitch perturbations paralleled by larger ERP P2 responses than sham HD-tACS. Moreover, there was a lack of frequency specificity that showed no significant differences between 6 and 70 Hz HD-tACS. These findings provide first causal evidence linking the left IFG to vocal pitch regulation, suggesting that the left IFG is an important part of the feedback control network that mediates vocal compensations for auditory feedback errors.
Collapse
Affiliation(s)
- Tingni Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Yichen Chang
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Shuzhi Zhao
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jeffery A Jones
- Wilfrid Laurier University Psychology Department and Laurier Centre for Cognitive Neuroscience, , Waterloo, Ontario N2L 3C5 , Canada
| | - Xi Chen
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Chu Gan
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Xiuqin Wu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Guangyan Dai
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jingting Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Ying Shen
- The First Affiliated Hospital of Nanjing Medical University Rehabilitation Medicine Center, , Nanjing 210029 , China
| | - Peng Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Hanjun Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
- Zhongshan School of Medicine, Sun Yat-sen University Guangdong Provincial Key Laboratory of Brain Function and Disease, , Guangzhou 510080 , China
| |
Collapse
|
12
|
Echolocation-related reversal of information flow in a cortical vocalization network. Nat Commun 2022; 13:3642. [PMID: 35752629 PMCID: PMC9233670 DOI: 10.1038/s41467-022-31230-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The mammalian frontal and auditory cortices are important for vocal behavior. Here, using local-field potential recordings, we demonstrate that the timing and spatial patterns of oscillations in the fronto-auditory network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominant top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depend on the behavioral role of the vocalization and on the timing relative to vocal onset. We observed the emergence of predominant bottom-up (auditory-to-frontal) information transfer during the post-vocal period specific to echolocation pulse emission, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model.
Collapse
|
13
|
Panachakel JT, Sharma K, A S A, A G R. Can we identify the category of imagined phoneme from EEG? ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:459-462. [PMID: 34891332 DOI: 10.1109/embc46164.2021.9630604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phonemes are classified into different categories based on the place and manner of articulation. We investigate the differences between the neural correlates of imagined nasal and bilabial consonants (distinct phonological categories). Mean phase coherence is used as a metric for measuring the phase synchronisation between pairs of electrodes in six cortical regions (auditory, motor, prefrontal, sensorimotor, so-matosensory and premotor) during the imagery of nasal and bilabial consonants. Statistically significant difference at 95% confidence interval is observed in beta and lower-gamma bands in various cortical regions. Our observations are inline with the directions into velocities of articulators and dual stream prediction models and support the hypothesis that phonological categories not only exist in articulated speech but can also be distinguished from the EEG of imagined speech.
Collapse
|
14
|
Nourski KV, Steinschneider M, Rhone AE, Krause BM, Mueller RN, Kawasaki H, Banks MI. Cortical Responses to Vowel Sequences in Awake and Anesthetized States: A Human Intracranial Electrophysiology Study. Cereb Cortex 2021; 31:5435-5448. [PMID: 34117741 PMCID: PMC8568007 DOI: 10.1093/cercor/bhab168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Elucidating neural signatures of sensory processing across consciousness states is a major focus in neuroscience. Noninvasive human studies using the general anesthetic propofol reveal differential effects on auditory cortical activity, with a greater impact on nonprimary and auditory-related areas than primary auditory cortex. This study used intracranial electroencephalography to examine cortical responses to vowel sequences during induction of general anesthesia with propofol. Subjects were adult neurosurgical patients with intracranial electrodes placed to identify epileptic foci. Data were collected before electrode removal surgery. Stimuli were vowel sequences presented in a target detection task during awake, sedated, and unresponsive states. Averaged evoked potentials (AEPs) and high gamma (70-150 Hz) power were measured in auditory, auditory-related, and prefrontal cortex. In the awake state, AEPs were found throughout studied brain areas; high gamma activity was limited to canonical auditory cortex. Sedation led to a decrease in AEP magnitude. Upon LOC, there was a decrease in the superior temporal gyrus and adjacent auditory-related cortex and a further decrease in AEP magnitude in core auditory cortex, changes in the temporal structure and increased trial-to-trial variability of responses. The findings identify putative biomarkers of LOC and serve as a foundation for future investigations of altered sensory processing.
