1
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
2
|
Postnikova TY, Diespirov GP, Malkin SL, Chernyshev AS, Vylekzhanina EN, Zaitsev AV. Morphological and Functional Alterations in the CA1 Pyramidal Neurons of the Rat Hippocampus in the Chronic Phase of the Lithium-Pilocarpine Model of Epilepsy. Int J Mol Sci 2024; 25:7568. [PMID: 39062811 PMCID: PMC11276980 DOI: 10.3390/ijms25147568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Epilepsy is known to cause alterations in neural networks. However, many details of these changes remain poorly understood. The objective of this study was to investigate changes in the properties of hippocampal CA1 pyramidal neurons and their synaptic inputs in a rat lithium-pilocarpine model of epilepsy. In the chronic phase of the model, we found a marked loss of pyramidal neurons in the CA1 area. However, the membrane properties of the neurons remained essentially unaltered. The results of the electrophysiological and morphological studies indicate that the direct pathway from the entorhinal cortex to CA1 neurons is reinforced in epileptic animals, whereas the inputs to them from CA3 are either unaltered or even diminished. In particular, the dendritic spine density in the str. lacunosum moleculare, where the direct pathway from the entorhinal cortex terminates, was found to be 2.5 times higher in epileptic rats than in control rats. Furthermore, the summation of responses upon stimulation of the temporoammonic pathway was enhanced by approximately twofold in epileptic rats. This enhancement is believed to be a significant contributing factor to the heightened epileptic activity observed in the entorhinal cortex of epileptic rats using an ex vivo 4-aminopyridine model.
Collapse
Affiliation(s)
- Tatyana Y. Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| | - Georgy P. Diespirov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| | - Sergey L. Malkin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| | | | - Elizaveta N. Vylekzhanina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia; (T.Y.P.); (G.P.D.); (S.L.M.); (E.N.V.)
| |
Collapse
|
3
|
Amaya-Rodriguez CA, Carvajal-Zamorano K, Bustos D, Alegría-Arcos M, Castillo K. A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel. Front Pharmacol 2024; 14:1251061. [PMID: 38328578 PMCID: PMC10847257 DOI: 10.3389/fphar.2023.1251061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
The heat and capsaicin receptor TRPV1 channel is widely expressed in nerve terminals of dorsal root ganglia (DRGs) and trigeminal ganglia innervating the body and face, respectively, as well as in other tissues and organs including central nervous system. The TRPV1 channel is a versatile receptor that detects harmful heat, pain, and various internal and external ligands. Hence, it operates as a polymodal sensory channel. Many pathological conditions including neuroinflammation, cancer, psychiatric disorders, and pathological pain, are linked to the abnormal functioning of the TRPV1 in peripheral tissues. Intense biomedical research is underway to discover compounds that can modulate the channel and provide pain relief. The molecular mechanisms underlying temperature sensing remain largely unknown, although they are closely linked to pain transduction. Prolonged exposure to capsaicin generates analgesia, hence numerous capsaicin analogs have been developed to discover efficient analgesics for pain relief. The emergence of in silico tools offered significant techniques for molecular modeling and machine learning algorithms to indentify druggable sites in the channel and for repositioning of current drugs aimed at TRPV1. Here we recapitulate the physiological and pathophysiological functions of the TRPV1 channel, including structural models obtained through cryo-EM, pharmacological compounds tested on TRPV1, and the in silico tools for drug discovery and repositioning.
Collapse
Affiliation(s)
- Cesar A. Amaya-Rodriguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Departamento de Fisiología y Comportamiento Animal, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Karina Carvajal-Zamorano
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
4
|
Zavala-Tecuapetla C, Luna-Munguia H, López-Meraz ML, Cuellar-Herrera M. Advances and Challenges of Cannabidiol as an Anti-Seizure Strategy: Preclinical Evidence. Int J Mol Sci 2022; 23:ijms232416181. [PMID: 36555823 PMCID: PMC9783044 DOI: 10.3390/ijms232416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The use of Cannabis for medicinal purposes has been documented since ancient times, where one of its principal cannabinoids extracted from Cannabis sativa, cannabidiol (CBD), has emerged over the last few years as a promising molecule with anti-seizure potential. Here, we present an overview of recent literature pointing out CBD's pharmacological profile (solubility, metabolism, drug-drug interactions, etc.,), CBD's interactions with multiple molecular targets as well as advances in preclinical research concerning its anti-seizure effect on both acute seizure models and chronic models of epilepsy. We also highlight the recent attention that has been given to other natural cannabinoids and to synthetic derivatives of CBD as possible compounds with therapeutic anti-seizure potential. All the scientific research reviewed here encourages to continue to investigate the probable therapeutic efficacy of CBD and its related compounds not only in epilepsy but also and specially in drug-resistant epilepsy, since there is a dire need for new and effective drugs to treat this disease.
