1
|
Morava A, Tari B, Ahn J, Shirzad M, Heath M, Prapavessis H. Acute stress imparts a transient benefit to task-switching that is not modulated following a single bout of exercise. Front Psychol 2023; 14:1157644. [PMID: 37533726 PMCID: PMC10391836 DOI: 10.3389/fpsyg.2023.1157644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Cognitive flexibility represents a core component of executive function that promotes the ability to efficiently alternate-or "switch"-between different tasks. Literature suggests that acute stress negatively impacts cognitive flexibility, whereas a single bout of aerobic exercise supports a postexercise improvement in cognitive flexibility. Here, we examined whether a single bout of aerobic exercise attenuates a stress-induced decrement in task-switching. Materials and Methods Forty participants (age range = 19-30) completed the Trier Social Stress Test (TSST) and were randomized into separate Exercise or Rest groups entailing 20-min sessions of heavy intensity exercise (80% of heart rate maximum via cycle ergometer) or rest, respectively. Stress induction was confirmed via state anxiety and heart rate. Task-switching was assessed prior to the TSST (i.e., pre-TSST), following the TSST (i.e., post-TSST), and following Exercise and Rest interventions (i.e., post-intervention) via pro- (i.e., saccade to veridical target location) and antisaccades (i.e., saccade mirror-symmetrical to target location) arranged in an AABB task-switching paradigm. The underlying principle of the AABB paradigm suggests that when prosaccades are preceded by antisaccades (i.e., task-switch trials), the reaction times are longer compared to their task-repeat counterparts (i.e., unidirectional prosaccade switch-cost). Results As expected, the pre-TSST assessment yielded a prosaccade switch cost. Notably, post-TSST physiological measures indicated a reliable stress response and at this assessment a null prosaccade switch-cost was observed. In turn, post-intervention assessments revealed a switch-cost independent of Exercise and Rest groups. Conclusion Accordingly, the immediate effects of acute stress supported improved task-switching in young adults; however, these benefits were not modulated by a single bout of aerobic exercise.
Collapse
Affiliation(s)
- Anisa Morava
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Benjamin Tari
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Joshua Ahn
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Mustafa Shirzad
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Matthew Heath
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
- Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Harry Prapavessis
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
2
|
Miraglia F, Pappalettera C, Di Ienno S, Nucci L, Cacciotti A, Manenti R, Judica E, Rossini PM, Vecchio F. The Effects of Directional and Non-Directional Stimuli during a Visuomotor Task and Their Correlation with Reaction Time: An ERP Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:3143. [PMID: 36991853 PMCID: PMC10058543 DOI: 10.3390/s23063143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Different visual stimuli can capture and shift attention into different directions. Few studies have explored differences in brain response due to directional (DS) and non-directional visual stimuli (nDS). To explore the latter, event-related potentials (ERP) and contingent negative variation (CNV) during a visuomotor task were evaluated in 19 adults. To examine the relation between task performance and ERPs, the participants were divided into faster (F) and slower (S) groups based on their reaction times (RTs). Moreover, to reveal ERP modulation within the same subject, each recording from the single participants was subdivided into F and S trials based on the specific RT. ERP latencies were analysed between conditions ((DS, nDS); (F, S subjects); (F, S trials)). Correlation was analysed between CNV and RTs. Our results reveal that the ERPs' late components are modulated differently by DS and nDS conditions in terms of amplitude and location. Differences in ERP amplitude, location and latency, were also found according to subjects' performance, i.e., between F and S subjects and trials. In addition, results show that the CNV slope is modulated by the directionality of the stimulus and contributes to motor performance. A better understanding of brain dynamics through ERPs could be useful to explain brain states in healthy subjects and to support diagnoses and personalized rehabilitation in patients with neurological diseases.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Sara Di Ienno
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di DioFatebenefratelli, 25125 Brescia, Italy