Collapse
Affiliation(s)
- Kirill V Nourski
- Address correspondence to Kirill V. Nourski, MD, PhD, Department of Neurosurgery, The University of Iowa, 200 Hawkins Dr. 1815 JCP, Iowa City, IA 52242, USA.
| | - Mitchell Steinschneider
- Department of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rashmi N Mueller
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA,Department of Anesthesia, The University of Iowa, Iowa City, IA 52242, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA,Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
15
|
Neural Correlates of Vocal Auditory Feedback Processing: Unique Insights from Electrocorticography Recordings in a Human Cochlear Implant User. eNeuro 2021; 8:ENEURO.0181-20.2020. [PMID: 33419861 PMCID: PMC7877459 DOI: 10.1523/eneuro.0181-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
There is considerable interest in understanding cortical processing and the function of top-down and bottom-up human neural circuits that control speech production. Research efforts to investigate these circuits are aided by analysis of spectro-temporal response characteristics of neural activity recorded by electrocorticography (ECoG). Further, cortical processing may be altered in the case of hearing-impaired cochlear implant (CI) users, as electric excitation of the auditory nerve creates a markedly different neural code for speech compared with that of the functionally intact hearing system. Studies of cortical activity in CI users typically record scalp potentials and are hampered by stimulus artifact contamination and by spatiotemporal filtering imposed by the skull. We present a unique case of a CI user who required direct recordings from the cortical surface using subdural electrodes implanted for epilepsy assessment. Using experimental conditions where the subject vocalized in the presence (CIs ON) or absence (CIs OFF) of auditory feedback, or listened to playback of self-vocalizations without production, we observed ECoG activity primarily in γ (32–70 Hz) and high γ (70–150 Hz) bands at focal regions on the lateral surface of the superior temporal gyrus (STG). High γ band responses differed in their amplitudes across conditions and cortical sites, possibly reflecting different rates of stimulus presentation and differing levels of neural adaptation. STG γ responses to playback and vocalization with auditory feedback were not different from responses to vocalization without feedback, indicating this activity reflects not only auditory, but also attentional, efference-copy, and sensorimotor processing during speech production.
Collapse
|
16
|
Neural oscillations in the fronto-striatal network predict vocal output in bats. PLoS Biol 2020; 18:e3000658. [PMID: 32191695 PMCID: PMC7081985 DOI: 10.1371/journal.pbio.3000658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The ability to vocalize is ubiquitous in vertebrates, but neural networks underlying vocal control remain poorly understood. Here, we performed simultaneous neuronal recordings in the frontal cortex and dorsal striatum (caudate nucleus, CN) during the production of echolocation pulses and communication calls in bats. This approach allowed us to assess the general aspects underlying vocal production in mammals and the unique evolutionary adaptations of bat echolocation. Our data indicate that before vocalization, a distinctive change in high-gamma and beta oscillations (50–80 Hz and 12–30 Hz, respectively) takes place in the bat frontal cortex and dorsal striatum. Such precise fine-tuning of neural oscillations could allow animals to selectively activate motor programs required for the production of either echolocation or communication vocalizations. Moreover, the functional coupling between frontal and striatal areas, occurring in the theta oscillatory band (4–8 Hz), differs markedly at the millisecond level, depending on whether the animals are in a navigational mode (that is, emitting echolocation pulses) or in a social communication mode (emitting communication calls). Overall, this study indicates that fronto-striatal oscillations could provide a neural correlate for vocal control in bats. In bats, rhythmic activity in frontal and striatal areas of the brain provide a neural correlate for vocal control, which can be used to predict whether the ensuing vocalizations are for echolocation or social communication.