Collapse
Affiliation(s)
- Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Mexico City 14269, Mexico
- Correspondence:
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa 91190, Mexico
| | - Manola Cuellar-Herrera
- Epilepsy Clinic, Hospital General de México Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, Mexico City 06720, Mexico
| |
Collapse
|
5
|
Llanos MA, Enrique N, Sbaraglini ML, Garofalo FM, Talevi A, Gavernet L, Martín P. Structure-Based Virtual Screening Identifies Novobiocin, Montelukast, and Cinnarizine as TRPV1 Modulators with Anticonvulsant Activity In Vivo. J Chem Inf Model 2022; 62:3008-3022. [PMID: 35696534 DOI: 10.1021/acs.jcim.2c00312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) receptor is a nonselective cation channel, known to be involved in the regulation of many important physiological and pathological processes. In the last few years, it has been proposed as a promising target to develop novel anticonvulsant compounds. However, thermoregulatory effects associated with the channel inhibition have hampered the path for TRPV1 antagonists to become marketed drugs. In this regard, we conducted a structure-based virtual screening campaign to find potential TRPV1 modulators among approved drugs, which are known to be safe and thermally neutral. To this end, different docking models were developed and validated by assessing their pose and score prediction powers. Novobiocin, montelukast, and cinnarizine were selected from the screening as promising candidates for experimental testing and all of them exhibited nanomolar inhibitory activity. Moreover, the in vivo profiles showed promising results in at least one of the three models of seizures tested.
Collapse
Affiliation(s)
- Manuel A Llanos
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| | - María L Sbaraglini
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Federico M Garofalo
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Alan Talevi
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Luciana Gavernet
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), UNLP, Facultad de Ciencias Exactas, La Plata Buenos Aires (B1900ADU), Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET─Universidad Nacional de la Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata Buenos Aires (B1900BJW), Argentina
| |
Collapse
|
6
|
Beneficial Effects of Capsaicin in Disorders of the Central Nervous System. Molecules 2022; 27:molecules27082484. [PMID: 35458680 PMCID: PMC9029810 DOI: 10.3390/molecules27082484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
Capsaicin is a natural compound found in chili peppers and is used in the diet of many countries. The important mechanism of action of capsaicin is its influence on TRPV1 channels in nociceptive sensory neurons. Furthermore, the beneficial effects of capsaicin in cardiovascular and oncological disorders have been described. Many recent publications show the positive effects of capsaicin in animal models of brain disorders. In Alzheimer’s disease, capsaicin reduces neurodegeneration and memory impairment. The beneficial effects of capsaicin in Parkinson’s disease and depression have also been described. It has been found that capsaicin reduces the area of infarction and improves neurological outcomes in animal models of stroke. However, both proepileptic and antiepileptic effects of capsaicin in animal models of epilepsy have been proposed. These contradictory results may be caused by the fact that capsaicin influences not only TRPV1 channels but also different molecular targets such as voltage-gated sodium channels. Human studies show that capsaicin may be helpful in treating stroke complications such as dysphagia. Additionally, this compound exerts pain-relieving effects in migraine and cluster headaches. The purpose of this review is to discuss the mechanisms of the beneficial effects of capsaicin in disorders of the central nervous system.
Collapse
|
7
|
Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines 2022; 10:biomedicines10020416. [PMID: 35203625 PMCID: PMC8962263 DOI: 10.3390/biomedicines10020416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Christie Ramos Andrade Leite-Panissi
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Physiology Department, Ribeirão Preto School of Medicine and Neuroscience and Behavioral Sciences Department, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Correspondence:
| |
Collapse
|
8
|
Mu X, Zhang X, Gao H, Gao L, Li Q, Zhao C. Crosstalk between peripheral and the brain-resident immune components in epilepsy. J Integr Neurosci 2022; 21:9. [PMID: 35164445 DOI: 10.31083/j.jin2101009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is one of the most common neurology diseases. It is characterized by recurrent, spontaneous seizures and accompanied by various comorbidities which can significantly affect a person's life. Accumulating evidence indicates an essential pathophysiological role for neuroinflammation in epilepsy, which involves activation of microglia and astrocytes, recruitment of peripheral leukocytes into the central nervous system, and release of some inflammatory mediators, including pro-inflammatory factors and anti-inflammatory cytokines. There is complex crosstalk between the central nervous system and peripheral immune responses associated with the progression of epilepsy. This review provides an update of current knowledge about the contribution of this crosstalk associated with epilepsy. Additionally, how gut microbiota is involved in epilepsy and its possible influence on crosstalk is also discussed. Such recent advances in understanding suggest innovative methods for targeting the molecules correlated with the crosstalk and may provide a better prognosis for patients diagnosed with epilepsy.
