1
|
Mizukami R, Matsumoto M, Koganezawa T. The lateral habenula regulates stress-related respiratory responses via the monoaminergic system. Pflugers Arch 2025; 477:441-452. [PMID: 39560766 PMCID: PMC11825555 DOI: 10.1007/s00424-024-03043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Psychologic stress induces behavioral and autonomic responses such as acceleration of respiration. The lateral habenula (LHb) is noted to be involved in stress-induced behavioral responses. However, its involvement in stress-induced respiratory responses is unknown. In this study, we aimed to analyze whether and how the LHb regulates respiration. Electrical stimulation of the LHb of anesthetized Wistar male rats increased respiratory frequency and minute ventilation, calculated by respiratory frequency × thoracic movement amplitude. Systemic administration of a dopaminergic receptor antagonist, clozapine, suppressed the LHb-induced respiratory responses. On the other hand, administration of a serotonergic receptor antagonist, methysergide, significantly accelerated the LHb-induced increase in respiratory frequency, together with suppressing the thoracic movement amplitude. To clarify the source of dopaminergic modulation, we inhibited the ventral tegmental area (VTA), which contains dopaminergic neurons and receives inputs from the LHb, by administering microinjections of a GABAA agonist, muscimol. The bilateral inhibition of the VTA almost abolished the LHb-induced respiratory responses. These results suggest that LHb activation causes respiration acceleration, mainly mediated by dopaminergic neurons in the VTA and suppressively modulated by the serotonergic system. Neural circuits originating in the LHb may be a key modulator for respiration during psychological stress.
Collapse
Affiliation(s)
- Riko Mizukami
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Matsumoto
- Department of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tadachika Koganezawa
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
2
|
Prates‐Rodrigues M, Schweizer BLA, de Paula Gomes C, Ribeiro ÂM, Padovan‐Neto FE, Masini D, Lopes‐Aguiar C. Challenges and Opportunities in Exploring Non-Motor Symptoms in 6-Hydroxydopamine Models of Parkinson's Disease: A Systematic Review. J Neurochem 2025; 169:e70008. [PMID: 39901598 PMCID: PMC11791392 DOI: 10.1111/jnc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of midbrain dopaminergic neurons, leading to motor symptoms such as tremors, rigidity, and bradykinesia. Non-motor symptoms, including depression, hyposmia, and sleep disturbances, often emerge in the early stages of PD, but their mechanisms remain poorly understood. The 6-hydroxydopamine (6-OHDA) rodent model is a well-established tool for preclinical research, replicating key motor and non-motor symptoms of PD. In this review, we systematically analyzed 135 studies that used 6-OHDA rodent models of PD to investigate non-motor symptoms. The review process adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our analysis highlights the growing use of 6-OHDA PD models for experimental research of non-motor symptoms. It also reveals significant variability in methodologies, including choices of brain target, toxin dosage, lesion verification strategies, and behavioral assessment reporting. Factors that hinder reproducibility and comparability of findings across studies. We highlight the need for standardization in 6-OHDA-based models with particular emphasis on consistent evaluation of lesion extent and reporting of the co-occurrence of non-motor symptoms. By fostering methodological coherence, this framework aims to enhance the reproducibility, reliability, and translational value of 6-OHDA models in PD non-motor symptom research.