Collapse
|
17
|
Kelley R, Flouty O, Emmons EB, Kim Y, Kingyon J, Wessel JR, Oya H, Greenlee JD, Narayanan NS. A human prefrontal-subthalamic circuit for cognitive control. Brain 2019; 141:205-216. [PMID: 29190362 DOI: 10.1093/brain/awx300] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/25/2017] [Indexed: 11/14/2022] Open
Abstract
The subthalamic nucleus is a key site controlling motor function in humans. Deep brain stimulation of the subthalamic nucleus can improve movements in patients with Parkinson's disease; however, for unclear reasons, it can also have cognitive effects. Here, we show that the human subthalamic nucleus is monosynaptically connected with cognitive brain areas such as the prefrontal cortex. Single neurons and field potentials in the subthalamic nucleus are modulated during cognitive processing and are coherent with 4-Hz oscillations in medial prefrontal cortex. These data predict that low-frequency deep brain stimulation may alleviate cognitive deficits in Parkinson's disease patients. In line with this idea, we found that novel 4-Hz deep brain stimulation of the subthalamic nucleus improved cognitive performance. These data support a role for the human hyperdirect pathway in cognitive control, which could have relevance for brain-stimulation therapies aimed at cognitive symptoms of human brain disease.awx300media15660002226001.
Collapse
Affiliation(s)
- Ryan Kelley
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA.,Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Oliver Flouty
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Eric B Emmons
- Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Johnathan Kingyon
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jan R Wessel
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Jeremy D Greenlee
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
18
|
Power and phase coherence in sensorimotor mu and temporal lobe alpha components during covert and overt syllable production. Exp Brain Res 2018; 237:705-721. [DOI: 10.1007/s00221-018-5447-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
|
19
|
Ben-Pazi H, Aran A, Pandyan A, Gelkop N, Ginsberg G, Pollak Y, Elnatan D. Auditory stimulation improves motor function and caretaker burden in children with cerebral palsy- A randomized double blind study. PLoS One 2018; 13:e0208792. [PMID: 30543665 PMCID: PMC6292588 DOI: 10.1371/journal.pone.0208792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/24/2018] [Indexed: 11/18/2022] Open
Abstract
Aim To investigate the impact of auditory stimulation on motor function in children with cerebral palsy (CP) and disabling hypertonia. Method 9 matched pairs (age: 7y5m, SD 4y1m; 13 boys; gross-motor-functional-classification-scale: median 4; manual-ability-classification-system: median 4) were randomized to receive either auditory stimulation embedded in music (study, n = 9) or music alone (sham, control, n = 9) for at least 10 minutes 4 times a week for 4 weeks. Goal-Attainment-Scale, Care-and-Comfort-Hypertonicity-Questionnaire, Gross-Motor-Function–Measure and Quality-of-Upper-Extremity-Skills-Test (QUEST) were assessed before and 5 months following intervention. Result Children receiving auditory stimulation attained more goals than children who listened to music alone (p = 0.002). Parents reported improved care and comfort in children in the study group compared to a slight deterioration in controls (p = 0.002). Upper extremity skills improved in the study group compared to controls (p = 0.006). Similar gross motor function changes were documented in both groups (p = 0.41). One participant reported increased seizure frequency; no other participants with epilepsy reported increased seizure frequency (n = 6/18) and no other adverse events were reported. Interpretation Auditory stimulation alleviated hypertonia and improved fine and gross motor functions.
Collapse
Affiliation(s)
- Hilla Ben-Pazi
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Anand Pandyan
- School of Health and Rehabilitation, Keele University, Keele, United Kingdom
| | - Nava Gelkop
- Physical therapy, Keren-Or Center, Jerusalem, Israel
- Meshi Children's Rehabilitation Center, Jerusalem, Israel
| | | | - Yehuda Pollak
- The Seymour Fox School of Education, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Debby Elnatan
- Meshi Children's Rehabilitation Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
20
|
Flinker A, Knight RT. Broca’s area in comprehension and production, insights from intracranial studies in humans. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Kellmeyer P, Grosse-Wentrup M, Schulze-Bonhage A, Ziemann U, Ball T. Electrophysiological correlates of neurodegeneration in motor and non-motor brain regions in amyotrophic lateral sclerosis-implications for brain-computer interfacing. J Neural Eng 2018; 15:041003. [PMID: 29676287 DOI: 10.1088/1741-2552/aabfa5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE For patients with amyotrophic lateral sclerosis (ALS) who are suffering from severe communication or motor problems, brain-computer interfaces (BCIs) can improve the quality of life and patient autonomy. However, current BCI systems are not as widely used as their potential and patient demand would let assume. This underutilization is a result of technological as well as user-based limitations but also of the comparatively poor performance of currently existing BCIs in patients with late-stage ALS, particularly in the locked-in state. APPROACH Here we review a broad range of electrophysiological studies in ALS patients with the aim to identify electrophysiological correlates of ALS-related neurodegeneration in motor and non-motor brain regions in to better understand potential neurophysiological limitations of current BCI systems for ALS patients. To this end we analyze studies in ALS patients that investigated basic sensory evoked potentials, resting-state and task-based paradigms using electroencephalography or electrocorticography for basic research purposes as well as for brain-computer interfacing. Main results and significance. Our review underscores that, similarly to mounting evidence from neuroimaging and neuropathology, electrophysiological measures too indicate neurodegeneration in non-motor areas in ALS. Furthermore, we identify an unexpected gap of basic and advanced electrophysiological studies in late-stage ALS patients, particularly in the locked-in state. We propose a research strategy on how to fill this gap in order to improve the design and performance of future BCI systems for this patient group.