Collapse
Affiliation(s)
- Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Honghua Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Lianbo Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Stroke Center, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| |
Collapse
|
9
|
Shao LL, Gao MM, Gong JX, Yang LY. DUSP1 regulates hippocampal damage in epilepsy rats via ERK1/2 pathway. J Chem Neuroanat 2021; 118:102032. [PMID: 34562585 DOI: 10.1016/j.jchemneu.2021.102032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the effects of DUSP1 on the hippocampal injury of young rats with epilepsy (EP) through mediating ERK1/2 signaling pathway. METHODS Young SD rats were selected and divided into Control, EP, EP + LV-GFP, EP + LV-DUSP1, EP + LV-siDUSP1, and EP + LV-siDUSP1 + U0126 groups. Morris Water Maze Test was used to detect the spatial learning and memory. Nissl staining and TUNEL staining were conducted and the inflammatory factors and oxidative stress-related indicators were also measured. Western blotting was utilized to detect the expression of DUSP1 and ERK1/2 pathway. EP cell model was constructed in vitro to verify the in vivo results. RESULTS Compared with Control group, young rats in EP group had decreased spatial learning and memory abilities and increased apoptotic rate and decreased number of Nissl positive cells. Besides, the up-regulated levels in inflammatory factors (IL-1β, IL-6), MDA content, and p-ERK1/2/ERK1/2 protein expression, as well as the down-regulated levels in DUSP1 protein expression and SOD content were also observed in EP rats. The EP rats treated with LV-DUSP1 showed obvious improvements regarding the above indicators, while those treated with LV-siDUSP1 had aggravated injury. But the effect of LV-siDUSP1 can be reversed by the treatment with ERK1/2 pathway inhibitor U0126. Further in vitro investigation verified the in vivo results. CONCLUSION DUSP1 may ameliorate the oxidative stress and inflammatory injury, as well as improve spatial learning and memory abilities via inhibiting ERK1/2 pathway, eventually playing protective roles in hippocampal injury of young rats with EP.
Collapse
Affiliation(s)
- Li-Li Shao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China.
| | - Miao-Miao Gao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Jing-Xin Gong
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Li-Yong Yang
- Department of Diagnostic CT, Cangzhou Central Hospital Yanshan Branch, Cangzhou 061399, PR China
| |
Collapse
|
10
|
Landucci E, Mazzantini C, Lana D, Davolio PL, Giovannini MG, Pellegrini-Giampietro DE. Neuroprotective Effects of Cannabidiol but Not Δ 9-Tetrahydrocannabinol in Rat Hippocampal Slices Exposed to Oxygen-Glucose Deprivation: Studies with Cannabis Extracts and Selected Cannabinoids. Int J Mol Sci 2021; 22:ijms22189773. [PMID: 34575932 PMCID: PMC8468213 DOI: 10.3390/ijms22189773] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Over the past 10 years, a number of scientific studies have demonstrated the therapeutic potential of cannabinoid compounds present in the Cannabis Sativa and Indica plants. However, their role in mechanisms leading to neurodegeneration following cerebral ischemia is yet unclear. (2) Methods: We investigated the effects of Cannabis extracts (Bedrocan, FM2) or selected cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of forebrain global ischemia. Cell death in the CA1 subregion of slices was quantified by propidium iodide fluorescence, and morphological analysis and tissue organization were examined by immunohistochemistry and confocal microscopy. (3) Results: Incubation with the Bedrocan extract or THC exacerbated, whereas incubation with the FM2 extract or cannabidiol attenuated CA1 injury induced by OGD. Δ9-THC toxicity was prevented by CB1 receptor antagonists, the neuroprotective effect of cannabidiol was blocked by TRPV2, 5-HT1A, and PPARγ antagonists. Confocal microscopy confirmed that CBD, but not THC, had a significant protective effect toward neuronal damage and tissue disorganization caused by OGD in organotypic hippocampal slices. (4) Conclusions: Our results suggest that cannabinoids play different roles in the mechanisms of post-ischemic neuronal death. In particular, appropriate concentrations of CBD or CBD/THC ratios may represent a valid therapeutic intervention in the treatment of post-ischemic neuronal death.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
- Correspondence: ; Tel.: +39-055-2758378
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | | | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| |
