1
|
Gyetvai BM, Vadasz C. Pleiotropic Effects of Grm7/ GRM7 in Shaping Neurodevelopmental Pathways and the Neural Substrate of Complex Behaviors and Disorders. Biomolecules 2025; 15:392. [PMID: 40149928 PMCID: PMC11940234 DOI: 10.3390/biom15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
Natural gene variants of metabotropic glutamate receptor subtype 7 (Grm7), coding for mGluR7, affect individuals' alcohol-drinking preference. Psychopharmacological investigations have suggested that mGluR7 is also involved in responses to cocaine, morphine, and nicotine exposures. We review the pleiotropic effects of Grm7 and the principle of recombinant quantitative trait locus introgression (RQI), which led to the discovery of the first mammalian quantitative gene accounting for alcohol-drinking preference. Grm7/GRM7 can play important roles in mammalian ontogenesis, brain development, and predisposition to addiction. It is also involved in other behavioral phenotypes, including emotion, stress, motivated cognition, defensive behavior, and pain-related symptoms. This review identified pleiotropy and the modulation of neurobehavioral processes by variations in the gene Grm7/GRM7. Patterns of pleiotropic genes can form oligogenic architectures whosecombined additive and interaction effects can significantly predispose individuals to the expressions of disorders. Identifying and characterizing pleiotropic genes are necessary for understanding the expressions of complex traits. This requires tasks, such as discovering and identifying novel genetic elements of the genetic architecture, which are unsuitable for AI but require classical experimental genetics.
Collapse
Affiliation(s)
- Beatrix M. Gyetvai
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA;
| | - Csaba Vadasz
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Kalymma, Stony Point, New York, NY 10980, USA
| |
Collapse
|
2
|
Li H, Qiao Z, Xiao X, Cao X, Li Z, Liu M, Jiao Q, Chen X, Du X, Jiang H. G protein-coupled receptors: A golden key to the treasure-trove of neurodegenerative diseases. Clin Nutr 2025; 46:155-168. [PMID: 39933302 DOI: 10.1016/j.clnu.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
G protein-coupled receptors (GPCRs) are a class of transmembrane proteins that distribute in various organs extensively. They can regulate physiological functions such as perception, neurotransmission and endocrinology through the synergies of signaling pathways. At present, Food and Drug Administration (FDA) have approved more than 500 drugs targeting GPCRs to treat a variety of conditions, including neurological diseases, gastrointestinal diseases and tumors. Conformational diversity and dynamic changes make GPCRs a star target for the treatment of neurodegenerative diseases. Moreover, GPCRs can also open biased signaling pathways for G protein and β-arrestin, which has unique functional selectivity and the possibility of overcoming side effects. Some studies believe that biased drugs will be the mainstream direction of drug innovation in the future. To disclose the essential role and research process of GPCRs in neurodegenerative diseases, we firstly reviewed several pivotal GPCRs and their mediated signaling pathways in Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Then we focused on the biased signaling pathway of GPCRs in these diseases. Finally, we updated the GPCR drugs under research for the treatment of neurodegenerative diseases in the clinical trials or approval. This review could provide valuable targets for precision therapy to cope with the dysfunction of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Zhen Qiao
- Shandong Provincial Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| | - Xue Xiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xiu Cao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Zhaodong Li
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Mengru Liu
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xi Chen
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China
| | - Xixun Du
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China.