Collapse
Affiliation(s)
- Philipp Kellmeyer
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany. Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
22
|
Human Sensorimotor Cortex Control of Directly Measured Vocal Tract Movements during Vowel Production. J Neurosci 2018; 38:2955-2966. [PMID: 29439164 DOI: 10.1523/jneurosci.2382-17.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
During speech production, we make vocal tract movements with remarkable precision and speed. Our understanding of how the human brain achieves such proficient control is limited, in part due to the challenge of simultaneously acquiring high-resolution neural recordings and detailed vocal tract measurements. To overcome this challenge, we combined ultrasound and video monitoring of the supralaryngeal articulators (lips, jaw, and tongue) with electrocorticographic recordings from the cortical surface of 4 subjects (3 female, 1 male) to investigate how neural activity in the ventral sensory-motor cortex (vSMC) relates to measured articulator movement kinematics (position, speed, velocity, acceleration) during the production of English vowels. We found that high-gamma activity at many individual vSMC electrodes strongly encoded the kinematics of one or more articulators, but less so for vowel formants and vowel identity. Neural population decoding methods further revealed the structure of kinematic features that distinguish vowels. Encoding of articulator kinematics was sparsely distributed across time and primarily occurred during the time of vowel onset and offset. In contrast, encoding was low during the steady-state portion of the vowel, despite sustained neural activity at some electrodes. Significant representations were found for all kinematic parameters, but speed was the most robust. These findings enabled by direct vocal tract monitoring demonstrate novel insights into the representation of articulatory kinematic parameters encoded in the vSMC during speech production.SIGNIFICANCE STATEMENT Speaking requires precise control and coordination of the vocal tract articulators (lips, jaw, and tongue). Despite the impressive proficiency with which humans move these articulators during speech production, our understanding of how the brain achieves such control is rudimentary, in part because the movements themselves are difficult to observe. By simultaneously measuring speech movements and the neural activity that gives rise to them, we demonstrate how neural activity in sensorimotor cortex produces complex, coordinated movements of the vocal tract.
Collapse
|
23
|
Cruzat J, Deco G, Tauste-Campo A, Principe A, Costa A, Kringelbach ML, Rocamora R. The dynamics of human cognition: Increasing global integration coupled with decreasing segregation found using iEEG. Neuroimage 2018; 172:492-505. [PMID: 29425897 DOI: 10.1016/j.neuroimage.2018.01.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 11/28/2022] Open
Abstract
Cognitive processing requires the ability to flexibly integrate and process information across large brain networks. How do brain networks dynamically reorganize to allow broad communication between many different brain regions in order to integrate information? We record neural activity from 12 epileptic patients using intracranial EEG while performing three cognitive tasks. We assess how the functional connectivity between different brain areas changes to facilitate communication across them. At the topological level, this facilitation is characterized by measures of integration and segregation. Across all patients, we found significant increases in integration and decreases in segregation during cognitive processing, especially in the gamma band (50-90 Hz). We also found higher levels of global synchronization and functional connectivity during task execution, again particularly in the gamma band. More importantly, functional connectivity modulations were not caused by changes in the level of the underlying oscillations. Instead, these modulations were caused by a rearrangement of the mutual synchronization between the different nodes as proposed by the "Communication Through Coherence" Theory.