Collapse
|
11
|
Asth L, Iglesias LP, De Oliveira AC, Moraes MFD, Moreira FA. Exploiting cannabinoid and vanilloid mechanisms for epilepsy treatment. Epilepsy Behav 2021; 121:106832. [PMID: 31839498 DOI: 10.1016/j.yebeh.2019.106832] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022]
Abstract
This review focuses on the possible roles of phytocannabinoids, synthetic cannabinoids, endocannabinoids, and "transient receptor potential cation channel, subfamily V, member 1" (TRPV1) channel blockers in epilepsy treatment. The phytocannabinoids are compounds produced by the herb Cannabis sativa, from which Δ9-tetrahydrocannabinol (Δ9-THC) is the main active compound. The therapeutic applications of Δ9-THC are limited, whereas cannabidiol (CBD), another phytocannabinoid, induces antiepileptic effects in experimental animals and in patients with refractory epilepsies. Synthetic CB1 agonists induce mixed effects, which hamper their therapeutic applications. A more promising strategy focuses on compounds that increase the brain levels of anandamide, an endocannabinoid produced on-demand to counteract hyperexcitability. Thus, anandamide hydrolysis inhibitors might represent a future class of antiepileptic drugs. Finally, compounds that block the TRPV1 ("vanilloid") channel, a possible anandamide target in the brain, have also been investigated. In conclusion, the therapeutic use of phytocannabinoids (CBD) is already in practice, although its mechanisms of action remain unclear. Endocannabinoid and TRPV1 mechanisms warrant further basic studies to support their potential clinical applications. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Laila Asth
- Graduate School in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Lia P Iglesias
- Graduate School in Neurosciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Antônio C De Oliveira
- Graduate School in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Graduate School in Neurosciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Marcio F D Moraes
- Graduate School in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Graduate School in Neurosciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Fabrício A Moreira
- Graduate School in Physiology and Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Graduate School in Neurosciences, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil; Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
12
|
Xiao D, Lv J, Zheng Z, Liu Y, Zhang Y, Luo C, Qi L, Qin B, Liu C. Mechanisms of microRNA‑142 in mitochondrial autophagy and hippocampal damage in a rat model of epilepsy. Int J Mol Med 2021; 47:98. [PMID: 33846769 PMCID: PMC8043661 DOI: 10.3892/ijmm.2021.4931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Researchers have confirmed the microRNA (miRNA/miR)‑epilepsy association in rodent models of human epilepsy via a comprehensive database. However, the mechanisms of miR‑142 in epilepsy have not been extensively studied. In the present study, a rat model of epilepsy was first established by an injection of lithium chloride‑pilocarpine and the successful establishment of the model was verified via electroencephalogram monitoring. The levels of miR‑142, phosphatase and tensin homolog deleted on chromosome 10 (PTEN)‑induced putative kinase 1 (PINK1), marker proteins of mitochondrial autophagy, and apoptosis‑related proteins were measured. Additionally, the pathological changes in the hippocampus, the ultrastructure of the mitochondria, and degeneration and the apoptosis of neurons were observed using different staining methods. The malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in the hippocampus, mitochondrial membrane potential (MTP) and reactive oxygen species (ROS) generation were detected. Furthermore, the targeting association between miR‑142 and PINK1 was predicted and verified. Consequently, apoptosis increased, and mitochondrial autophagy decreased, in the hippocampus of epileptic rats. Following miR‑142 inhibition, the epileptic rats exhibited an increased Bax expression, a decreased Bcl‑2 expression, upregulated marker protein levels of mitochondrial autophagy, a reduced MDA content, an enhanced SOD activity, an increased MTP and decreased ROS generation. PINK1 is a target gene of miR‑142, and its overexpression protected against hippocampal damage. Taken together, the results of the present study demonstrated that miR‑142 inhibition promotes mitochondrial autophagy and reduces hippocampal damage in epileptic rats by targeting PINK1. These findings may provide useful information for the treatment of epilepsy.
