1
|
Liu Y, Hao S, Hao H, Zheng G, Bing J, Kang L, Li J, Zhao H, Hao H. Construction of a Novel Necroptosis-Related Signature in Rat DRG for Neuropathic Pain. J Inflamm Res 2025; 18:147-165. [PMID: 39802520 PMCID: PMC11720641 DOI: 10.2147/jir.s494286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Background Recent studies have shown necroptosis may play a role in the development of inflammation-associated pain. However, research on the correlation between necroptosis-related genes and neuropathic pain in the dorsal root ganglia (DRG) is limited. This study aims to identify a gene signature related to necroptosis in DRG that can predict neuropathic pain. Methods The mRNA expression profiles associated with neuropathic pain (GSE24982 and GSE30691) were acquired from the Gene Expression Omnibus (GEO) database. The Least Absolute Shrinkage and Selection Operator (Lasso) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) regressions were performed in GSE24982 database to constructed the necroptosis-related diferentially expressed genes (NRDEGs) signature related to neuropathic pain. Nomogram, Receiver Operating Characteristic (ROC), GSE30691 database analysis and basic experiments were used to verify the accuracy of the signature. Go and KEGG analysis, interaction network and immune infiltration were used to analyze the biological function of the signature. Results A predictive signature targeting rat DRG for neuropathic pain through a variety of methods to verify the accuracy was developed based on 3 NRDEGs (TLR4, CAPN2, RIPK3). Significantly enriched KEGG and GO pathways, drug target prediction and non-coding RNAs related to the signature holded promise for advancing our understanding of potential avenues for treatment and the mechanisms underlying neuropathic pain. Immune infiltration analysis revealed which types of immune cells related to the NRDEGs signature played an important role in the occurrence and development of neuropathic pain. Basic experiments provided crucial evidence that the 3 NRDEGs in DRG served as important regulators of neuropathic pain. Conclusion The prediction signature based on 3 key NRDEGs showed promise in predicting the presence of neuropathic pain, which may open up new avenues for the development of novel therapies for neuropathic pain.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shikang Hao
- The First Clinical Medical School, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hongyu Hao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Guona Zheng
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Jie Bing
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lin Kang
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Jia Li
- Outpatient Department, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Huanfen Zhao
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Center of Innovative Drug Research and Evaluation, Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
2
|
Reel JM, Abbadi J, Cox MA. T cells at the interface of neuroimmune communication. J Allergy Clin Immunol 2024; 153:894-903. [PMID: 37952833 PMCID: PMC10999355 DOI: 10.1016/j.jaci.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.
Collapse
Affiliation(s)
- Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Jumana Abbadi
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Okla; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
3
|
Menon N, Kishen A. Nociceptor-Macrophage Interactions in Apical Periodontitis: How Biomolecules Link Inflammation with Pain. Biomolecules 2023; 13:1193. [PMID: 37627258 PMCID: PMC10452348 DOI: 10.3390/biom13081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Periradicular tissues have a rich supply of peripheral afferent neurons, also known as nociceptive neurons, originating from the trigeminal nerve. While their primary function is to relay pain signals to the brain, these are known to be involved in modulating innate and adaptive immunity by initiating neurogenic inflammation (NI). Studies have investigated neuroanatomy and measured the levels of biomolecules such as cytokines and neuropeptides in human saliva, gingival crevicular fluid, or blood/serum samples in apical periodontitis (AP) to validate the possible role of trigeminal nociceptors in inflammation and tissue regeneration. However, the contributions of nociceptors and the mechanisms involved in the neuro-immune interactions in AP are not fully understood. This narrative review addresses the complex biomolecular interactions of trigeminal nociceptors with macrophages, the effector cells of the innate immune system, in the clinical manifestations of AP.
Collapse
Affiliation(s)
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| |
Collapse
|
4
|
Hummig W, Baggio DF, Lopes RV, dos Santos SMD, Ferreira LEN, Chichorro JG. Antinociceptive effect of ultra-low dose naltrexone in a pre-clinical model of postoperative orofacial pain. Brain Res 2023; 1798:148154. [DOI: 10.1016/j.brainres.2022.148154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
5
|
Modulation of Glia Activation by TRPA1 Antagonism in Preclinical Models of Migraine. Int J Mol Sci 2022; 23:ijms232214085. [PMID: 36430567 PMCID: PMC9697613 DOI: 10.3390/ijms232214085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Preclinical data point to the contribution of transient receptor potential ankyrin 1 (TRPA1) channels to the complex mechanisms underlying migraine pain. TRPA1 channels are expressed in primary sensory neurons, as well as in glial cells, and they can be activated/sensitized by inflammatory mediators. The aim of this study was to investigate the relationship between TRPA1 channels and glial activation in the modulation of trigeminal hyperalgesia in preclinical models of migraine based on acute and chronic nitroglycerin challenges. Rats were treated with ADM_12 (TRPA1 antagonist) and then underwent an orofacial formalin test to assess trigeminal hyperalgesia. mRNA levels of pro- and anti-inflammatory cytokines, calcitonin gene-related peptide (CGRP) and glia cell activation were evaluated in the Medulla oblongata and in the trigeminal ganglia. In the nitroglycerin-treated rats, ADM_12 showed an antihyperalgesic effect in both acute and chronic models, and it counteracted the changes in CGRP and cytokine gene expression. In the acute nitroglycerin model, ADM_12 reduced nitroglycerin-induced increase in microglial and astroglial activation in trigeminal nucleus caudalis area. In the chronic model, we detected a nitroglycerin-induced activation of satellite glial cells in the trigeminal ganglia that was inhibited by ADM_12. These findings show that TRPA1 antagonism reverts experimentally induced hyperalgesia in acute and chronic models of migraine and prevents multiple changes in inflammatory pathways by modulating glial activation.