| | - Elda Judica
- Casa di Cura IGEA, Department of Neurorehabilitation Sciences, 20144 Milano, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, 00166 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| |
Collapse
|
3
|
Tari B, Edgar C, Persaud P, Dalton C, Heath M. The unidirectional prosaccade switch-cost: no evidence for the passive dissipation of an oculomotor task-set inertia. Exp Brain Res 2022; 240:2061-2071. [PMID: 35727365 PMCID: PMC9211787 DOI: 10.1007/s00221-022-06394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022]
Abstract
Cognitive flexibility is a core component of executive function and supports the ability to ‘switch’ between different tasks. Our group has examined the cost associated with switching between a prosaccade (i.e., a standard task requiring a saccade to veridical target location) and an antisaccade (i.e., a non-standard task requiring a saccade mirror-symmetrical to veridical target) in predictable (i.e., AABB) and unpredictable (e.g., AABAB…) switching paradigms. Results have shown that reaction times (RTs) for a prosaccade preceded by an antisaccade (i.e., task-switch trial) are longer than when preceded by its same task-type (i.e., task-repeat trial), whereas RTs for antisaccade task-switch and task-repeat trials do not differ. The asymmetrical switch-cost has been attributed to an antisaccade task-set inertia that proactively delays a subsequent prosaccade (i.e., the unidirectional prosaccade switch-cost). A salient question arising from previous work is whether the antisaccade task-set inertia passively dissipates or persistently influences prosaccade RTs. Accordingly, participants completed separate AABB (i.e., A = prosaccade, B = antisaccade) task-switching conditions wherein the preparation interval for each trial was ‘short’ (1000–2000 ms; i.e., the timeframe used in previous work), ‘medium’ (3000–4000 ms) and ‘long’ (5000–6000 ms). Results demonstrated a reliable prosaccade switch-cost for each condition (ps < 0.02) and two one-sided test statistics indicated that switch cost magnitudes were within an equivalence boundary (ps < 0.05). Hence, null and equivalence tests demonstrate that an antisaccade task-set inertia does not passively dissipate and represents a temporally persistent feature of oculomotor control.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Chloe Edgar
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Priyanka Persaud
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Connor Dalton
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada. .,Canadian Centre for Activity and Aging, The University of Western Ontario, 1201 Western Rd, London, ON, N6G 1H1, Canada. .,Graduate Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|
4
|
Benyamini M, Demchenko I, Zacksenhouse M. Error related EEG potentials evoked by visuo-motor rotations. Brain Res 2021; 1769:147606. [PMID: 34364850 DOI: 10.1016/j.brainres.2021.147606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 07/04/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Electroencephalographic (EEG) correlates of errors, known as error-related potentials (ErrPs), provide promising tools to investigate error processing in the brain and to detect and correct errors induced by brain-computer interfaces (BCIs). Visuo-motor rotation (VMR) is a well-known experimental paradigm to introduce visuo-motor errors that closely mimics directional errors induced by BCIs. However, investigations of ErrPs during VMR experiments are limited and reveals different ErrPs depending on task and synchronization. We conducted VMR experiments with 5 randomly selected conditions (no-rotation, small, ±22.5°, or large, ±45° rotations) to hamper adaptation and facilitate investigation of the effect of error size. We tracked eye movements so EEG was synchronized not only to onset of movement correction (OMC) but also to saccadic movement onset (SMO). Kinematic analysis indicated that maximum deviations from a straight line to the target were larger in trials with large rotations compared to small or no rotations, but there was a large overlap. Thus, we also compared ErrPs generated by trials with different maximum deviations. Our results reveal that trials with large rotations and especially trials with large maximum deviations evoke a significant positive ErrP component. The positive peak appeared 380 msec after SMO and 240 msec after OMC. Furthermore, the positive peak was associated with activity in Brodmann areas 5 and 7, in agreement with other studies and with the role of posterior parietal cortex in reaching movements. The observed ErrP may facilitate further investigation of error processing in the brain and error detection and correction in BCIs.