Collapse
Affiliation(s)
- Du Xiao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Jingdan Lv
- Department of Neurology, Guangzhou Hospital of TCM, Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Zhigang Zheng
- Department of Intensive Care Unit, Pingxiang People's Hospital of Southern Medical University, Pingxiang, Jiangxi 337055, P.R. China
| | - Yi Liu
- Department of Intensive Care Unit, Pingxiang People's Hospital of Southern Medical University, Pingxiang, Jiangxi 337055, P.R. China
| | - Yonggen Zhang
- Department of Intensive Care Unit, Pingxiang People's Hospital of Southern Medical University, Pingxiang, Jiangxi 337055, P.R. China
| | - Cuizhu Luo
- Department of Intensive Care Unit, Pingxiang People's Hospital of Southern Medical University, Pingxiang, Jiangxi 337055, P.R. China
| | - Liu Qi
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510623, P.R. China
| | - Bing Qin
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510623, P.R. China
| | - Chao Liu
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
13
|
Leehey MA, Liu Y, Hart F, Epstein C, Cook M, Sillau S, Klawitter J, Newman H, Sempio C, Forman L, Seeberger L, Klepitskaya O, Baud Z, Bainbridge J. Safety and Tolerability of Cannabidiol in Parkinson Disease: An Open Label, Dose-Escalation Study. Cannabis Cannabinoid Res 2020; 5:326-336. [PMID: 33381646 PMCID: PMC7759259 DOI: 10.1089/can.2019.0068] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Cannabis is increasingly used in Parkinson disease (PD), despite little information regarding benefits and risks. Objectives: To investigate the safety and tolerability of a range of doses of cannabidiol (CBD), a nonintoxicating component of cannabis, and it's effect on common parkinsonian symptoms. Methods: In this open-label study Coloradans with PD, substantial rest tremor, not using cannabis received plant-derived highly purified CBD (Epidiolex®; 100 mg/mL). CBD was titrated from 5 to 20-25 mg/kg/day and maintained for 10-15 days. Results: Fifteen participants enrolled, two were screen failures. All 13 participants (10 male), mean (SD) age 68.15 (6.05), with 6.1 (4.0) years of PD, reported adverse events, including diarrhea (85%), somnolence (69%), fatigue (62%), weight gain (31%), dizziness (23%), abdominal pain (23%), and headache, weight loss, nausea, anorexia, and increased appetite (each 5%). Adverse events were mostly mild; none serious. Elevated liver enzymes, mostly a cholestatic pattern, occurred in five (38.5%) participants on 20-25 mg/kg/day, only one symptomatic. Three (23%) dropped out due to intolerance. Ten (eight male) that completed the study had improvement in total and motor Movement Disorder Society Unified Parkinson Disease Rating Scale scores of 7.70 (9.39, mean decrease 17.8%, p=0.012) and 6.10 (6.64, mean decrease 24.7%, p=0.004), respectively. Nighttime sleep and emotional/behavioral dyscontrol scores also improved significantly. Conclusions: CBD, in the form of Epidiolex, may be efficacious in PD, but the relatively high dose used in this study was associated with liver enzyme elevations. Randomized controlled trials are needed to investigate various forms of cannabis in PD.
Collapse
Affiliation(s)
- Maureen A. Leehey
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ying Liu
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Felecia Hart
- Department of Clinical Pharmacy, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christen Epstein
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mary Cook
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Heike Newman
- Regulatory Compliance Office, University of Colorado, Aurora, Colorado, USA
| | - Cristina Sempio
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lisa Forman
- Department of Gastroenterology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lauren Seeberger
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Olga Klepitskaya
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Zachrey Baud
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jacquelyn Bainbridge
- Department of Clinical Pharmacy, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
14
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
15
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
16
|
Instant activation of TRP channels by NH 4 + promotes neuronal bursting and glutamate spikes in CA1 neurons. Curr Res Physiol 2020; 3:20-29. [PMID: 34746817 PMCID: PMC8562246 DOI: 10.1016/j.crphys.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022] Open
Abstract
Ammonia ( NH 4 + ) is a by-product of cell metabolism and may elicit subcellular effects with specific physiological responses. Chronic effects have been implicated in several neurological diseases and attributed to persistent elevation in blood ammonia levels transferred to the brain. In previous studies the activities of neurons and astrocytes have been examined at ammonia concentrations an order of magnitude higher than measured in the blood. The effects developed within several minutes. Here we focused upon acute responses of neurons to ammonia and whether they may occur at much lower doses. To this end, we combined patch-clamp in CA1 neurons with glutamate imaging in hippocampal slices. Particular attention was paid to the Rett syndrome that has been originally attributed to hyperammonemia. We compared the responses in the wild-type (WT) and model Rett mice (MECP2-null, RTT) to ammonia doses from 0.3 mM on. In both preparations NH 4 + promptly depolarized neurons and increased the ambient glutamate. The bursting activity emerged in WT and it was augmented in RTT. Searching for subcellular mechanisms we examined possible modulation of ion channels by ammonia. We did not find any changes in HCN- and Ca2+ currents, which substantially contribute to the bursting activity. The non-selective cation channels were markedly potentiated by ammonia. ASIC channels had a major contribution to the augmentation of neuronal activity by ammonia. Interestingly, their general blocker amiloride (100 μM) moderately excited CA1 cells akin to NH 4 + . In its presence subsequent ammonia effects were markedly compromised. Blockade of TRPC1 channels partially occluded NH 4 + effects. ASIC and TRPC1 blockers decreased the amplitude of excitatory postsynaptic currents (EPSC) and neuronal bursts, congruent with a postsynaptic location of the channels. Inhibition of TRPV1 channels potentiated the responses to NH 4 + . EPSC amplitudes did not change, but the frequency decreased, indicating presynaptic effects. All extracellular NH 4 + actions were observed at concentrations as low as 0.3 mM and the neurons reacted immediately after ammonia arrived the slice. We propose that a brief augmentation of neuronal activity by NH 4 + may occur either spontaneously during arousal or induced by inhalation of smelling salts.