Collapse
Affiliation(s)
- Mateus Prates‐Rodrigues
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Beatriz Lage Araújo Schweizer
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Clara de Paula Gomes
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Ângela Maria Ribeiro
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Fernando E. Padovan‐Neto
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Debora Masini
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Cleiton Lopes‐Aguiar
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
3
|
Walker JJ, Meunier E, Garcia S, Messaoudi B, Mouly AM, Veyrac A, Buonviso N, Courtiol E. State-dependent alteration of respiration in a rat model of Parkinson's disease. Exp Neurol 2024; 375:114740. [PMID: 38395215 DOI: 10.1016/j.expneurol.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Besides major deficits in motor coordination, patients may also display sensory and cognitive impairments, which are often overlooked despite being inherently part of the PD symptomatology. Amongst those symptoms, respiration, a key mechanism involved in the regulation of multiple physiological and neuronal processes, appears to be altered. Importantly, breathing patterns are highly correlated with the animal's behavioral states. This raises the question of the potential impact of behavioral state on respiration deficits in PD. To answer this question, we first characterized the respiratory parameters in a neurotoxin-induced rat model of PD (6-OHDA) across three different vigilance states: sleep, quiet waking and exploration. We noted a significantly higher respiratory frequency in 6-OHDA rats during quiet waking compared to Sham rats. A higher respiratory amplitude was also observed in 6-OHDA rats during both quiet waking and exploration. No effect of the treatment was noted during sleep. Given the relation between respiration and olfaction and the presence of olfactory deficits in PD patients, we then investigated the odor-evoked sniffing response in PD rats, using an odor habituation/cross-habituation paradigm. No substantial differences were observed in olfactory abilities between the two groups, as assessed through sniffing frequency. These results corroborate the hypothesis that respiratory impairments in 6-OHDA rats are vigilance-dependent. Our results also shed light on the importance of considering the behavioral state as an impacting factor when analyzing respiration.
Collapse
Affiliation(s)
- Jean Jacques Walker
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Estelle Meunier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France
| | - Samuel Garcia
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Belkacem Messaoudi
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Anne-Marie Mouly
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Alexandra Veyrac
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Nathalie Buonviso
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| | - Emmanuelle Courtiol
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, CMO, Centre Hospitalier Le Vinatier, Bâtiment 452, Neurocampus Michel Jouvet - 95 Bd Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
4
|
Jampolska M, Andrzejewski K, Boguszewski PM, Kaczyńska K. L-DOPA Improves Ventilation but Not the Ventilatory Response to Hypercapnia in a Reserpine Model of Parkinson's Disease. Brain Sci 2023; 13:brainsci13050775. [PMID: 37239247 DOI: 10.3390/brainsci13050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by progressive degeneration of the substantia nigra that affects mainly movement control. However, pathological changes associated with the development of PD may also alter respiration and can lead to chronic episodes of hypoxia and hypercapnia. The mechanism behind impaired ventilation in PD is unclear. Therefore, in this study, we explore the hypercapnic ventilatory response in a reproducible reserpine-induced (RES) model of PD and parkinsonism. We also investigated how dopamine supplementation with L-DOPA, a classic drug used to treat PD, would affect the breathing and respiratory response to hypercapnia. Reserpine treatment resulted in decreased normocapnic ventilation and behavioral changes manifested as low physical activity and exploratory behavior. The respiratory rate and the minute ventilation response to hypercapnia were significantly higher in sham rats compared to the RES group, while the tidal volume response was lower. All of this appears to be due to reduced baseline ventilation values produced by reserpine. L-DOPA reversed reduced ventilation, indicating a stimulatory effect of DA on breathing, and showed the potency of DA supplementation in restoring normal respiratory activity.
Collapse
Affiliation(s)
- Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Ludwika Pasteura 3 St., 02-093 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Kaczyńska K, Orłowska ME, Andrzejewski K. Respiratory Abnormalities in Parkinson's Disease: What Do We Know from Studies in Humans and Animal Models? Int J Mol Sci 2022; 23:ijms23073499. [PMID: 35408858 PMCID: PMC8998219 DOI: 10.3390/ijms23073499] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease characterized by movement disorders due to the progressive loss of dopaminergic neurons in the ventrolateral region of the substantia nigra pars compacta (SNpc). Apart from the cardinal motor symptoms such as rigidity and bradykinesia, non-motor symptoms including those associated with respiratory dysfunction are of increasing interest. Not only can they impair the patients’ quality of life but they also can cause aspiration pneumonia, which is the leading cause of death among PD patients. This narrative review attempts to summarize the existing literature on respiratory impairments reported in human studies, as well as what is newly known from studies in animal models of the disease. Discussed are not only respiratory muscle dysfunction, apnea, and dyspnea, but also altered central respiratory control, responses to hypercapnia and hypoxia, and how they are affected by the pharmacological treatment of PD.