Collapse
Affiliation(s)
- Josephine Cruzat
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005, Barcelona, Spain.
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, 3800, Australia
| | - Adrià Tauste-Campo
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005, Barcelona, Spain; Epilepsy Unit, Department of Neurology, IMIM Hospital del Mar, Universitat Pompeu Fabra, Passeig Marítim, 25, 08003, Barcelona, Spain
| | - Alessandro Principe
- Epilepsy Unit, Department of Neurology, IMIM Hospital del Mar, Universitat Pompeu Fabra, Passeig Marítim, 25, 08003, Barcelona, Spain
| | - Albert Costa
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, OX3 7JX, Oxford, UK; Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, Building 10G, 8000, Aarhus, Denmark; Institut d'études avancées de Paris, France
| | - Rodrigo Rocamora
- Epilepsy Unit, Department of Neurology, IMIM Hospital del Mar, Universitat Pompeu Fabra, Passeig Marítim, 25, 08003, Barcelona, Spain
| |
Collapse
|
24
|
Ahn S, Cho H, Kwon M, Kim K, Kwon H, Kim BS, Chang WS, Chang JW, Jun SC. Interbrain phase synchronization during turn-taking verbal interaction-a hyperscanning study using simultaneous EEG/MEG. Hum Brain Mapp 2017; 39:171-188. [PMID: 29024193 DOI: 10.1002/hbm.23834] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/04/2017] [Accepted: 09/22/2017] [Indexed: 01/25/2023] Open
Abstract
Recently, neurophysiological findings about social interaction have been investigated widely, and hardware has been developed that can measure multiple subjects' brain activities simultaneously. These hyperscanning studies have enabled us to discover new and important evidences of interbrain interactions. Yet, very little is known about verbal interaction without any visual input. Therefore, we conducted a new hyperscanning study based on verbal, interbrain turn-taking interaction using simultaneous EEG/MEG, which measures rapidly changing brain activities. To establish turn-taking verbal interactions between a pair of subjects, we set up two EEG/MEG systems (19 and 146 channels of EEG and MEG, respectively) located ∼100 miles apart. Subjects engaged in verbal communication via condenser microphones and magnetic-compatible earphones, and a network time protocol synchronized the two systems. Ten subjects participated in this experiment and performed verbal interaction and noninteraction tasks separately. We found significant oscillations in EEG alpha and MEG alpha/gamma bands in several brain regions for all subjects. Furthermore, we estimated phase synchronization between two brains using the weighted phase lag index and found statistically significant synchronization in EEG and MEG data. Our novel paradigm and neurophysiological findings may foster a basic understanding of the functional mechanisms involved in human social interactions. Hum Brain Mapp 39:171-188, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sangtae Ahn
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hohyun Cho
- New York State Department of Health, Wadsworth Center, Albany, New York
| | - Moonyoung Kwon
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kiwoong Kim
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, South Korea.,Department of Medical Physics, University of Science and Technology, Daejeon, South Korea
| | - Hyukchan Kwon
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Bong Soo Kim
- EIT/LOFUS R&D Center, Institute for Integrative Medicine, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea.,Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
25
|
New Developments in Understanding the Complexity of Human Speech Production. J Neurosci 2017; 36:11440-11448. [PMID: 27911747 DOI: 10.1523/jneurosci.2424-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/21/2022] Open
Abstract
Speech is one of the most unique features of human communication. Our ability to articulate our thoughts by means of speech production depends critically on the integrity of the motor cortex. Long thought to be a low-order brain region, exciting work in the past years is overturning this notion. Here, we highlight some of major experimental advances in speech motor control research and discuss the emerging findings about the complexity of speech motocortical organization and its large-scale networks. This review summarizes the talks presented at a symposium at the Annual Meeting of the Society of Neuroscience; it does not represent a comprehensive review of contemporary literature in the broader field of speech motor control.