| | - Hong Jiang
- School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China; Shandong Provincial Key Laboratory of Neurorehabilitation, School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
3
|
Domin H, Burnat G. mGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 2024; 76:1219-1241. [PMID: 39348087 PMCID: PMC11582148 DOI: 10.1007/s43440-024-00657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Neuroprotection, defined as safeguarding neurons from damage and death by inhibiting diverse pathological mechanisms, continues to be a promising approach for managing a range of central nervous system (CNS) disorders, including acute conditions such as ischemic stroke and traumatic brain injury (TBI) and chronic neurodegenerative diseases like Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). These pathophysiological conditions involve excessive glutamatergic (Glu) transmission activity, which can lead to excitotoxicity. Inhibiting this excessive Glu transmission has been proposed as a potential therapeutic strategy for treating the CNS disorders mentioned. In particular, ligands of G protein-coupled receptors (GPCRs), including metabotropic glutamatergic receptors (mGluRs), have been recognized as promising options for inhibiting excessive Glu transmission. This review discusses the complex interactions of mGlu receptors with their subtypes, including the formation of homo- and heterodimers, which may vary in function and pharmacology depending on their protomer composition. Understanding these intricate details of mGlu receptor structure and function enhances researchers' ability to develop targeted pharmacological interventions, potentially offering new therapeutic avenues for neurological and psychiatric disorders. This review also summarizes the current knowledge of the neuroprotective potential of ligands targeting group III mGluRs in preclinical cellular (in vitro) and animal (in vivo) models of ischemic stroke, TBI, PD, AD, and MS. In recent years, experiments have shown that compounds, especially those activating mGlu4 or mGlu7 receptors, exhibit protective effects in experimental ischemia models. The discovery of allosteric ligands for specific mGluR subtypes has led to reports suggesting that group III mGluRs may be promising targets for neuroprotective therapy in PD (mGlu4R), TBI (mGlu7R), and MS (mGlu8R).
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Grzegorz Burnat
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
4
|
Yang H, Xu S, Hong X, Liu Y, Qian S, Lou Y, Wang W. ADAR1 prevents ZBP1-dependent PANoptosis via A-to-I RNA editing in developmental sevoflurane neurotoxicity. Cell Biol Toxicol 2024; 40:57. [PMID: 39060787 PMCID: PMC11281990 DOI: 10.1007/s10565-024-09905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
It is well established that sevoflurane exposure leads to widespread neuronal cell death in the developing brain. Adenosine deaminase acting on RNA-1 (ADAR1) dependent adenosine-to-inosine (A-to-I) RNA editing is dynamically regulated throughout brain development. The current investigation is designed to interrogate the contributed role of ADAR1 in developmental sevoflurane neurotoxicity. Herein, we provide evidence to show that developmental sevoflurane priming triggers neuronal pyroptosis, apoptosis and necroptosis (PANoptosis), and elicits the release of inflammatory factors including IL-1β, IL-18, TNF-α and IFN-γ. Additionally, ADAR1-P150, but not ADAR1-P110, depresses cellular PANoptosis and inflammatory response by competing with Z-DNA/RNA binding protein 1 (ZBP1) for binding to Z-RNA in the presence of sevoflurane. Further investigation demonstrates that ADAR1-dependent A-to-I RNA editing mitigates developmental sevoflurane-induced neuronal PANoptosis. To restore RNA editing, we utilize adeno-associated virus (AAV) to deliver engineered circular ADAR-recruiting guide RNAs (cadRNAs) into cells, which is capable of recruiting endogenous adenosine deaminases to promote cellular A-to-I RNA editing. As anticipated, AAV-cadRNAs diminishes sevoflurane-induced cellular Z-RNA production and PANoptosis, which could be abolished by ADAR1-P150 shRNA transfection. Moreover, AAV-cadRNAs delivery ameliorates developmental sevoflurane-induced spatial and emotional cognitive deficits without influence on locomotor activity. Taken together, these results illustrate that ADAR1-P150 exhibits a prominent role in preventing ZBP1-dependent PANoptosis through A-to-I RNA editing in developmental sevoflurane neurotoxicity. Application of engineered cadRNAs to rectify the compromised ADAR1-dependent A-to-I RNA editing provides an inspiring direction for possible clinical preventions and therapeutics.