Collapse
|
6
|
Lysophosphatidylcholine: Potential Target for the Treatment of Chronic Pain. Int J Mol Sci 2022; 23:ijms23158274. [PMID: 35955410 PMCID: PMC9368269 DOI: 10.3390/ijms23158274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/26/2022] Open
Abstract
The bioactive lipid lysophosphatidylcholine (LPC), a major phospholipid component of oxidized low-density lipoprotein (Ox-LDL), originates from the cleavage of phosphatidylcholine by phospholipase A2 (PLA2) and is catabolized to other substances by different enzymatic pathways. LPC exerts pleiotropic effects mediated by its receptors, G protein-coupled signaling receptors, Toll-like receptors, and ion channels to activate several second messengers. Lysophosphatidylcholine (LPC) is increasingly considered a key marker/factor positively in pathological states, especially inflammation and atherosclerosis development. Current studies have indicated that the injury of nervous tissues promotes oxidative stress and lipid peroxidation, as well as excessive accumulation of LPC, enhancing the membrane hyperexcitability to induce chronic pain, which may be recognized as one of the hallmarks of chronic pain. However, findings from lipidomic studies of LPC have been lacking in the context of chronic pain. In this review, we focus in some detail on LPC sources, biochemical pathways, and the signal-transduction system. Moreover, we outline the detection methods of LPC for accurate analysis of each individual LPC species and reveal the pathophysiological implication of LPC in chronic pain, which makes it an interesting target for biomarkers and the development of medicine regarding chronic pain.
Collapse
|
7
|
Acioglu C, Heary RF, Elkabes S. Roles of neuronal toll-like receptors in neuropathic pain and central nervous system injuries and diseases. Brain Behav Immun 2022; 102:163-178. [PMID: 35176442 DOI: 10.1016/j.bbi.2022.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are innate immune receptors that are expressed in immune cells as well as glia and neurons of the central and peripheral nervous systems. They are best known for their role in the host defense in response to pathogens and for the induction of inflammation in infectious and non-infectious diseases. In the central nervous system (CNS), TLRs modulate glial and neuronal functions as well as innate immunity and neuroinflammation under physiological or pathophysiological conditions. The majority of the studies on TLRs in CNS pathologies investigated their overall contribution without focusing on a particular cell type, or they analyzed TLRs in glia and infiltrating immune cells in the context of neuroinflammation and cellular activation. The role of neuronal TLRs in CNS diseases and injuries has received little attention and remains underappreciated. The primary goal of this review is to summarize findings demonstrating the pivotal and unique roles of neuronal TLRs in neuropathic pain, Alzheimer's disease, Parkinson's disease and CNS injuries. We discuss how the current findings warrant future investigations to better define the specific contributions of neuronal TLRs to these pathologies. We underline the paucity of information regarding the role of neuronal TLRs in other neurodegenerative, demyelinating, and psychiatric diseases. We draw attention to the importance of broadening research on neuronal TLRs in view of emerging evidence demonstrating their distinctive functional properties.
Collapse
Affiliation(s)
- Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States
| | - Robert F Heary
- Department of Neurological Surgery, Hackensack Meridian School of Medicine, Mountainside Medical Center, Montclair, NJ 07042, United States
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
8
|
Zhang X, Cao J, Zhao S, Yang X, Dong J, Tan Y, Yu T, He Y. Nociceptive Sensory Fibers Drive Interleukin-23 Production in a Murine Model of Psoriasis via Calcitonin Gene-Related Peptide. Front Immunol 2021; 12:743675. [PMID: 34745116 PMCID: PMC8569654 DOI: 10.3389/fimmu.2021.743675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Neuroimmunity is involved in the pathogenesis of psoriasis, but the mechanism underlying the interaction between the nervous system and the interleukin (IL)-23/IL-17 immune axis is yet unclear. This study reveals the essential role of the sensory neuron-derived calcitonin gene-related peptide (CGRP) in imiquimod (IMQ)-induced expression of IL-23. First, we show that the increased nociceptive behavior was consistent with the development of psoriasiform dermatitis, which requires intact sensory innervation. Systemic ultrapotent Transient receptor potential vanilloid 1 (TRPV1) agonist (resiniferatoxin, RTX) treatment-induced sensory denervation resulted in a significant decrease in IL-23 expression in this model, while the recombinant IL-23 treatment induced IL-17A expression was intact after RTX treatment. In addition, IMQ exposure induced a transient increase in CGRP expression in the dorsal root ganglion. The neuron-derived CGRP expression was completely abolished by sensory denervation, thereby downregulating IL-23 expression, which could be reversed through the introduction of CGRP into the denervated dorsal skin. Our results suggest that nociceptive sensory neurons may drive the production of IL-23, resulting in IL-17A production from γδ T cells via the neuropeptide CGRP in the pathology of psoriasis.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiali Cao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Siqi Zhao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xutong Yang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jie Dong