Collapse
Affiliation(s)
- Miri Benyamini
- Brain-Computer Interfaces for Rehabilitation Lab., Faculty of Mechanical Engineering, Technion, Israel.
| | - Igor Demchenko
- Brain-Computer Interfaces for Rehabilitation Lab., Faculty of Mechanical Engineering, Technion, Israel.
| | - Miriam Zacksenhouse
- Brain-Computer Interfaces for Rehabilitation Lab., Faculty of Mechanical Engineering, Technion, Israel; Technion Autonomous Systems Program, Technion, Israel.
| |
Collapse
|
5
|
Tari B, Heath M. Pro- and antisaccade task-switching: response suppression-and not vector inversion-contributes to a task-set inertia. Exp Brain Res 2019; 237:3475-3484. [PMID: 31741001 DOI: 10.1007/s00221-019-05686-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/07/2019] [Indexed: 11/25/2022]
Abstract
Alternating between different tasks represents an executive function essential to activities of daily living. In the oculomotor literature, reaction times (RT) for a 'standard' and stimulus-driven (SD) prosaccade (i.e., saccade to target at target onset) are increased when preceded by a 'non-standard' antisaccade (i.e., saccade mirror-symmetrical to target at target onset), whereas the converse switch does not elicit an RT cost. The prosaccade switch-cost has been attributed to lingering neural activity-or task-set inertia-related to the antisaccade executive demands of response suppression and vector inversion. It is, however, unclear whether response suppression and/or vector inversion contribute to the prosaccade switch-cost. Experiment 1 of the present work had participants alternate (i.e., AABB paradigm) between minimally delayed (MD) pro- and antisaccades. MD saccades require a response after target extinction and necessitate response suppression for both pro- and antisaccades-a paradigm providing a framework to determine whether vector inversion contributes to a task-set inertia. In Experiment 2, participants alternated between SD pro- and MD antisaccades-a paradigm designed to determine if a switch-cost is selectively imparted when a SD and standard response is preceded by a non-standard response. Experiment 1 showed that RTs for MD pro- and antisaccades were refractory to the preceding trial-type; that is, vector inversion did not engender a switch-cost. Experiment 2 indicated that RTs for SD prosaccades were increased when preceded by an MD antisaccade. Accordingly, response suppression engenders a task-set inertia but only for a subsequent stimulus-driven and standard response (i.e., SD prosaccade). Such a result is in line with the view that response suppression is a hallmark feature of executive function.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Matthew Heath
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
6
|
Kong W, Wang L, Zhang J, Zhao Q, Sun J. The Dynamic EEG Microstates in Mental Rotation. SENSORS 2018; 18:s18092920. [PMID: 30177611 PMCID: PMC6165343 DOI: 10.3390/s18092920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 11/25/2022]
Abstract
Mental rotation is generally analyzed based on event-related potential (ERP) in a time domain with several characteristic electrodes, but neglects the whole spatial-temporal brain pattern in the cognitive process which may reflect the underlying cognitive mechanism. In this paper, we mainly proposed an approach based on microstates to examine the encoding of mental rotation from the spatial-temporal changes of EEG signals. In particular, we collected EEG data from 11 healthy subjects in a mental rotation cognitive task using 12 different stimulus pictures representing left and right hands at various rotational angles. We applied the microstate method to investigate the microstates conveyed by the event-related potential extracted from EEG data during mental rotation, and obtained four microstate modes (referred to as modes A, B, C, D, respectively). Subsequently, we defined several measures, including microstate sequences, topographical map, hemispheric lateralization, and duration of microstate, to characterize the dynamics of microstates during mental rotation. We observed that (1) the microstates sequence had a specified progressing mode, i.e., A→B→A; (2) the activation of the right parietal occipital region was stronger than that of the left parietal occipital region according to the hemispheric lateralization of the microstates mode A; and (3) the duration of the second microstates mode A showed the shorter duration in the vertical stimuli, named “angle effect”.
Collapse
Affiliation(s)
- Wanzeng Kong
- School of Computer and Technology, Hangzhou Dianzi University, Hangzhou 310000, China.
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou 350000, China.
| | - Luyun Wang
- School of Computer and Technology, Hangzhou Dianzi University, Hangzhou 310000, China.
| | - Jianhai Zhang
- School of Computer and Technology, Hangzhou Dianzi University, Hangzhou 310000, China.
| | - Qibin Zhao
- Tensor Learning Unit, RIKEN AIP, Tokyo 103-0027, Japan.