Collapse
Affiliation(s)
- Huiling Yang
- Department of Anesthesiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, 310023, Zhejiang, China
| | - Sen Xu
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xinya Hong
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Yusi Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yifei Lou
- Department of Anesthesiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, 310023, Zhejiang, China
| | - Wenyuan Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
5
|
Mohamed RMSM, Ahmad Ahmad E, Amin DM, Abdo SA, Ibrahim IAAEH, Mahmoud MF, Abdelaal S. Adrenergic receptors blockade alleviates dexamethasone-induced neurotoxicity in adult male Wistar rats: Distinct effects on β-arrestin2 expression and molecular markers of neural injury. Daru 2024; 32:97-108. [PMID: 37966585 PMCID: PMC11087427 DOI: 10.1007/s40199-023-00490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Dexamethasone-induced neurotoxicity has been previously reported. However, the molecular mechanisms are still not completely understood. OBJECTIVES The current work aimed to investigate the modulatory effects of α- and β-adrenergic receptors on dexamethasone-induced neurotoxicity in rats focused on changes in β-arrestin2 and molecular markers of neural injury in cerebral cortex. METHODS Male Wistar rats were subcutaneously injected with dexamethasone (10 mg/kg/day) for 7 days to induce neural injury in the cerebral cortex. The experiment involved 5 groups: control, dexamethasone, carvedilol, propranolol, and doxazosin. In the last 3 groups, drugs were given 2 hours before dexamethasone injection. At the end of experiment, brain samples were collected for measurement of brain derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), kinase activity of protein kinase B (Akt), diacylglycerol (DAG), α-smooth muscle actin (α-SMA), Smad3, β-amyloid and phospho-tau protein levels in addition to histopathological examination of brain tissue using hematoxylin-eosin, Nissl, and Sirius red stains. Moreover, β-arrestin2 levels in the cerebral cortex were measured using immunohistochemical examination. RESULTS Dexamethasone slightly reduced brain weight and significantly decreased BDNF, Akt kinase activity and β-arrestin2 but markedly induced degeneration of cortical neurons and significantly increased GFAP, DAG, α-SMA, Smad3, β-amyloid and phospho-tau protein levels compared to controls. Carvedilol, propranolol, and doxazosin reversed all dexamethasone-induced molecular changes and slightly ameliorated the histopathological changes. Carvedilol significantly increased brain weight and β-arrestin2 levels compared to dexamethasone, propranolol, and doxazosin groups. CONCLUSION blocking α- and/or β-adrenergic receptors alleviate dexamethasone-induced neurotoxicity despite their distinct effects on β-arrestin2 levels in the cerebral cortex.
Collapse
Affiliation(s)
- Rasha M S M Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enssaf Ahmad Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Dalia M Amin
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Samar Ahmed Abdo
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Shimaa Abdelaal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
6
|
Wang W, Sun JC, Ye P, Tan X, Gao Y, Duan W, Wang YK, Wang WZ. miR-22-3p in the rostral ventrolateral medulla promotes hypertension through inhibiting β-arrestin-1. J Physiol 2024; 602:317-332. [PMID: 38152023 DOI: 10.1113/jp283960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that β-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in β-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the β-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of β-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by β-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced β-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting β-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of β-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of β-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the β-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of β-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting β-arrestin-1 in the RVLM.
Collapse
Affiliation(s)
- Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jia-Cen Sun
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuan Gao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
7
|
Gong X, Li Q, Liu Y. Sevoflurane suppresses ALG13 transcription in a CREBBP-dependent manner to induce hippocampal damage and cognitive impairment. Neurosci Lett 2023; 818:137543. [PMID: 39492504 DOI: 10.1016/j.neulet.2023.137543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Sevoflurane (Sev) is a common clinical anesthetic but may lead to cognitive impairment. This study aims to deconstruct the underpinning molecular mechanism involved in Sev-induced neurological damage. METHODS Bioinformatics analyses was conducted to investigate candidate cognitive impairment-related physiological substrates of Sev. C57BL/6 mice and SH-SY5Y cells were exposed to Sev to generate animal and cellular models, respectively. Neurological impairment in mice was evaluated by Morris water maze test, modified Longa scoring, and pathological changes and cell apoptosis in the hippocampal tissues. In vitro, viability, apoptosis, and inflammatory cytokine concentration in SH-SY5Y cells were measured. Gain- or loss-of-function studies of CREB binding protein (CREBBP) and its predicted target asparagine-linked glycosylation 13 (ALG13) were performed in mice and in SH-SY5Y cells to investigate their roles in neural damage. RESULTS Sev treatment induced neurological deficit in mice and damage on SH-SY5Y cells, and reduced protein level of CREBBP protein in both models. CREBBP overexpression restored learning and memory ability of mice, reduced neurological deficit score, and reduced cell apoptosis while enhancing neuronal viability in the hippocampus. In vitro, the CREBBP overexpression increased viability while suppressing apoptosis and inflammation in SH-SY5Y cells. CREBBP bound to the ALG13 promoter to increase its transcription. Further knockdown of ALG13 negated the neuro-protective functions of CREBBP in vivo and in vitro. CONCLUSION This study demonstrates that Sev targets CREBBP to inhibit ALG13 transcription to induce hippocampal damage and cognitive impairment.