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yaqi Tan
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Teng Yu
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Branch in Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
9
|
Proskocil BJ, Wai K, Lebold KM, Norgard MA, Michaelis KA, De La Torre U, Cook M, Marks DL, Fryer AD, Jacoby DB, Drake MG. TLR7 is expressed by support cells, but not sensory neurons, in ganglia. J Neuroinflammation 2021; 18:209. [PMID: 34530852 PMCID: PMC8447680 DOI: 10.1186/s12974-021-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Toll-like receptor 7 (TLR7) is an innate immune receptor that detects viral single-stranded RNA and triggers the production of proinflammatory cytokines and type 1 interferons in immune cells. TLR7 agonists also modulate sensory nerve function by increasing neuronal excitability, although studies are conflicting whether sensory neurons specifically express TLR7. This uncertainty has confounded the development of a mechanistic understanding of TLR7 function in nervous tissues. Methods TLR7 expression was tested using in situ hybridization with species-specific RNA probes in vagal and dorsal root sensory ganglia in wild-type and TLR7 knockout (KO) mice and in guinea pigs. Since TLR7 KO mice were generated by inserting an Escherichia coli lacZ gene in exon 3 of the mouse TLR7 gene, wild-type and TLR7 (KO) mouse vagal ganglia were also labeled for lacZ. In situ labeling was compared to immunohistochemistry using TLR7 antibody probes. The effects of influenza A infection on TLR7 expression in sensory ganglia and in the spleen were also assessed. Results In situ probes detected TLR7 in the spleen and in small support cells adjacent to sensory neurons in the dorsal root and vagal ganglia in wild-type mice and guinea pigs, but not in TLR7 KO mice. TLR7 was co-expressed with the macrophage marker Iba1 and the satellite glial cell marker GFAP, but not with the neuronal marker PGP9.5, indicating that TLR7 is not expressed by sensory nerves in either vagal or dorsal root ganglia in mice or guinea pigs. In contrast, TLR7 antibodies labeled small- and medium-sized neurons in wild-type and TLR7 KO mice in a TLR7-independent manner. Influenza A infection caused significant weight loss and upregulation of TLR7 in the spleens, but not in vagal ganglia, in mice. Conclusion TLR7 is expressed by macrophages and satellite glial cells, but not neurons in sensory ganglia suggesting TLR7’s neuromodulatory effects are mediated indirectly via activation of neuronally-associated support cells, not through activation of neurons directly. Our data also suggest TLR7’s primary role in neuronal tissues is not related to antiviral immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02269-x.
Collapse
Affiliation(s)
- Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Karol Wai
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ubaldo De La Torre
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
10
|
Jiang ZJ, Li QY, Zhang YY, Zeng MX, Hu H, Zhang FM, Bi LB, Gu JH, Liu XJ. Deletion of MyD88 adaptor in nociceptor alleviates low-dose formalin-induced acute pain and persistent pain in mice. Neuroreport 2021; 32:378-385. [PMID: 33661805 DOI: 10.1097/wnr.0000000000001608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The myeloid differentiation factor 88 (MyD88) adaptor mediates signaling by Toll-like receptors and some interleukins (ILs) in neural and non-neuronal cells. Recently, MyD88 protein was found to express in primary sensory neurons and be involved in the maintenance of persistent pain induced by complete Freund's adjuvant, chronic constriction injury and chemotherapy treatment in rodents. However, whether MyD88 in nociceptive neurons contributes to persistent pain induced by intraplantar injection of formalin remains elusive. Here, using conditional knockout (CKO) mice, we found that selective deletion of Myd88 in Nav1.8-expressing primary nociceptive neurons led to reduced pain response in the recovery phase of 1% formalin-induced mechanical pain and impaired the persistent thermal pain. Moreover, CKO mice exhibited reduced phase II pain response in 1%, but not 5%, formalin-induced acute inflammatory pain. Finally, nociceptor MyD88 deletion resulted in less neuronal c-Fos activation in spinal dorsal horns following 1% formalin stimulation. These data suggest that MyD88 in nociceptive neurons is not only involved in persistent mechanical pain but also promotes the transition from acute inflammatory pain to persistent thermal hyperalgesia induced by low-dose formalin stimulation.