Collapse
|
6
|
Aquino YC, Cabral LM, Miranda NC, Naccarato MC, Falquetto B, Moreira TS, Takakura AC. Respiratory disorders of Parkinson's disease. J Neurophysiol 2022; 127:1-15. [PMID: 34817281 DOI: 10.1152/jn.00363.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, mainly affecting people over 60 yr of age. Patients develop both classic symptoms (tremors, muscle rigidity, bradykinesia, and postural instability) and nonclassical symptoms (orthostatic hypotension, neuropsychiatric deficiency, sleep disturbances, and respiratory disorders). Thus, patients with PD can have a significantly impaired quality of life, especially when they do not have multimodality therapeutic follow-up. The respiratory alterations associated with this syndrome are the main cause of mortality in PD. They can be classified as peripheral when caused by disorders of the upper airways or muscles involved in breathing and as central when triggered by functional deficits of important neurons located in the brainstem involved in respiratory control. Currently, there is little research describing these disorders, and therefore, there is no well-established knowledge about the subject, making the treatment of patients with respiratory symptoms difficult. In this review, the history of the pathology and data about the respiratory changes in PD obtained thus far will be addressed.
Collapse
Affiliation(s)
- Yasmin C Aquino
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Monique C Naccarato
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Bárbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Johnson RA, Kelm-Nelson CA, Ciucci MR. Changes to Ventilation, Vocalization, and Thermal Nociception in the Pink1-/- Rat Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:489-504. [PMID: 32065805 DOI: 10.3233/jpd-191853] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Individuals with Parkinson's disease (PD) experience significant vocal communication deficits. Findings in the Pink1-/- rat model of early-onset PD suggest that ultrasonic vocal communication is impaired early, progressively worsens prior to nigrostriatal dopamine depletion, and is associated with loss of locus coeruleus neurons, brainstem α-synuclein, and larynx pathology. Individuals with PD also demonstrate ventilatory deficits and altered sensory processing, which may contribute to vocal deficits. OBJECTIVE The central hypothesis is that ventilatory and sensory deficits are present in the early disease stages when limb and vocal motor deficits also present. METHODS Pink1-/- rats were compared to wildtype (WT) controls at longitudinal timepoints. Whole-body flow through plethysmography was used to measure ventilation in the following conditions: baseline, hypoxia, and maximal chemoreceptor stimulation. Plantar thermal nociception, and as a follow up to previous work, limb gait and vocalization were analyzed. Serotonin density (5-HT) in the dorsal raphe was quantified post-mortem. RESULTS Baseline breathing frequencies were consistently higher in Pink1-/- rats at all time points. In hypoxic conditions, there were no significant changes between genotypes. With hypercapnia, Pink1-/- rats had decreased breathing frequencies with age. Thermal withdrawal latencies were significantly faster in Pink1-/- compared with WT rats across time. No differences in 5-HT were found between genotypes. Vocal peak frequency was negatively correlated to tidal volume and minute ventilation in Pink1-/- rats. CONCLUSION This work suggests that abnormal nociceptive responses in Pink1-/- rats and ventilatory abnormalities may be associated with abnormal sensorimotor processing to chemosensory stimuli during disease manifestation.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cynthia A Kelm-Nelson
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Ciucci
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Deficiency of Biogenic Amines Modulates the Activity of Hypoglossal Nerve in the Reserpine Model of Parkinson's Disease. Cells 2021; 10:cells10030531. [PMID: 33801475 PMCID: PMC8001069 DOI: 10.3390/cells10030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
The underlying cause of respiratory impairments appearing in Parkinson's disease (PD) is still far from being elucidated. To better understand the pathogenesis of respiratory disorders appearing in PD, we studied hypoglossal (HG) and phrenic (PHR) motoneuron dysfunction in a rat model evoked with reserpine administration. After reserpine, a decrease in the baseline amplitude and minute HG activity was noted, and no depressive phase of the hypoxic ventilatory response was observed. The pre-inspiratory time of HG activity along with the ratio of pre-inspiratory time to total respiratory cycle time and the ratio of pre-inspiratory to inspiratory amplitude were significantly reduced during normoxia, hypoxia, and recovery compared to sham rats. We suggest that the massive depletion of not only dopamine, but above all noradrenaline and serotonin in the brainstem observed in our study, has an impact on the pre-inspiratory activity of the HG. The shortening of the pre-inspiratory activity of the HG in the reserpine model may indicate a serious problem with maintaining the correct diameter of the upper airways in the preparation phase for inspiratory effort and explain the development of obstructive sleep apnea in some PD patients. Therapies involving the supplementation of amine depletion other than dopamine should be considered.