Collapse
Affiliation(s)
- Xiuping Gong
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Qi Li
- Department of Anesthesiology, South China Hospital Affiliated to Shenzhen University, Shenzhen 518000, Guangdong, PR China
| | - Yang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
8
|
mTORC1-Dependent and GSDMD-Mediated Pyroptosis in Developmental Sevoflurane Neurotoxicity. Mol Neurobiol 2023; 60:116-132. [PMID: 36224321 DOI: 10.1007/s12035-022-03070-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/05/2022] [Indexed: 12/30/2022]
Abstract
Developmental sevoflurane exposure leads to neuronal cell death, and subsequent learning and memory cognitive defects. The underlyi\ng mechanism remains to be elucidated. Gasdermin D (GSDMD)-mediated pyroptosis is a form of inflammatory cell death and participates in a variety of neurodegenerative diseases. Several studies illustrated that dysregulation of mTOR activity is involved in pyroptotic cell death. The current study was designed to interrogate the role of GSDMD-mediated pyroptosis and mTOR activity in developmental sevoflurane exposure. We found that inhibition of GSDMD pore formation with Disulfiram (DSF) or Necrosulfonamide (NSA) significantly attenuated sevoflurane neurotoxicity in vitro. In addition, treatment with DSF or NSA also mitigated damage-associated molecular patterns (DAMPs) release and subsequent plasma membrane rupture (PMR) induced by sevoflurane challenge. Further investigation showed that the overactivation of mTOR signaling is involved in sevoflurane induced pyroptosis both in vivo and in vitro. Intriguingly, we found that the DAMPs release and subsequent PMR triggered by developmental sevoflurane priming were compromised by knocking down the expression of mTORC1 component Raptor, but not mTORC2 component Rictor. Moreover, sevoflurane induced pyroptosis could also be restored by suppressing mTOR activity or knocking down the expressions of Ras-related small GTPases RagA or RagC. Finally, administration of DSF or NSA dramatically improved the spatial and emotional cognitive disorders without alternation of locomotor activity. Taken together, these results indicate that mTORC1-dependent and GSDMD-mediated pyroptosis contributes to the developmental sevoflurane neurotoxicity. Characterizing these processes may provide experimental evidence for the possible prevention of developmental sevoflurane neurotoxicity.
Collapse
|
9
|
Wang WY, Yi WQ, Liu YS, Hu QY, Qian SJ, Liu JT, Mao H, Cai F, Yang HL. Z-DNA/RNA Binding Protein 1 Senses Mitochondrial DNA to Induce Receptor-Interacting Protein Kinase-3/Mixed Lineage Kinase Domain-Like-Driven Necroptosis in Developmental Sevoflurane Neurotoxicity. Neuroscience 2022; 507:99-111. [PMID: 36370933 DOI: 10.1016/j.neuroscience.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Developmental sevoflurane exposure leads to widespread neuronal cell death known as sevoflurane-induced neurotoxicity (SIN). Receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL)-driven necroptosis plays an important role in cell fate. Previous research has shown that inhibition of RIPK1 activity alone did not attenuate SIN. Since RIPK3/MLKL signaling could also be activated by Z-DNA/RNA binding protein 1 (ZBP1), the present study was designed to investigate whether ZBP1-mediated and RIPK3/MLKL-driven necroptosis is involved in SIN through in vitro and in vivo experiments. We found that sevoflurane priming triggers neuronal cell death and LDH release in a time-dependent manner. The expression levels of RIPK1, RIPK3, ZBP1 and membrane phosphorylated MLKL were also dramatically enhanced in SIN. Intriguingly, knockdown of RIPK3, but not RIPK1, abolished MLKL-mediated neuronal necroptosis in SIN. Additionally, inhibition of RIPK3-mediated necroptosis with GSK'872, rather than inhibition of apoptosis with zVAD, significantly ameliorated SIN. Further investigation showed that sevoflurane treatment causes mitochondrial DNA (mtDNA) release into the cytosol. Accordingly, ZBP1 senses cytosolic mtDNA and consequently activates RIPK3/MLKL signaling. This conclusion was reinforced by the evidence that knockdown of ZBP1 or depleting mtDNA with ethidium bromide remarkably improved SIN. Finally, the administration of the RIPK3 inhibitor GSK'872 relieved sevoflurane-induced spatial and emotional disorders without influence on locomotor activity. Altogether, these results illustrate that ZBP1 senses cytosolic mtDNA to induce RIPK3/MLKL-driven necroptosis in SIN. Elucidating the role of necroptosis in SIN will provide new insights into understanding the mechanism of anesthetic exposure in the developing brain.