Collapse
|
17
|
Therapeutic potential of pharmacological agents targeting TRP channels in CNS disorders. Pharmacol Res 2020; 159:105026. [PMID: 32562815 DOI: 10.1016/j.phrs.2020.105026] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/21/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) disorders like Alzheimer's disease (AD), Parkinson disease (PD), stroke, epilepsy, depression, and bipolar disorder have a high impact on both medical and social problems due to the surge in their prevalence. All of these neuronal disorders share some common etiologies including disruption of Ca2+ homeostasis and accumulation of misfolded proteins. These misfolded proteins further disrupt the intracellular Ca2+ homeostasis by disrupting the activity of several ion channels including transient receptor potential (TRP) channels. TRP channel families include non-selective Ca2+ permeable channels, which act as cellular sensors activated by various physio-chemical stimuli, exogenous, and endogenous ligands responsible for maintaining the intracellular Ca2+ homeostasis. TRP channels are abundantly expressed in the neuronal cells and disturbance in their activity leads to various neuronal diseases. Under the pathological conditions when the activity of TRP channels is perturbed, there is a disruption of the neuronal homeostasis through increased inflammatory response, generation of reactive oxygen species, and mitochondrial dysfunction. Therefore, there is a potential of pharmacological interventions targeting TRP channels in CNS disorders. This review focuses on the role of TRP channels in neurological diseases; also, we have highlighted the current insights into the pharmacological modulators targeting TRP channels.
Collapse
|
18
|
TRPV1 Contributes to the Neuroprotective Effect of Dexmedetomidine in Pilocarpine-Induced Status Epilepticus Juvenile Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7623635. [PMID: 32337274 PMCID: PMC7168755 DOI: 10.1155/2020/7623635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
Abstract
To investigate the antiepileptic and neuroprotective effects of dexmedetomidine (Dex) in pilocarpine- (Pilo-) induced status epilepticus (SE) juvenile rats, rats were randomly assigned to the following six groups (n = 20): normal, normal+Dex, SE, SE+Cap, SE+Dex, and SE+Dex+Cap. The rats were treated with either diazepam (i.p., an antiepileptic drug) or Dex after the onset of SE. The Morris water maze was used to assess rat cognitive behavior. Flow cytometry was used to detect the concentrations of Ca2+, mitochondrial membrane potential, and reactive oxygen species. Transmission electron microscopy was performed to evaluate specimens of brain tissue. The levels of caspase 3 and TRPV1 were examined by western blot and immunohistochemistry (IHC). Treatment with Dex significantly decreased the escape latency of the SE rats (P < 0.05). Capsaicin, a TRPV1 agonist, delivery aggravated the performance of SE rats. Pathological changes in SE rat were attenuated by Dex and deteriorated by capsaicin. Swollen mitochondria and abnormal endoplasmic reticulum were found in SE rats and were then aggravated by capsaicin and reversed by Dex. Moreover, our data showed that Dex significantly restrained calcium overload, ROS production, and mitochondrial membrane potential loss, all of which were induced by Pilo and capsaicin (P < 0.05). Dex decreased the apoptotic rate in the Model SE group (P < 0.05) and TRPV1 and caspase 3 expression in the Dex treatment group (P < 0.05). Interestingly, all these effects of Dex were partially counteracted by the TRPV1 agonist, capsaicin (P < 0.05). Our study showed that Dex exerted a neuroprotective effect in Pilo-induced SE rats by inhibiting TRPV1 expression and provided information for therapy to SE patients.