Collapse
|
26
|
Basilakos A, Fridriksson J, Rorden C, Behroozmand R, Hanayik T, Naselaris T, Del Gaizo J, Breedlove J, Vandergrift WA, Bonilha L. Activity associated with speech articulation measured through direct cortical recordings. BRAIN AND LANGUAGE 2017; 169:1-7. [PMID: 28236761 PMCID: PMC5417075 DOI: 10.1016/j.bandl.2017.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/01/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The insula has been credited with a role in a number of functions, including speech production. Here, we recorded electrocorticography (ECoG) signals from the left insula during pseudoword articulation in two patients undergoing pre-surgical monitoring for the management of medically-intractable epilepsy. Event-related band power (ERBP) activity from electrodes implanted in the superior precentral gyrus of the insula (SPGI) was compared to that of other left hemisphere regions implicated in speech production. Results showed that SPGI contacts demonstrated significantly greater ERBP within the high-gamma frequency range (75-150Hz) during articulation compared to a listening condition. However, frontal and post-central regions demonstrated significantly greater responses to the articulation task compared to the SPGI. Results suggest the SPGI is active during articulation, but frontal and post-central regions demonstrate significantly more robust responses. Given the small sample size, and number of electrodes implanted in the SPGI, further study is warranted to confirm these findings.
Collapse
Affiliation(s)
- Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, United States
| | - Roozbeh Behroozmand
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, United States
| | - Taylor Hanayik
- Department of Psychology, University of South Carolina, Columbia, SC 29208, United States
| | - Thomas Naselaris
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - John Del Gaizo
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Jesse Breedlove
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - W A Vandergrift
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
27
|
Soyman E, Vicario DS. Principles of auditory processing differ between sensory and premotor structures of the songbird forebrain. J Neurophysiol 2016; 117:1266-1280. [PMID: 28031398 DOI: 10.1152/jn.00462.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 11/22/2022] Open
Abstract
Sensory and motor brain structures work in collaboration during perception. To evaluate their respective contributions, the present study recorded neural responses to auditory stimulation at multiple sites simultaneously in both the higher-order auditory area NCM and the premotor area HVC of the songbird brain in awake zebra finches (Taeniopygia guttata). Bird's own song (BOS) and various conspecific songs (CON) were presented in both blocked and shuffled sequences. Neural responses showed plasticity in the form of stimulus-specific adaptation, with markedly different dynamics between the two structures. In NCM, the response decrease with repetition of each stimulus was gradual and long-lasting and did not differ between the stimuli or the stimulus presentation sequences. In contrast, HVC responses to CON stimuli decreased much more rapidly in the blocked than in the shuffled sequence. Furthermore, this decrease was more transient in HVC than in NCM, as shown by differential dynamics in the shuffled sequence. Responses to BOS in HVC decreased more gradually than to CON stimuli. The quality of neural representations, computed as the mutual information between stimuli and neural activity, was higher in NCM than in HVC. Conversely, internal functional correlations, estimated as the coherence between recording sites, were greater in HVC than in NCM. The cross-coherence between the two structures was weak and limited to low frequencies. These findings suggest that auditory communication signals are processed according to very different but complementary principles in NCM and HVC, a contrast that may inform study of the auditory and motor pathways for human speech processing.NEW & NOTEWORTHY Neural responses to auditory stimulation in sensory area NCM and premotor area HVC of the songbird forebrain show plasticity in the form of stimulus-specific adaptation with markedly different dynamics. These two structures also differ in stimulus representations and internal functional correlations. Accordingly, NCM seems to process the individually specific complex vocalizations of others based on prior familiarity, while HVC responses appear to be modulated by transitions and/or timing in the ongoing sequence of sounds.