Collapse
|
9
|
Petrovic J, Radovanovic L, Saponjic J. Prodromal local sleep disorders in a rat model of Parkinson's disease cholinopathy, hemiparkinsonism and hemiparkinsonism with cholinopathy. Behav Brain Res 2020; 397:112957. [PMID: 33038348 DOI: 10.1016/j.bbr.2020.112957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 01/14/2023]
Abstract
We investigated the prodromal alterations of local sleep, particularly the motor cortical and hippocampal sleep, along with spontaneous locomotor activity in the rat models of Parkinson's disease (PD). We performed our experiments in adult, male Wistar rats, chronically implanted for sleep recording and divided into four experimental groups: the control (implanted controls), the bilateral pedunculopontine tegmental nucleus (PPT) lesions (PD cholinopathy), the unilateral substantia nigra pars compacta (SNpc) lesions (hemiparkinsonism) and the unilateral SNpc/bilateral PPT lesions (hemiparkinsonism with PD cholinopathy). We followed their sleep, basal locomotor activity and spatial habituation for 14 days following the surgical procedures. Severe prodromal local sleep disturbances in the hemiparkinsonian rats were expressed as sleep fragmentation and distinct local NREM/REM EEG microstructure alterations in both the motor cortex and the hippocampus. Alongside the state-unrelated role of the dopaminergic control of theta oscillations and NREM/REM related sigma and beta oscillations, we demonstrated that the REM neurochemical regulatory substrate is particularly important in the dopaminergic control of beta oscillations. In addition, hippocampal prodromal sleep disorders in the hemiparkinsonian rats were expressed as NREM/REM fragmentation and the opposite impact of dopaminergic versus cholinergic control of the NREM delta and beta oscillation amplitudes in the hippocampus, likewise in the motor cortex versus the hippocampus. All these distinct prodromal local sleep disorders and the dopaminergic vs. cholinergic impact on NREM/REM EEG microstructure alterations are of fundamental importance for the further development and follow-up of PD-modifying therapies, and for the identification of patients who are at risk of developing PD.
Collapse
Affiliation(s)
- Jelena Petrovic
- Institute for Biological Research, Sinisa Stankovic - National Institute of Republic of Serbia, Department of Neurobiology, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia.