Collapse
Affiliation(s)
- Zuo-Jie Jiang
- Pain and Related Disease Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province
| | - Qing-Yi Li
- Pain and Related Disease Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province
| | - Ying-Ying Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing
| | - Mei-Xing Zeng
- Pain and Related Disease Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, China
| | - Feng-Ming Zhang
- Pain and Related Disease Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province
| | - Ling-Bo Bi
- Pain and Related Disease Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province
| | - Jia-Hui Gu
- Pain and Related Disease Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province
| | - Xing-Jun Liu
- Pain and Related Disease Research Laboratory, Shantou University Medical College, Shantou, Guangdong Province
| |
Collapse
|
11
|
TLR4 Signaling Selectively and Directly Promotes CGRP Release from Vagal Afferents in the Mouse. eNeuro 2021; 8:ENEURO.0254-20.2020. [PMID: 33318075 PMCID: PMC7877464 DOI: 10.1523/eneuro.0254-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
There has been a long-standing debate regarding the role of peripheral afferents in mediating rapid-onset anorexia among other responses elicited by peripheral inflammatory insults. Thus, the current study assessed the sufficiency of peripheral afferents expressing toll-like receptor 4 (TLR4) to the initiation of the anorexia caused by peripheral bacterial lipopolysaccharide (LPS). We generated a Tlr4 null (Tlr4LoxTB) mouse in which Tlr4 expression is globally disrupted by a loxP-flanked transcription blocking (TB) cassette. This novel mouse model allowed us to restore the endogenous TLR4 expression in specific cell types. Using Zp3-Cre and Nav1.8-Cre mice, we produced mice that express TLR4 in all cells (Tlr4LoxTB X Zp3-Cre) and in peripheral afferents (Tlr4LoxTB X Nav1.8-Cre), respectively. We validated the Tlr4LoxTB mice, which were phenotypically identical to previously reported global TLR4 knock-out mice. Contrary to our expectations, the administration of LPS did not cause rapid-onset anorexia in mice with Nav1.8-restricted TLR4. The later result prompted us to identify Tlr4-expressing vagal afferents using in situ hybridization (ISH). In vivo, we found that Tlr4 mRNA was primarily enriched in vagal Nav1.8 afferents located in the jugular ganglion that co-expressed calcitonin gene-related peptide (CGRP). In vitro, the application of LPS to cultured Nav1.8-restricted TLR4 afferents was sufficient to stimulate the release of CGRP. In summary, we demonstrated using a new mouse model that vagally-expressed TLR4 is selectively involved in stimulating the release of CGRP but not in causing anorexia.
Collapse
|
12
|
Lagomarsino VN, Kostic AD, Chiu IM. Mechanisms of microbial-neuronal interactions in pain and nociception. NEUROBIOLOGY OF PAIN 2020; 9:100056. [PMID: 33392418 PMCID: PMC7772816 DOI: 10.1016/j.ynpai.2020.100056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms of how microorganisms communicate with sensory afferent neurons. How pathogenic microorganisms directly communicate with nociceptor neurons to inflict pain on the host. Symbiotic bacterial communication with gut-extrinsic sensory afferent neurons. Plausible roles on how gut symbionts directly mediate pain and nociception.
Nociceptor sensory neurons innervate barrier tissues that are constantly exposed to microbial stimuli. During infection, pathogenic microorganisms can breach barrier surfaces and produce pain by directly activating nociceptors. Microorganisms that live in symbiotic relationships with their hosts, commensals and mutualists, have also been associated with pain, but the molecular mechanisms of how symbionts act on nociceptor neurons to modulate pain remain largely unknown. In this review, we will discuss the known molecular mechanisms of how microbes directly interact with sensory afferent neurons affecting nociception in the gut, skin and lungs. We will touch on how bacterial, viral and fungal pathogens signal to the host to inflict or suppress pain. We will also discuss recent studies examining how gut symbionts affect pain. Specifically, we will discuss how gut symbionts may interact with sensory afferent neurons either directly, through secretion of metabolites or neurotransmitters, or indirectly,through first signaling to epithelial cells or immune cells, to regulate visceral, neuropathic and inflammatory pain. While this area of research is still in its infancy, more mechanistic studies to examine microbial-sensory neuron crosstalk in nociception may allow us to develop new therapies for the treatment of acute and chronic pain.
Collapse
Affiliation(s)
- Valentina N Lagomarsino
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.,Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandar D Kostic
- Joslin Diabetes Center, Boston, MA 02115, USA.,Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Sharma D, Farrar JD. Adrenergic regulation of immune cell function and inflammation. Semin Immunopathol 2020; 42:709-717. [PMID: 33219396 PMCID: PMC7678770 DOI: 10.1007/s00281-020-00829-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023]
Abstract
The sympathetic nervous system integrates the functions of multiple organ systems by regulating their autonomic physiological activities. The immune system is regulated both locally and systemically by the neurotransmitters epinephrine and norepinephrine secreted by the adrenal gland and local sympathetic neurons. Immune cells respond by activation of adrenergic receptors, primarily the β2-adrenergic receptor, which signal through heterotrimeric G-proteins. Depending upon the cell type, adrenergic signaling regulates a variety of functions in immune cells ranging from cellular migration to cytokine secretion. Furthermore, due to the diurnal oscillation of systemic norepinephrine levels, various immune functions follow a circadian rhythmic pattern. This review will highlight recent advances in our understanding of how the sympathetic nervous system regulates both innate and adaptive immune functions and how this regulation is linked to circadian rhythms.
Collapse
Affiliation(s)
- Drashya Sharma
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - J David Farrar
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Miller RJ, Malfait AM, Miller RE. The innate immune response as a mediator of osteoarthritis pain. Osteoarthritis Cartilage 2020; 28:562-571. [PMID: 31862470 PMCID: PMC6951330 DOI: 10.1016/j.joca.2019.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
In this narrative review, we discuss the emerging role of innate immunity in osteoarthritis (OA) joint pain. First, we give a brief description of the pain pathway in the context of OA. Then we consider how neuro-immune signaling pathways may promote OA pain. First, activation of neuronal Pattern Recognition Receptors by mediators released in a damaged joint can result in direct excitation of nociceptors, as well as in production of chemokines and cytokines. Secondly, indirect neuro-immune signaling may occur when innate immune cells produce algogenic factors, including chemokines and cytokines, that act on the pain pathway. Neuro-immune crosstalk occurs at different levels of the pathway, starting in the joint but also in the innervating dorsal root ganglia and in the dorsal horn. Synovitis is characterized by recruitment of immune cells, including macrophages, mast cells, and CD4+ lymphocytes, which may contribute to nociceptor sensitization and OA pain through production of algogenic factors that amplify the activation of sensory neurons. We discuss examples where this scenario has been suggested by findings in human OA and in animal models. Overall, increasing evidence suggests that innate immune pathways play an initiating as well as facilitating role in pain, but information on how these pathways operate in OA remains limited. Since these innate pathways are eminently targetable, future studies in this area may provide fruitful leads towards a better management of symptomatic OA.