Collapse
Affiliation(s)
- Wen-Yuan Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Wan-Qing Yi
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yu-Si Liu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qi-Yun Hu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shao-Jie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Jin-Tao Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Hui Mao
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Fang Cai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Hui-Ling Yang
- Department of Anesthesiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou 310023, China.
| |
Collapse
|
10
|
Sun M, Xie Z, Zhang J, Leng Y. Mechanistic insight into sevoflurane-associated developmental neurotoxicity. Cell Biol Toxicol 2022; 38:927-943. [PMID: 34766256 PMCID: PMC9750936 DOI: 10.1007/s10565-021-09677-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity. 1. We discuss the mechanisms underlying sevoflurane-induced developmental neurotoxicity from five perspectives: neural cell death, neural cell damage, assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects.
2. Tau phosphorylation, IL-6, and mitochondrial dysfunction could interact with each other to cause a nerve damage loop.
3. miRNAs and lncRNAs are associated with sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Mingyang Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000 ,Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Center for Clinical Single Cell Biomedicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China 450003
| | - Yufang Leng
- Day Surgery Center, The First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China 730000
| |
Collapse
|
11
|
McCullock TW, Kammermeier PJ. The evidence for and consequences of metabotropic glutamate receptor heterodimerization. Neuropharmacology 2021; 199:108801. [PMID: 34547332 DOI: 10.1016/j.neuropharm.2021.108801] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) are an essential component of the mammalian central nervous system. These receptors modulate neuronal excitability in response to extracellular glutamate through the activation of intracellular heterotrimeric G proteins. Like most other class C G protein-coupled receptors, mGluRs function as obligate dimer proteins, meaning they need to form dimer complexes before becoming functional receptors. All mGluRs possess the ability to homodimerize, but studies over the past ten years have demonstrated these receptors are also capable of forming heterodimers in specific patterns. These mGluR heterodimers appear to have their own unique biophysical behavior and pharmacology with both native and synthetic compounds with few rules having been identified that allow for prediction of the consequences of any particular mGluR pair forming heterodimers. Here, we review the relevant literature demonstrating the existence and consequences of mGluR heterodimerization. By collecting biophysical and pharmacological data of several mGluR heterodimers we demonstrate the lack of generalizable behavior of these complexes indicating that each individual dimeric pair needs to be investigated independently. Additionally, by combining sequence alignment and structural analysis, we propose that interactions between the β4-A Helix Loop and the D Helix in the extracellular domain of these receptors are the structural components that dictate heterodimerization compatibility. Finally, we discuss the potential implications of mGluR heterodimerization from the viewpoints of further developing our understanding of neuronal physiology and leveraging mGluRs as a therapeutic target for the treatment of pathophysiology.