| | - Ljiljana Radovanovic
- Institute for Biological Research, Sinisa Stankovic - National Institute of Republic of Serbia, Department of Neurobiology, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia
| | - Jasna Saponjic
- Institute for Biological Research, Sinisa Stankovic - National Institute of Republic of Serbia, Department of Neurobiology, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia
| |
Collapse
|
10
|
Andrzejewski K, Jampolska M, Zaremba M, Joniec-Maciejak I, Boguszewski PM, Kaczyńska K. Respiratory pattern and phrenic and hypoglossal nerve activity during normoxia and hypoxia in 6-OHDA-induced bilateral model of Parkinson's disease. J Physiol Sci 2020; 70:16. [PMID: 32160868 PMCID: PMC7066294 DOI: 10.1186/s12576-020-00743-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/02/2020] [Indexed: 12/03/2022]
Abstract
Respiratory disturbances present in Parkinson's disease (PD) are not well understood. Thus, studies in animal models aimed to link brain dopamine (DA) deficits with respiratory impairment are needed. Adult Wistar rats were lesioned with injection of 6-hydroxydopamine (6-OHDA) into the third cerebral ventricle. Two weeks after hypoxic test was performed in whole-body plethysmography chamber, phrenic (PHR) and hypoglossal (HG) nerve activities were recorded in normoxic and hypoxic conditions in anesthetized, vagotomized, paralyzed and mechanically ventilated rats. The effects of activation and blockade of dopaminergic carotid body receptors were investigated during normoxia in anesthetized spontaneously breathing rats. 6-OHDA injection affected resting respiratory pattern in awake animals: an increase in tidal volume and a decrease in respiratory rate had no effect on minute ventilation. Hypoxia magnified the amplitude and minute activity of the PHR and HG nerve of 6-OHDA rats. The ratio of pre-inspiratory to inspiratory HG burst amplitude was reduced in normoxic breathing. Yet, the ratio of pre-inspiratory time to total time of the respiratory cycle was increased during normoxia. 6-OHDA lesion had no impact on DA and domperidone effects on the respiratory pattern, which indicate that peripheral DA receptors are not affected in this model. Analysis of monoamines confirmed substantial striatal depletion of dopamine, serotonin and noradrenaline (NA) and reduction of NA content in the brainstem. In bilateral 6-OHDA model changes in activity of both nerves: HG (linked with increased apnea episodes) and PHR are present. Demonstrated respiratory effects could be related to specific depletion of DA and NA.
Collapse
Affiliation(s)
- Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Małgorzata Zaremba
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CePT), Medical University of Warsaw, Warsaw, Poland
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
11
|
Vijayan S, Singh B, Ghosh S, Stell R, Mastaglia FL. Brainstem Ventilatory Dysfunction: A Plausible Mechanism for Dyspnea in Parkinson's Disease? Mov Disord 2020; 35:379-388. [DOI: 10.1002/mds.27932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Srimathy Vijayan
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Bhajan Singh
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital Nedlands Perth, Western Australia Australia
- School of Human Sciences, University of Western Australia Crawley Western Australia Australia
| | - Soumya Ghosh
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Rick Stell
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Sciences Nedlands Perth, Western Australia Australia
| |
Collapse
|
12
|
Ciric J, Kapor S, Perovic M, Saponjic J. Alterations of Sleep and Sleep Oscillations in the Hemiparkinsonian Rat. Front Neurosci 2019; 13:148. [PMID: 30872994 PMCID: PMC6401659 DOI: 10.3389/fnins.2019.00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/08/2019] [Indexed: 01/16/2023] Open
Abstract
Our previous studies in the rat model of Parkinson’s disease (PD) cholinopathy demonstrated the sleep-related alterations in electroencephalographic (EEG) oscillations at the cortical and hippocampal levels, cortical drives, and sleep spindles (SSs) as the earliest functional biomarkers preceding hypokinesia. Our aim in this study was to follow the impact of a unilateral substantia nigra pars compacta (SNpc) lesion in rat on the cortical and hippocampal sleep architectures and their EEG microstructures, as well as the cortico-hippocampal synchronizations of EEG oscillations, and the SS and high voltage sleep spindle (HVS) dynamics during NREM and REM sleep. We performed unilateral SNpc lesions using two different concentrations/volumes of 6-hydroxydopamine (6-OHDA; 12 μg/1 μl or 12 μg/2 μl). Whereas the unilateral dopaminergic neuronal loss >50% throughout the overall SNpc rostro-caudal dimension prolonged the Wake state, with no change in the NREM or REM duration, there