Collapse
|
15
|
Huang AY. Immune Responses Alter Taste Perceptions: Immunomodulatory Drugs Shape Taste Signals during Treatments. J Pharmacol Exp Ther 2019; 371:684-691. [PMID: 31611237 DOI: 10.1124/jpet.119.261297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
Considering that nutrients are required in health and diseases, the detection and ingestion of food to meet the requirements is attributable to the sense of taste. Altered taste sensations lead to a decreased appetite, which is usually one of the frequent causes of malnutrition in patients with diseases. Ongoing taste research has identified a variety of drug pathways that cause changes in taste perceptions in cancer, increasing our understanding of taste disturbances attributable to aberrant mechanisms of taste sensation. The evidence discussed in this review, which addresses the implications of innate immune responses in the modulation of taste functions, focuses on the adverse effects on taste transmission from taste buds by immune modulators responsible for alterations in the perceived intensity of some taste modalities. Another factor, damage to taste progenitor cells that directly results in local effects on taste buds, must also be considered in relation to taste disturbances in patients with cancer. Recent discoveries discussed have provided new insights into the pathophysiology of taste dysfunctions associated with the specific treatments. SIGNIFICANCE STATEMENT: The paradigm that taste signals transmitted to the brain are determined only by tastant-mediated activation via taste receptors has been challenged by the immune modification of taste transmission through drugs during the processing of gustatory information in taste buds. This article reports the findings in a model system (mouse taste buds) that explain the basis for the taste dysfunctions in patients with cancer that has long been observed but never understood.
Collapse
Affiliation(s)
- Anthony Y Huang
- Department of Anatomy and Center for Integrated Research in Cognitive and Neural Science, Southern Illinois University School of Medicine, Carbondale, Illinois
| |
Collapse
|
16
|
DeMarco GJ, Nunamaker EA. A Review of the Effects of Pain and Analgesia on Immune System Function and Inflammation: Relevance for Preclinical Studies. Comp Med 2019; 69:520-534. [PMID: 31896389 PMCID: PMC6935697 DOI: 10.30802/aalas-cm-19-000041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the most significant challenges facing investigators, laboratory animal veterinarians, and IACUCs, is how to balance appropriate analgesic use, animal welfare, and analgesic impact on experimental results. This is particularly true for in vivo studies on immune system function and inflammatory disease. Often times the effects of analgesic drugs on a particular immune function or model are incomplete or don't exist. Further complicating the picture is evidence of the very tight integration and bidirectional functionality between the immune system and branches of the nervous system involved in nociception and pain. These relationships have advanced the concept of understanding pain as a protective neuroimmune function and recognizing pathologic pain as a neuroimmune disease. This review strives to summarize extant literature on the effects of pain and analgesia on immune system function and inflammation in the context of preclinical in vivo studies. The authors hope this work will help to guide selection of analgesics for preclinical studies of inflammatory disease and immune system function.
Collapse
Key Words
- cb,endocannabinoid receptor
- cd,crohn disease
- cfa, complete freund adjuvant
- cgrp,calcitonin gene-related peptide
- cox,cyclooxygenase
- ctl, cytotoxic t-lymphocytes
- damp,damage-associated molecular pattern molecules
- drg,dorsal root ganglion
- dss, dextran sodium sulphate
- ecs,endocannabinoid system
- ibd, inflammatory bowel disease
- ifa,incomplete freund adjuvant
- las, local anesthetics
- pamp,pathogen-associated molecular pattern molecules
- pge2, prostaglandin e2
- p2y, atp purine receptor y
- p2x, atp purine receptor x
- tnbs, 2,4,6-trinitrobenzene sulphonic acid
- trp, transient receptor potential ion channels
- trpv, transient receptor potential vanilloid
- tg,trigeminal ganglion
- uc,ulcerative colitis
Collapse
Affiliation(s)
- George J DeMarco
- Department of Animal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts;,
| | | |
Collapse
|
17
|
Ağaç D, Estrada LD, Maples R, Hooper LV, Farrar JD. The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav Immun 2018; 74:176-185. [PMID: 30195028 PMCID: PMC6289674 DOI: 10.1016/j.bbi.2018.09.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/01/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022] Open
Abstract
The mammalian nervous system communicates important information about the environment to the immune system, but the underlying mechanisms are largely unknown. Secondary lymphoid organs are highly innervated by sympathetic neurons that secrete norepinephrine (NE) as the primary neurotransmitter. Immune cells express adrenergic receptors, enabling the sympathetic nervous system to directly control immune function. NE is a potent immunosuppressive factor and markedly inhibits TNF-α secretion from innate cells in response to lipopolysaccharide (LPS). In this study, we demonstrate that NE blocks the secretion of a variety of proinflammatory cytokines by rapidly inducing IL-10 secretion from innate cells in response to multiple Toll-like receptor (TLR) signals. NE mediated these effects exclusively through the β2-adrenergic receptor (ADRB2). Consequently, Adrb2-/- animals were more susceptible to L. monocytogenes infection and to intestinal inflammation in a dextran sodium sulfate (DSS) model of colitis. Further, Adrb2-/- animals rapidly succumbed to endotoxemia in response to a sub-lethal LPS challenge and exhibited elevated serum levels of TNF-α and reduced IL-10. LPS-mediated lethality in WT animals was rescued by administering a β 2-specific agonist and in Adrb2-/- animals by exogenous IL-10. These findings reveal a critical role for ADRB2 signaling in controlling inflammation through the rapid induction of IL-10. Our findings provide a fundamental insight into how the sympathetic nervous system controls a critical facet of immune function through ADRB2 signaling.