Collapse
|
19
|
Transient receptor potential vanilloid 1 antagonism in neuroinflammation, neuroprotection and epigenetic regulation: potential therapeutic implications for severe psychiatric disorders treatment. Psychiatr Genet 2020; 30:39-48. [PMID: 32097233 DOI: 10.1097/ypg.0000000000000249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Tang BL. The Expanding Therapeutic Potential of Neuronal KCC2. Cells 2020; 9:E240. [PMID: 31963584 PMCID: PMC7016893 DOI: 10.3390/cells9010240] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dysfunctions in GABAergic inhibitory neural transmission occur in neuronal injuries and neurological disorders. The potassium-chloride cotransporter 2 (KCC2, SLC12A5) is a key modulator of inhibitory GABAergic inputs in healthy adult neurons, as its chloride (Cl-) extruding activity underlies the hyperpolarizing reversal potential for GABAA receptor Cl- currents (EGABA). Manipulation of KCC2 levels or activity improve symptoms associated with epilepsy and neuropathy. Recent works have now indicated that pharmacological enhancement of KCC2 function could reactivate dormant relay circuits in an injured mouse's spinal cord, leading to functional recovery and the attenuation of neuronal abnormality and disease phenotype associated with a mouse model of Rett syndrome (RTT). KCC2 interacts with Huntingtin and is downregulated in Huntington's disease (HD), which contributed to GABAergic excitation and memory deficits in the R6/2 mouse HD model. Here, these recent advances are highlighted, which attest to KCC2's growing potential as a therapeutic target for neuropathological conditions resulting from dysfunctional inhibitory input.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; ; Tel.: +65-6516-1040
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
21
|
Phoneutria toxin PnTx3-5 inhibits TRPV1 channel with antinociceptive action in an orofacial pain model. Neuropharmacology 2020; 162:107826. [DOI: 10.1016/j.neuropharm.2019.107826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/05/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
|
22
|
Capsaicin-Induced Impairment of Functional Network Dynamics in Mouse Hippocampus via a TrpV1 Receptor-Independent Pathway: Putative Involvement of Na +/K +-ATPase. Mol Neurobiol 2019; 57:1170-1185. [PMID: 31701438 PMCID: PMC7031213 DOI: 10.1007/s12035-019-01779-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin’s CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1. Recently, we have reported that capsaicin induces impairment in hippocampal gamma oscillations via a TrpV1-independent pathway. Here, we dissect the underlying mechanisms of capsaicin-induced alterations to functional network dynamics. We found that capsaicin induces a reduction in action potential (AP) firing rate and a subsequent loss of synchronicity in pyramidal cell (PC) spiking activity in hippocampus. Moreover, capsaicin induces alterations in PC spike-timing since increased first-spike latency was observed after capsaicin treatment. First-spike latency can be regulated by the voltage-dependent potassium current D (ID) or Na+/K+-ATPase. Selective inhibition of ID via low 4-AP concentration and Na+/K+-ATPase using its blocker ouabain, we found that capsaicin effects on AP spike timing were completely inhibited by ouabain but not with 4-AP. In conclusion, our study shows that capsaicin in a TrpV1-independent manner and possibly involving Na+/K+-ATPase activity can impair cognition-relevant functional network dynamics such as gamma oscillations and provides important data regarding the use of capsaicin as a tool to study TrpV1 function in the CNS.
Collapse
|
23
|
Kong W, Wang X, Yang X, Huang W, Han S, Yin J, Liu W, He X, Peng B. Activation of TRPV1 Contributes to Recurrent Febrile Seizures via Inhibiting the Microglial M2 Phenotype in the Immature Brain. Front Cell Neurosci 2019; 13:442. [PMID: 31680864 PMCID: PMC6798794 DOI: 10.3389/fncel.2019.00442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel implicated in the nervous system as a key component of several inflammatory diseases. A massive amount of evidence has demonstrated that TRPV1 is extensively expressed in the central nervous system (CNS) and there might be a close relationship between TRPV1 and neuroinflammation, which is a crucial pathogenic factor in seizure generation, although it’s signaling mechanism has been less well characterized. Herein, we identified that TRPV1 is functionally expressed in the primary cultured mouse microglia and the membrane expression of TRPV1 is upregulated in rFS mice brain and specifically in activated microglia. Stimulation of TRPV1 promoted microglia activation and indirectly enhanced seizure susceptibility by inhibiting the neuroprotective effects of microglial transforming growth factor-beta1 (TGF-β1) via interaction with Toll-like receptor 4 (TLR4) in mice. Conversely, genetic deletion of TRPV1 alleviated hyperthermia or LPS-induced abnormal microglial activation and restored a balanced inflammatory microenvironment in the brain. Taken together, these findings show that microglial TRPV1, as a potential pro-inflammatory mediator, and participate in neuroinflammatory response, which will provide a novel therapeutic strategy for controlling the neuroinflammation-induced seizure.