Collapse
Affiliation(s)
- Tyler W McCullock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| | - Paul J Kammermeier
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Hámor PU, Schwendt M. Metabotropic Glutamate Receptor Trafficking and its Role in Drug-Induced Neurobehavioral Plasticity. Brain Plast 2021; 7:61-76. [PMID: 34868874 PMCID: PMC8609495 DOI: 10.3233/bpl-210120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 12/18/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system that guides developmental and experience-dependent changes in many cellular substrates and brain circuits, through the process collectively referred to as neurobehavioral plasticity. Regulation of cell surface expression and membrane trafficking of glutamate receptors represents an important mechanism that assures optimal excitatory transmission, and at the same time, also allows for fine-tuning neuronal responses to glutamate. On the other hand, there is growing evidence implicating dysregulated glutamate receptor trafficking in the pathophysiology of several neuropsychiatric disorders. This review provides up-to-date information on the molecular determinants regulating trafficking and surface expression of metabotropic glutamate (mGlu) receptors in the rodent and human brain and discusses the role of mGluR trafficking in maladaptive synaptic plasticity produced by addictive drugs. As substantial evidence links glutamatergic dysfunction to the progression and the severity of drug addiction, advances in our understanding of mGluR trafficking may provide opportunities for the development of novel pharmacotherapies of addiction and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Peter U. Hámor
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Wang Q, Luo J, Sun R, Liu J. MicroRNA-1297 suppressed the Akt/GSK3 β signaling pathway and stimulated neural apoptosis in an in vivo sevoflurane exposure model. J Int Med Res 2021; 49:300060520982104. [PMID: 33843359 PMCID: PMC8044581 DOI: 10.1177/0300060520982104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective Common inhalation anesthetics used for clinical anesthesia (such as sevoflurane) may induce nerve cell apoptosis during central nervous system development. Furthermore, anesthetics can produce cognitive impairments, such as learning and memory impairments, that continue into adulthood. However, the precise mechanism remains largely undefined. We aimed to determine the function of microRNA-1297 (miR-1297) in sevoflurane-induced neurotoxicity. Methods Reverse transcription-polymerase chain reaction assays were used to analyze miR-1297 expression in sevoflurane-exposed mice. MTT and lactate dehydrogenase (LDH) assays were used to measure cell growth, and neuronal apoptosis was analyzed using flow cytometry. Western blot analyses were used to measure PTEN, PI3K, Akt, and GSK3β protein expression. Results In sevoflurane-exposed mice, miR-1297 expression was up-regulated compared with the control group. MiR-1297 up-regulation led to neuronal apoptosis, inhibition of cell proliferation, and increased LDH activity in the in vitro model of sevoflurane exposure. MiR-1297 up-regulation also suppressed the Akt/GSK3β signaling pathway and induced PTEN protein expression in the in vitro model. PTEN inhibition (VO-Ohpic trihydrate) reduced PTEN protein expression and decreased the effects of miR-1297 down-regulation on neuronal apoptosis in the in vitro model. Conclusion Collectively, the results indicated that miR-1297 stimulates sevoflurane-induced neurotoxicity via the Akt/GSK3β signaling pathway by regulating PTEN expression.
Collapse
Affiliation(s)
- Quan Wang
- Department of Anesthesiology, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingcong Luo
- Department of Anesthesiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Ruiqiang Sun
- Department of Anesthesiology, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jia Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
14
|
Li C, Yu TY, Gong LR, Mu R, Zhang Y, Yu JB. Involvement of Nrf-2/HO-1 pathway in sevoflurane-induced cognitive improvement in rats with traumatic brain injury. Behav Brain Res 2021; 405:113200. [PMID: 33636237 DOI: 10.1016/j.bbr.2021.113200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 02/09/2023]
Abstract
Traumatic brain injury (TBI) is an increasingly common emergency disease that usually leads to prolonged physical and cognitive impairments. In this study, we investigated if sevoflurane could induce cognitive improvement in TBI rats. Rats were subjected to head trauma induced by a fluid percussion device. A two-hour exposure to 3% sevoflurane was performed in a chamber immediately after TBI. Sevoflurane inhalation reduced the neurological and cognitive deficits induced by TBI with ameliorated synaptic injuries in the hippocampus. Moreover, after sevoflurane treatment, the expression of nuclear factor erythroid-2-related factor-2 (Nrf-2) and hemeoxygenase-1 (HO-1) in the hippocampus was enhanced 1 d after TBI and maintained at high levels 14 days later, and oxidative stress induced by TBI was inhibited. However, the HO-1 inhibitor, Zinc protoporphyrin (ZnPP), used to demonstrate the involvement of HO-1, suppressed the protective effect of sevoflurane. These results indicate that sevoflurane administered immediately after TBI may protect against TBI-induced synaptic and cognitive impairments by promoting the antioxidant Nrf-2/HO-1 pathway. Sevoflurane may be a promising anesthetic for patients with TBI.