Collapse
Affiliation(s)
- Didem Ağaç
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | | | - Robert Maples
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| | - Lora V. Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX,Howard Hughes Medical Institute
| | - J. David Farrar
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
18
|
Yu CY, Abbott PV. Pulp microenvironment and mechanisms of pain arising from the dental pulp: From an endodontic perspective. AUST ENDOD J 2018. [DOI: 10.1111/aej.12257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Christine Y. Yu
- Discipline of Endodontics; UWA Dental School; Oral Health Centre of Western Australia; The University of Western Australia (M512); Crawley Western Australia Australia
| | - Paul V. Abbott
- Discipline of Endodontics; UWA Dental School; Oral Health Centre of Western Australia; The University of Western Australia (M512); Crawley Western Australia Australia
| |
Collapse
|
19
|
Maqboul A, Elsadek B. Expression profiles of TRPV1, TRPV4, TLR4 and ERK1/2 in the dorsal root ganglionic neurons of a cancer-induced neuropathy rat model. PeerJ 2018; 6:e4622. [PMID: 29637027 PMCID: PMC5889703 DOI: 10.7717/peerj.4622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/25/2018] [Indexed: 01/09/2023] Open
Abstract
Background The spread of tumors through neural routes is common in several types of cancer in which patients suffer from a moderate-to-severe neuropathy, neural damage and a distorted quality of life. Here we aim to examine the expression profiles of transient receptor potential vanilloid 1 (TRPV1) and of transient receptor potential vanilloid 4 (TRPV4), toll-like receptor 4 (TLR4) and extracellular signal-regulated kinase (ERK1/2), and to assess the possible therapeutic strategies through blockade of transient receptor potential (TRP) channels. Methods Cancer was induced within the sciatic nerves of male Copenhagen rats, and tissues from dorsal root ganglia (DRG) were collected and used for measurements of immunofluorescence and Western blotting. The TRPV1 antagonist capsazepine, the selective TRPV4 antagonist HC-067047 and the calcium ions inhibitor ruthenium red were used to treat thermal and/or mechanical hyperalgesia. Results Transient receptor potential vanilloid 1 showed a lower expression in DRGs on days 7 and 14. The expression of TRPV4, TLR4 and ERK1/2 showed an increase on day 3 then a decrease on days 7 and 14. TRPV1 and TLR4 as well as TRPV4 and ERK1/2 co-existed on the same neuronal cells. The neuropathic pain was reversed in dose-dependent manners by using the TRP antagonists and the calcium ions inhibitor. Conclusion The decreased expression of TRPV1 and TRPV4 is associated with high activation. The increased expression of TLR4 and ERK1/2 reveals earlier immune response and tumor progression, respectively, and their ultimate decrease is an indicator of nerve damage. We studied the possible role of TRPV1 and TRPV4 in transducing cancer-induced hyperalgesia. The possible treatment strategies of cancer-induced thermal and/or mechanical hyperalgesia using capsazepine, HC-067047 and ruthenium red are examined.