Collapse
Affiliation(s)
- Weilin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xin Wang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingliang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wenxian Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
The Highs and Lows of the Endocannabinoid System-Another Piece to the Epilepsy Puzzle? Epilepsy Curr 2018; 18:315-317. [PMID: 30464733 DOI: 10.5698/1535-7597.18.5.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Balleza-Tapia H, Crux S, Andrade-Talavera Y, Dolz-Gaiton P, Papadia D, Chen G, Johansson J, Fisahn A. TrpV1 receptor activation rescues neuronal function and network gamma oscillations from Aβ-induced impairment in mouse hippocampus in vitro. eLife 2018; 7:37703. [PMID: 30417826 PMCID: PMC6281315 DOI: 10.7554/elife.37703] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
Amyloid-β peptide (Aβ) forms plaques in Alzheimer’s disease (AD) and is responsible for early cognitive deficits in AD patients. Advancing cognitive decline is accompanied by progressive impairment of cognition-relevant EEG patterns such as gamma oscillations. The endocannabinoid anandamide, a TrpV1-receptor agonist, reverses hippocampal damage and memory impairment in rodents and protects neurons from Aβ-induced cytotoxic effects. Here, we investigate a restorative role of TrpV1-receptor activation against Aβ-induced degradation of hippocampal neuron function and gamma oscillations. We found that the TrpV1-receptor agonist capsaicin rescues Aβ-induced degradation of hippocampal gamma oscillations by reversing both the desynchronization of AP firing in CA3 pyramidal cells and the shift in excitatory/inhibitory current balance. This rescue effect is TrpV1-receptor-dependent since it was absent in TrpV1 knockout mice or in the presence of the TrpV1-receptor antagonist capsazepine. Our findings provide novel insight into the network mechanisms underlying cognitive decline in AD and suggest TrpV1 activation as a novel therapeutic target.
Collapse
Affiliation(s)
- Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Crux
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden.,German Center for Neurodegenerative Diseases, Munich, Germany
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Pablo Dolz-Gaiton
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Daniela Papadia
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Gefei Chen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neurogeriatrics Division, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Kong WL, Peng YY, Peng BW. Modulation of neuroinflammation: Role and therapeutic potential of TRPV1 in the neuro-immune axis. Brain Behav Immun 2017; 64:354-366. [PMID: 28342781 DOI: 10.1016/j.bbi.2017.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.
Collapse
Affiliation(s)
- Wei-Lin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Yuan Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Effects of a TRPV1 agonist capsaicin on respiratory rhythm generation in brainstem-spinal cord preparation from newborn rats. Pflugers Arch 2016; 469:327-338. [PMID: 27900462 DOI: 10.1007/s00424-016-1912-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
The heat-sensitive transient receptor potential vanilloid 1 (TRPV1) channels are expressed in the peripheral and central nervous systems. However, there is no report on how the activation of TRPV1 causes the modulation of neuronal activity in the medullary respiratory center. We examined effects of capsaicin, a specific agonist of TRPV1 channels, on respiratory rhythm generation in brainstem-spinal cord preparation from newborn rats. Capsaicin induced a biphasic response in the respiratory rhythm (a transient decrease followed by an increase in the C4 rate). The second-phase excitatory effect (but not the initial inhibitory effect) in the biphasic response was partly blocked by capsazepine or AMG9810 (TRPV1 antagonists). Capsaicin caused strong desensitization. After its washout, the strength of C4 burst inspiratory activity was augmented once per four to five respiratory cycles. The preinspiratory and inspiratory neurons showed tonic firings due to membrane depolarization during the initial inhibitory phase. In the presence of TTX, capsaicin increased the fluctuation of the membrane potential of the CO2-sensitive preinspiratory neurons in the parafacial respiratory group (pFRG), accompanied by slight depolarization. The C4 inspiratory activity did not stop, even 60-90 min after the application of 50/100 μM capsaicin. Voltage-sensitive dye imaging demonstrated that the spatiotemporal pattern of the respiratory rhythm generating networks after application of capsaicin (50 μM, 70-90 min) was highly similar to the control. A histochemical analysis using TRPV1 channel protein antibodies and mRNA demonstrated that the TRPV1 channel-positive cells were widely distributed in the reticular formation of the medulla, including the pFRG. Our results showed that the application of capsaicin in the medulla has various influences on the respiratory center: transient inhibitory and subsequent excitatory effects on the respiratory rhythm and periodical augmentation of the inspiratory burst pattern. The effects of capsaicin were partially blocked by TRPV1 antagonists but could be also induced at least partially via the non-specific action. Our results also suggested a minor contribution of the TRPV1 channels to central chemoreception.
Collapse
|
28
|
Feng MH, He ZG, Liu BW, Li ZX, Wu DZ, Liu SG, Xiang HB. Parafascicular nucleus circuits: Implications for the alteration of gastrointestinal functions during epileptogenesis. Epilepsy Behav 2016; 64:295-298. [PMID: 27773642 DOI: 10.1016/j.yebeh.2016.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No. 169 Donghu Road, Wuhan, Hubei 430071, PR China.
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Duo-Zhi Wu
- Department of Anesthesiology, People's Hospital of Hainan Province, Haikou, Hainan 570311, PR China.
| | - San-Guang Liu
- Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000, Hebei, PR China.
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
29
|
Upregulated P2X3 Receptor Expression in Patients with Intractable Temporal Lobe Epilepsy and in a Rat Model of Epilepsy. Neurochem Res 2016; 41:1263-73. [DOI: 10.1007/s11064-015-1820-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
|