was a long-lasting theta amplitude augmentation across all sleep states in the motor cortex (MCx), but also in the CA1 hippocampus (Hipp) during both Wake and REM sleep. We demonstrate that SS are the hallmarks of NREM sleep, but that they also occur during REM sleep in the MCx and Hipp of the control rats. Whereas SS are always longer in REM vs. NREM sleep in both structures, they are consistently slower in the Hipp. The dopaminergic neuronal loss increased the density of SS in both structures and shortened them in the MCx during NREM sleep, without changing the intrinsic frequency. Conversely, HVS are the hallmarks of REM sleep in the control rats, slower in the Hipp vs. MCx, and the dopaminergic neuronal loss increased their density in the MCx, but shortened them more consistently in the Hipp during REM sleep. In addition, there was an altered synchronization of the EEG oscillations between the MCx and Hipp in different sleep states, particularly the theta and sigma coherences during REM sleep. We provide novel evidence for the importance of the SNpc dopaminergic innervation in sleep regulation, theta rhythm generation, and SS/HVS dynamics control. We suggest the importance of the underlying REM sleep regulatory substrate to HVS generation and duration and to the cortico-hippocampal synchronizations of EEG oscillations in hemiparkinsonian rats.
Collapse
Affiliation(s)
- Jelena Ciric
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Slobodan Kapor
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Andrzejewski K, Budzińska K, Kaczyńska K. Effect of 6-OHDA on hypercapnic ventilatory response in the rat model of Parkinson's disease. Physiol Res 2019; 68:285-293. [PMID: 30628829 DOI: 10.33549/physiolres.933949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing impairments, such as an alteration in breathing pattern, dyspnoea, and sleep apnoea, are common health deficits recognised in Parkinson's disease (PD). The mechanism that underlies these disturbances, however, remains unclear. We investigated the effect of the unilateral damage to the rat nigrostriatal pathway on the central ventilatory response to hypercapnia, evoked by administering 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle (MFB). The respiratory experiments were carried out in conscious animals in the plethysmography chamber. The ventilatory parameters were studied in normocapnic and hyperoxic hypercapnia before and 14 days after the neurotoxin injection. Lesion with the 6-OHDA produced an increased tidal volume during normoxia. The magnified response of tidal volume and a decrease of breathing frequency to hypercapnia were observed in comparison to the pre-lesion and sham controls. Changes in both respiratory parameters resulted in an increase of minute ventilation of the response to CO(2) by 28% in comparison to the pre-lesion state at 60 s. Our results demonstrate that rats with implemented unilateral PD model presented an altered respiratory pattern most often during a ventilatory response to hypercapnia. Preserved noradrenaline and specific changes in dopamine and serotonin characteristic for this model could be responsible for the pattern of breathing observed during hypercapnia.
Collapse
Affiliation(s)
- K Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
14
|
Orexinergic neurons are involved in the chemosensory control of breathing during the dark phase in a Parkinson's disease model. Exp Neurol 2018; 309:107-118. [PMID: 30110606 DOI: 10.1016/j.expneurol.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra compacta (SNpc) and the only risk factor is aging. We showed that in 6-hydroxydopamine (6-OHDA)-model of PD there is a reduction in the neuronal profile within the brainstem ventral respiratory column with a decrease in the hypercapnic ventilatory response. Here we tested the involvement of orexin cells from the lateral hypothalamus/perifornical area (LH/PeF) on breathing in a 6-OHDA PD model. In this model of PD, there is a reduction in the total number of orexinergic neurons and in the number of orexinergic neurons that project to the RTN, without changing the number of CO2-activated orexinergic neurons during the dark phase. The ventilation at rest and in response to hypercapnia (7% CO2) was assessed in animals that received 6-OHDA or vehicle injections into the striatum and saporin anti-Orexin-B or IgG saporin into the LH/PeF during the sleep and awake states. The experiments showed a reduction of respiratory frequency (fR) at rest during the light phase in PD animals only during sleep. During the dark phase, there was an impaired fR response to hypercapnia in PD animals with depletion of orexinergic neurons in awake and sleeping rats. In conclusion, the degeneration of orexinergic neurons in this model of PD can be related to impaired chemoreceptor function in the dark phase.