Collapse
Affiliation(s)
- Ahmad Maqboul
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité Faculty of Medicine, Humboldt-Universität zu Berlin, Campus Mitte and Campus Virchow-Klinikum, Berlin, Germany.,Department of Biochemistry, College of Pharmacy, Al-Azhar University, Asyût, Egypt
| | - Bakheet Elsadek
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Asyût, Egypt
| |
Collapse
|
20
|
McDonough A, Weinstein JR. Correction to: Neuroimmune Response in Ischemic Preconditioning. Neurotherapeutics 2018; 15:511-524. [PMID: 29110213 PMCID: PMC5935631 DOI: 10.1007/s13311-017-0580-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ischemic preconditioning (IPC) is a robust neuroprotective phenomenon in which a brief period of cerebral ischemia confers transient tolerance to subsequent ischemic challenge. Research on IPC has implicated cellular, molecular, and systemic elements of the immune response in this phenomenon. Potent molecular mediators of IPC include innate immune signaling pathways such as Toll-like receptors and type 1 interferons. Brain ischemia results in release of pro- and anti-inflammatory cytokines and chemokines that orchestrate the neuroinflammatory response, resolution of inflammation, and transition to neurological recovery and regeneration. Cellular mediators of IPC include microglia, the resident central nervous system immune cells, astrocytes, and neurons. All of these cell types engage in cross-talk with each other using a multitude of signaling pathways that modulate activation/suppression of each of the other cell types in response to ischemia. As the postischemic neuroimmune response evolves over time there is a shift in function toward provision of trophic support and neuroprotection. Peripheral immune cells infiltrate the central nervous system en masse after stroke and are largely detrimental, with a few subtypes having beneficial, protective effects, though the role of these immune cells in IPC is largely unknown. The role of neural progenitor cells in IPC-mediated neuroprotection is another active area of investigation as is the role of microglial proliferation in this setting. A mechanistic understanding of these molecular and cellular mediators of IPC may not only facilitate more effective direct application of IPC to specific clinical scenarios, but also, more broadly, reveal novel targets for therapeutic intervention in stroke.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
21
|
Abstract
One of the fundamental mechanisms whereby the innate immune system coordinates inflammatory signal transduction is through Toll-like receptors (TLRs), which function to protect and defend the host organism by initiating inflammatory signaling cascades in response to tissue damage or injury. TLRs are positioned at the neuroimmune interface, and accumulating evidence suggests that the inflammatory consequences of TLR activation on glia (including microglia and astrocytes), sensory neurons, and other cell types can influence nociceptive processing and lead to states of exaggerated and unresolved pain. In this review, we summarize our current understanding of how different TLRs and their accessory or adaptor molecules can contribute to the development and maintenance of persistent pain. The challenges and opportunities of targeting TLRs for new treatment strategies against chronic pain are discussed, including the therapeutic context of TLR-mediated signaling in opioid analgesia and chemotherapy-induced pain. Considering the prevalence of persistent pain and the insufficient efficacy and safety of current treatment options, a deeper understanding of Toll-like receptors holds the promise of novel therapies for managing pathological pain.
Collapse
|
22
|
Hashemian S, Alhouayek M, Fowler CJ. TLR4 receptor expression and function in F11 dorsal root ganglion × neuroblastoma hybrid cells. Innate Immun 2017; 23:687-696. [PMID: 28958207 DOI: 10.1177/1753425917732824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
TLR4 respond to bacterial LPS to produce inflammatory cytokines. TLR4 are expressed in dorsal root ganglia and play a role in pain. F11 dorsal root ganglia × mouse neuroblastoma cells possess many of the properties seen in nociceptive dorsal root ganglia neuronal cells. Here, we investigated the effect of 2 h and 6 h treatment with LPS upon the expression of inflammatory proteins in undifferentiated and differentiated F11 cells. The cells expressed mRNA for TRL4 (mouse, not rat) and proteins involved in TLR4 signaling. TLR4 expression was confirmed using immunohistochemistry. LPS produced modest increases in mouse and rat IL-6 and in mouse cyclooxygenase-2 levels in undifferentiated cells, but did not significantly affect mouse TNF-α expression. This contrasts with the robust effects of LPS upon cyclooxygenase-2 expression in cultured dorsal root ganglia neurons. F11 cells expressed the endocannabinoid metabolizing enzymes fatty acid amide hydrolase and N-acylethanolamine acid amidase (both murine), which were functionally active. These data suggest that F11 cells are not a useful model for the study of LPS-mediated effects but may be useful for the study of endocannabinoid catabolism.
Collapse
Affiliation(s)
- Sanaz Hashemian
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | - Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Pharmacology Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Blum E, Procacci P, Conte V, Sartori P, Hanani M. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia. Exp Cell Res 2017; 350:236-241. [DOI: 10.1016/j.yexcr.2016.11.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 02/08/2023]
|
24
|
Ti D, Hao H, Fu X, Han W. Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1305-1312. [PMID: 27864711 DOI: 10.1007/s11427-016-0240-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022]
Abstract
Clinical and experimental studies have highlighted the significance of inflammation in coordinating wound repair and regeneration. However, it remains challenging to control the inflammatory response and tolerance at systemic levels without causing toxicity to injured tissues. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties and facilitate tissue repair by releasing exosomes, which generate a suitable microenvironment for inflammatory resolution. Exosomes contain several effective bioactive molecules and act as a cell-cell communication vehicle to influence cellular activities in recipient cells. During this process, the horizontal transfer of exosomal microRNAs (miRNAs) to acceptor cells, where they regulate target gene expression, is of particular interest for understanding the basic biology of inflammation ablation, tissue homeostasis, and development of therapeutic approaches. In this review, we describe a signature of three specific miRNAs (miR-21, miR-146a, and miR-181) present in human umbilical cord MSC-derived exosomes (MSC-EXO) identified microarray chip analysis and focus on the inflammatory regulatory functions of these immune-related miRNAs. We also discuss the potential mechanisms contributing to the resolution of wound inflammation and tissue healing.