Collapse
Affiliation(s)
- Efe Soyman
- Rutgers University, New Brunswick, New Jersey
| | | |
Collapse
|
28
|
Emmons EB, Ruggiero RN, Kelley RM, Parker KL, Narayanan NS. Corticostriatal Field Potentials Are Modulated at Delta and Theta Frequencies during Interval-Timing Task in Rodents. Front Psychol 2016; 7:459. [PMID: 27092091 PMCID: PMC4820903 DOI: 10.3389/fpsyg.2016.00459] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
Organizing movements in time is a critical and highly conserved feature of mammalian behavior. Temporal control of action requires corticostriatal networks. We investigate these networks in rodents using a two-interval timing task while recording LFPs in medial frontal cortex (MFC) or dorsomedial striatum. Consistent with prior work, we found cue-triggered delta (1–4 Hz) and theta activity (4–8 Hz) primarily in rodent MFC. We observed delta activity across temporal intervals in MFC and dorsomedial striatum. Rewarded responses were associated with increased delta activity in MFC. Activity in theta bands in MFC and delta bands in the striatum was linked with the timing of responses. These data suggest both delta and theta activity in frontostriatal networks are modulated during interval timing and that activity in these bands may be involved in the temporal control of action.
Collapse
Affiliation(s)
- Eric B Emmons
- Department of Neurology, Carver College of Medicine, The University of Iowa Iowa City, IA, USA
| | - Rafael N Ruggiero
- Department of Neurology, Carver College of Medicine, The University of IowaIowa City, IA, USA; Department of Neuroscience and Behavioral Sciences, University of São PauloSão Paulo, Brazil
| | - Ryan M Kelley
- Department of Neurology, Carver College of Medicine, The University of Iowa Iowa City, IA, USA
| | - Krystal L Parker
- Department of Neurology, Carver College of Medicine, The University of Iowa Iowa City, IA, USA
| | - Nandakumar S Narayanan
- Department of Neurology, Carver College of Medicine, The University of IowaIowa City, IA, USA; Aging Mind and Brain Initiative, Carver College of Medicine, The University of IowaIowa City, IA, USA
| |
Collapse
|
29
|
Behroozmand R, Oya H, Nourski KV, Kawasaki H, Larson CR, Brugge JF, Howard MA, Greenlee JDW. Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus. J Neurosci 2016; 36:2302-15. [PMID: 26888939 PMCID: PMC4756159 DOI: 10.1523/jneurosci.3305-14.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/06/2023] Open
Abstract
The present study investigated how pitch frequency, a perceptually relevant aspect of periodicity in natural human vocalizations, is encoded in Heschl's gyrus (HG), and how this information may be used to influence vocal pitch motor control. We recorded local field potentials from multicontact depth electrodes implanted in HG of 14 neurosurgical epilepsy patients as they vocalized vowel sounds and received brief (200 ms) pitch perturbations at 100 Cents in their auditory feedback. Event-related band power responses to vocalizations showed sustained frequency following responses that tracked voice fundamental frequency (F0) and were significantly enhanced in posteromedial HG during speaking compared with when subjects listened to the playback of their own voice. In addition to frequency following responses, a transient response component within the high gamma frequency band (75-150 Hz) was identified. When this response followed the onset of vocalization, the magnitude of the response was the same for the speaking and playback conditions. In contrast, when this response followed a pitch shift, its magnitude was significantly enhanced during speaking compared with playback. We also observed that, in anterolateral HG, the power of high gamma responses to pitch shifts correlated with the magnitude of compensatory vocal responses. These findings demonstrate a functional parcellation of HG with neural activity that encodes pitch in natural human voice, distinguishes between self-generated and passively heard vocalizations, detects discrepancies between the intended and heard vocalization, and contains information about the resulting behavioral vocal compensations in response to auditory feedback pitch perturbations. SIGNIFICANCE STATEMENT The present study is a significant contribution to our understanding of sensor-motor mechanisms of vocal production and motor control. The findings demonstrate distinct functional parcellation of core and noncore areas within human auditory cortex on Heschl's gyrus that process natural human vocalizations and pitch perturbations in the auditory feedback. In addition, our data provide evidence for distinct roles of high gamma neural oscillations and frequency following responses for processing periodicity in human vocalizations during vocal production and motor control.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, Speech Neuroscience Laboratory, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina 29208,
| | - Hiroyuki Oya
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Kirill V Nourski
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Hiroto Kawasaki
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Charles R Larson
- Speech Physiology Laboratory, Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208, and
| | - John F Brugge
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, Department of Psychology, University of Wisconsin, Madison, Wisconsin 53705
| | - Matthew A Howard
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Jeremy D W Greenlee
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|