Collapse
Affiliation(s)
- Cui Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Tian-Yu Yu
- Tianjin Medical University, Tianjin, 300070, China
| | - Li-Rong Gong
- Department of Anesthesiology and Critical Care Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Rui Mu
- Department of Anesthesiology and Critical Care Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Jian-Bo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin NanKai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
15
|
Zhang LM, Zhang DX, Zhao XC, Sun W. RETRACTED ARTICLE: Erythropoietin Rescues Primary Rat Cortical Neurons by Altering the Nrf2:Bach1 Ratio: Roles of Extracellular Signal-Regulated Kinase 1/2. Neurochem Res 2020; 45:1244. [PMID: 28083849 DOI: 10.1007/s11064-017-2174-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Chun Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenbo Sun
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
16
|
Abstract
A great deal of experimental evidence suggests that ligands can stabilize different receptor active states that go on to interact with cellular signaling proteins to form a range of different complexes in varying quantities. In pleiotropically linked receptor systems, this leads to selective activation of some signaling pathways at the expense of others (biased signaling). This article summarizes the current knowledge about the complex components of receptor systems, the evidence that biased signaling is used in natural physiology to fine-tune signaling, and the current thoughts on how this mechanism may be applied to the design of better drugs. Although this is a fairly newly discovered phenomenon, theoretical and experimental data suggest that it is a ubiquitous behavior of ligands and receptors and to be expected. Biased signaling is simple to detect in vitro and there are numerous methods to quantify the effect with scales that can be used to optimize this activity in structure-activity medicinal chemistry studies. At present, the major hurdle in the application of this mechanism to therapeutics is the translation of in vitro bias to in vivo effect; this is because of the numerous factors that can modify measures of bias in natural physiologic systems. In spite of this, biased signaling still has the potential to justify revisiting of receptor targets previously thought to be intractable and also furnishes the means to pursue targets previously thought to be forbidden due to deleterious physiology (as these may be eliminated through biased signaling).
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Jantas D, Lech T, Gołda S, Pilc A, Lasoń W. New evidences for a role of mGluR7 in astrocyte survival: Possible implications for neuroprotection. Neuropharmacology 2018; 141:223-237. [PMID: 30170084 DOI: 10.1016/j.neuropharm.2018.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/14/2018] [Accepted: 08/26/2018] [Indexed: 01/18/2023]
Abstract
A specific activation of metabotropic glutamate receptor 7 (mGluR7) has been shown to be neuroprotective in various models of neuronal cell damage, however, its role in glia cell survival has not been studied, yet. Thus, we performed comparative experiments estimating protective effects of the mGluR7 allosteric agonist AMN082 in glia, neuronal and neuronal-glia cell cultures against various harmful stimuli. First, the transcript levels of mGluR7 and other subtypes of group II and III mGluRs in cortical neuronal, neuronal-glia and glia cell cultures have been measured by qPCR method. Next, we demonstrated that AMN082 with similar efficiency attenuated the glia cell damage evoked by staurosporine (St) and doxorubicin (Dox). The AMN082-mediated glioprotection was mGluR7-dependent and associated with decreased DNA fragmentation without involvement of caspase-3 inhibition. Moreover, the inhibitors of PI3K/Akt and MAPK/ERK1/2 pathways blocked the protective effect of AMN082. In neuronal and neuronal-glia cell cultures in the model of glutamate (Glu)- but not St-evoked cell damage, we showed a significant glia contribution to mGluR7-mediated neuroprotection. Finally, by using glia and neuronal cells derived from mGluR7+/+ and mGluR7-/- mice we demonstrated a higher cell-damaging effect of St and Dox in mGluR7-deficient glia but not in neurons (cerebellar granule cells). Our present data showed for the first time a glioprotective potential of AMN082 underlain by mechanisms involving the activation of PI3K/Akt and MAPK/ERK1/2 pathways and pro-survival role of mGluR7 in glia cells. These findings together with the confirmed neuroprotective properties of AMN082 justify further research on mGluR7-targeted therapies for various CNS disorders.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland.