Collapse
Affiliation(s)
- Dongdong Ti
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haojie Hao
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaobing Fu
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weidong Han
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
25
|
Abstract
Ischemic preconditioning (IPC) is a robust neuroprotective phenomenon in which a brief period of cerebral ischemia confers transient tolerance to subsequent ischemic challenge. Research on IPC has implicated cellular, molecular, and systemic elements of the immune response in this phenomenon. Potent molecular mediators of IPC include innate immune signaling pathways such as Toll-like receptors and type 1 interferons. Brain ischemia results in release of pro- and anti-inflammatory cytokines and chemokines that orchestrate the neuroinflammtory response, resolution of inflammation, and transition to neurological recovery and regeneration. Cellular mediators of IPC include microglia, the resident central nervous system immune cells, astrocytes, and neurons. All of these cell types engage in cross-talk with each other using a multitude of signaling pathways that modulate activation/suppression of each of the other cell types in response to ischemia. As the postischemic neuroimmune response evolves over time there is a shift in function toward provision of trophic support and neuroprotection. Peripheral immune cells infiltrate the central nervous system en masse after stroke and are largely detrimental, with a few subtypes having beneficial, protective effects, though the role of these immune cells in IPC is largely unknown. The role of neural progenitor cells in IPC-mediated neuroprotection is another active area of investigation as is the role of microglial proliferation in this setting. A mechanistic understanding of these molecular and cellular mediators of IPC may not only facilitate more effective direct application of IPC to specific clinical scenarios, but also, more broadly, reveal novel targets for therapeutic intervention in stroke.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
26
|
Huang AY, Wu SY. The effect of imiquimod on taste bud calcium transients and transmitter secretion. Br J Pharmacol 2016; 173:3121-3133. [PMID: 27464850 DOI: 10.1111/bph.13567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. EXPERIMENTAL APPROACH Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. KEY RESULTS Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca2+ concentrations. These Ca2+ responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca2+ -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca2+ mobilization elicited by imiquimod was dependent on release from internal Ca2+ stores. Moreover, combining studies of Ca2+ imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. CONCLUSION AND IMPLICATIONS Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling.
Collapse
Affiliation(s)
- Anthony Y Huang
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA. .,Center for Integrated Research in Cognitive and Neural Science, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| | - Sandy Y Wu
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
27
|
Resident Macrophages in Muscle Contribute to Development of Hyperalgesia in a Mouse Model of Noninflammatory Muscle Pain. THE JOURNAL OF PAIN 2016; 17:1081-1094. [PMID: 27377621 DOI: 10.1016/j.jpain.2016.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/04/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED Macrophages play a role in innate immunity within the body, are located in muscle tissue, and can release inflammatory cytokines that sensitize local nociceptors. In this study we investigate the role of resident macrophages in the noninflammatory muscle pain model induced by 2 pH 4.0 preservative-free sterile saline (pH 4.0) injections 5 days apart in the gastrocnemius muscle. We showed that injecting 2 pH 4.0 injections into the gastrocnemius muscle increased the number of local muscle macrophages, and depleting muscle macrophages with clodronate liposomes before acid injections attenuated the hyperalgesia produced by this model. To further examine the contribution of local macrophages to this hyperalgesia, we injected mice intramuscularly with C34, a toll-like receptor 4 (TLR4) antagonist. When given before the first pH 4.0 injection, C34 attenuated the muscle and tactile hyperalgesia produced by the model. However, when given before the second injection C34 had no effect on the development of hyperalgesia. Then to test whether activation of local macrophages sensitizes nociceptors to normally non-nociceptive stimuli we replaced either the first or second acid injection with the immune cell activator lipopolysaccharide, or the inflammatory cytokine interleukin (IL)-6. Injecting LPS or IL-6 instead of the either the first or second pH 4.0 injection resulted in a dose-dependent increase in paw withdrawal responses and decrease in muscle withdrawal thresholds. The highest doses of LPS and IL-6 resulted in development of hyperalgesia bilaterally. The present study showed that resident macrophages in muscle are key to development of chronic muscle pain. PERSPECTIVE This article presents evidence for the role of macrophages in the development of chronic muscle pain using a mouse model. These data suggest that macrophages could be a potential therapeutic target to prevent transition of acute to chronic muscle pain particularly in tissue acidosis conditions.
Collapse
|
28
|
Lebold KM, Jacoby DB, Drake MG. Toll-Like Receptor 7-Targeted Therapy in Respiratory Disease. Transfus Med Hemother 2016; 43:114-9. [PMID: 27226793 DOI: 10.1159/000445324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/09/2016] [Indexed: 01/01/2023] Open
Abstract
Allergic asthma and allergic rhinitis are inflammatory diseases of the respiratory tract characterized by an excessive type-2 T helper cell (Th2) immune response. Toll-like receptor 7 (TLR7) is a single-stranded viral RNA receptor expressed in the airway that initiates a Th1 immune response and has garnered interest as a novel therapeutic target for treatment of allergic airway diseases. In animal models, synthetic TLR7 agonists reduce airway hyperreactivity, eosinophilic inflammation, and airway remodeling while decreasing Th2-associated cytokines. Furthermore, activation of TLR7 rapidly relaxes airway smooth muscle via production of nitric oxide. Thus, TLR7 has dual bronchodilator and anti-inflammatory effects. Two TLR7 ligands with promising pharmacologic profiles have entered clinical trials for the treatment of allergic rhinitis. Moreover, TLR7 agonists are potential antiviral therapies against respiratory viruses. TLR7 agonists enhance influenza vaccine efficacy and also reduce viral titers when given during an active airway infection. In this review, we examine the current data supporting TLR7 as a therapeutic target in allergic airway diseases.
Collapse
Affiliation(s)
- Katie M Lebold
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - David B Jacoby
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Matthew G Drake
- Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|