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200000, China.
| |
Collapse
|
7
|
Visuomotor mental rotation of a saccade: The contingent negative variation scales to the angle of rotation. Vision Res 2017; 143:82-88. [PMID: 29224981 DOI: 10.1016/j.visres.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 11/21/2022]
Abstract
The visuomotor mental rotation (VMR) of a saccade requires a response to a region of space that is dissociated from a stimulus by a pre-specified angle, and work has shown a monotonic increase in reaction times as a function of increasing oblique angles of rotation. These results have been taken as evidence of a continuous process of rotation and have generated competing hypotheses. One hypothesis asserts that rotation is mediated via frontoparietal structures, whereas a second states that a continuous shift in the activity of direction-specific neurons in the superior colliculus (SC) supports rotation. Research to date, however, has not examined the neural mechanisms underlying VMR saccades and both hypotheses therefore remain untested. The present study measured the behavioural data and event-related brain potentials (ERP) of standard (i.e., 0° of rotation) and VMR saccades involving 35°, 70° and 105° of rotation. Behavioural results showed that participants adhered to task-based rotation demands and ERP findings showed that the amplitude of the contingent negative variation (CNV) linearly decreased with increasing angle of rotation. The cortical generators of the CNV are linked to frontoparietal structures supporting movement preparation. Although our ERP design does not allow us to exclude a possible role of the SC in the rotation of a VMR saccade, they do demonstrate that such actions are supported by a continuous and cortically based rotation process.
Collapse
|
8
|
Heath M, DeSimone JC. The visual properties of proximal and remote distractors differentially influence reaching planning times: evidence from pro- and antipointing tasks. Exp Brain Res 2016; 234:3259-3268. [DOI: 10.1007/s00221-016-4723-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
|
9
|
Heath M, Samani A, Tremblay L, Elliott D. Fitts’ Theorem in Oculomotor Control: Dissociable Movement Times for Amplitude and Width Manipulations. J Mot Behav 2016; 48:489-499. [DOI: 10.1080/00222895.2015.1134436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Davarpanah Jazi S, Heath M. Pantomime-Grasping: Advance Knowledge of Haptic Feedback Availability Supports an Absolute Visuo-Haptic Calibration. Front Hum Neurosci 2016; 10:197. [PMID: 27199718 PMCID: PMC4858644 DOI: 10.3389/fnhum.2016.00197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/18/2016] [Indexed: 11/21/2022] Open
Abstract
An emerging issue in movement neurosciences is whether haptic feedback influences the nature of the information supporting a simulated grasping response (i.e., pantomime-grasping). In particular, recent work by our group contrasted pantomime-grasping responses performed with (i.e., PH+ trials) and without (i.e., PH− trials) terminal haptic feedback in separate blocks of trials. Results showed that PH− trials were mediated via relative visual information. In contrast, PH+ trials showed evidence of an absolute visuo-haptic calibration—a finding attributed to an error signal derived from a comparison between expected and actual haptic feedback (i.e., an internal forward model). The present study examined whether advanced knowledge of haptic feedback availability influences the aforementioned calibration process. To that end, PH− and PH+ trials were completed in separate blocks (i.e., the feedback schedule used in our group’s previous study) and a block wherein PH− and PH+ trials were randomly interleaved on a trial-by-trial basis (i.e., random feedback schedule). In other words, the random feedback schedule precluded participants from predicting whether haptic feedback would be available at the movement goal location. We computed just-noticeable-difference (JND) values to determine whether responses adhered to, or violated, the relative psychophysical principles of Weber’s law. Results for the blocked feedback schedule replicated our group’s previous work, whereas in the random feedback schedule PH− and PH+ trials were supported via relative visual information. Accordingly, we propose that a priori knowledge of haptic feedback is necessary to support an absolute visuo-haptic calibration. Moreover, our results demonstrate that the presence and expectancy of haptic feedback is an important consideration in contrasting the behavioral and neural properties of natural and simulated grasping.
Collapse
Affiliation(s)
| | - Matthew Heath
- School of Kinesiology, University of Western OntarioLondon, ON, Canada; Graduate Program in Neuroscience, University of Western OntarioLondon, ON, Canada
| |
Collapse
|