| | - Tomasz Lech
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Sławomir Gołda
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| |
Collapse
|
18
|
Petrunich-Rutherford ML, Garcia F, Battaglia G. 5-HT 1A receptor-mediated activation of neuroendocrine responses and multiple protein kinase pathways in the peripubertal rat hypothalamus. Neuropharmacology 2018; 139:173-181. [PMID: 30005975 DOI: 10.1016/j.neuropharm.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 01/08/2023]
Abstract
Increasing evidence suggests that multiple factors can produce effects on the immature brain that are distinct and more long-lasting than those produced in adults. The hypothalamic paraventricular nucleus (PVN) is a region integral to the hypothalamic-pituitary-adrenal axis and is affected by anxiety, depression, and drugs used to treat these disorders, yet receptor signaling mechanisms operative in hypothalamus prior to maturation remain to be elucidated. In peripubertal male rats, systemic injection of the selective serotonin 1A (5-HT1A) receptor agonist (+)8-OH-DPAT (0.2 mg/kg) markedly elevated plasma levels of oxytocin and adrenocorticotropic hormone (ACTH) at 5 and 15 min post-injection. The 5-HT1A receptor selectivity was demonstrated by the ability of the 5-HT1A receptor selective antagonist WAY100635 to completely block both oxytocin and ACTH responses at 5 min, with some recovery of the ACTH response at 15 min. At 15 min post-injection, (+)8-OH-DPAT also increased levels of phosphorylated extracellular signal-regulated kinase (pERK) and phosphorylated protein kinase B (pAkt) in the PVN. As previously observed in adults, (+)8-OH-DPAT reduced levels of pERK in hippocampus. WAY100635 also completely blocked (+)8-OH-DPAT-mediated elevations in hypothalamic pERK and pAkt and the reductions in hippocampal pERK, demonstrating 5-HT1A receptor selectivity of both kinase responses. This study provides the first demonstration of functional 5-HT1A receptor-mediated ERK and Akt signaling pathways in the immature hypothalamus, activated by a dose of (+)8-OH-DPAT that concomitantly stimulates neuroendocrine responses. This information is fundamental to identifying potential signaling pathways targeted by biased agonists in the development of safe and effective treatment strategies in children and adolescents.
Collapse
Affiliation(s)
| | - Francisca Garcia
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, United States
| | - George Battaglia
- Neuroscience Institute, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, United States; Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, United States.
| |
Collapse
|
19
|
Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats. Neuroreport 2017; 28:1170-1175. [DOI: 10.1097/wnr.0000000000000899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Yang X, Yang S, Hong C, Yu W, Guonian W. Panax Notoginseng Saponins attenuates sevoflurane‑induced nerve cell injury by modulating AKT signaling pathway. Mol Med Rep 2017; 16:7829-7834. [PMID: 28944861 DOI: 10.3892/mmr.2017.7519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/26/2017] [Indexed: 11/06/2022] Open
Abstract
General anesthesia in patients with or at risk for neuronal injury remains challenging due to the neurotoxic effects of volatile anesthetics. One inhalation anesthetic, sevoflurane, induces neuronal damage, including neuroapoptosis, and learning and memory impairment. Panax Notoginseng Saponins (PNS) is the active ingredient of Sanqui and has been reported to exert neuroprotective effects. In the current study, the protective effect of PNS on sevoflurane‑induced nerve cell injury was explored. Cell proliferation was significantly reduced in a dose‑dependent manner following stimulation with sevoflurane. Furthermore, cell apoptosis and the protein expression of caspase‑3, caspase‑9 and Bax were significantly increased, while the expression of Bcl‑2 was decreased in the sevoflurane group compared with normal control. Furthermore, the protein level of Bace‑1, APP and Aβ were elevated in the sevoflurane group compared with the control group. By contrast, PNS treatment significantly reduced the neurotoxicity induced by sevoflurane. Additionally, sevoflurane reduced activation of the AKT signaling pathway, which was activated by PNS treatment. In conclusion, the results suggested that PNS attenuates sevoflurane‑induced neurotoxicity through by stimulating cell proliferation and inhibiting cell apoptosis. These effects were mediated, at least in part, by activating the AKT signaling pathway.
Collapse
Affiliation(s)
- Xu Yang
- Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Sun Yang
- Department of Anesthesiology, Heilongjiang Province Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Chen Hong
- Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wang Yu
- Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wang Guonian
- Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
21
|
Li R, Zhang LM, Sun WB. RETRACTED: Erythropoietin rescues primary rat cortical neurons from pyroptosis and apoptosis via Erk1/2-Nrf2/Bach1 signal pathway. Brain Res Bull 2017; 130:236-244. [DOI: 10.1016/j.brainresbull.2017.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
|