Collapse
|
15
|
Phrenic and hypoglossal nerve activity during respiratory response to hypoxia in 6-OHDA unilateral model of Parkinson's disease. Life Sci 2017; 180:143-150. [PMID: 28527784 DOI: 10.1016/j.lfs.2017.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023]
Abstract
AIMS Parkinson's disease (PD) patients apart from motor dysfunctions exhibit respiratory disturbances. Their mechanism is still unknown and requires investigation. Our research was designed to examine the activity of phrenic (PHR) and hypoglossal (HG) nerves activity during a hypoxic respiratory response in the 6-hydroxydopamine (6-OHDA) model of PD. MAIN METHODS Male adult Wistar rats were injected unilaterally with 6-OHDA (20μg) or the vehicle into the right medial forebrain bundle (MFB). Two weeks after the surgery the activity of the phrenic and hypoglossal nerve was registered in anesthetized, vagotomized, paralyzed, and mechanically ventilated rats under normoxic and hypoxic conditions. Lesion effectiveness was confirmed by the cylinder test, performed before the MFB injection and 14days after, before the respiratory experiment. KEY FINDINGS 6-OHDA lesioned animals showed a significant increase in normoxic inspiratory time. Expiratory time and total time of the respiratory cycle were prolonged in PD rats after hypoxia. The amplitude of the PHR activity and its minute activity were increased in comparison to the sham group at recovery time and during 30s of hypoxia. The amplitude of the HG activity was increased in response to hypoxia in 6-OHDA lesioned animals. The degeneration of dopaminergic neurons decreased the pre-inspiratory/inspiratory ratio of the hypoglossal burst amplitude during and after hypoxia. SIGNIFICANCE Unilateral MFB lesion changed the activity of the phrenic and hypoglossal nerves. The altered pre-inspiratory hypoglossal nerve activity indicates modifications to the central mechanisms controlling the activity of the HG nerve and may explain respiratory disorders seen in PD, i.e. apnea.
Collapse
|
16
|
Andrzejewski K, Kaczyńska K, Zaremba M. Serotonergic system in hypoxic ventilatory response in unilateral rat model of Parkinson's disease. J Biomed Sci 2017; 24:24. [PMID: 28347345 PMCID: PMC5368902 DOI: 10.1186/s12929-017-0331-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Malfunctioning of the serotonergic system in Parkinson's disease may contribute to non-motor symptoms such as respiratory complications. Thus the aim of our study was to investigate the role of serotonin 5-HT2 receptors in the modulation of normoxic breathing and the hypoxic ventilatory response (HVR) in rat model of Parkinson's disease. METHODS Wistar rats were lesioned unilaterally with double 6-hydroxydopamine (6-OHDA) injection to the right medial forebrain bundle (MFB). Before lesion and two weeks later animals were put in whole body plethysmography chamber and exposed to hypoxia (8% O2). Before hypoxic tests animals received intraperitoneal injections of DOI and ketanserin. Efficacy of lesion was confirmed by cylinder test, assessing limb use asymmetry. RESULTS Degeneration of the nigrostriatal pathway augmented response of tidal volume and minute ventilation to hypoxia. DOI administration in control and lesion state caused a significant rise in normoxic respiratory rate and minute ventilation. Yet, ventilatory response of these parameters to hypoxia was attenuated. Post-DOI magnitude of HVR in lesioned state was decreased in compare to pre-lesion control. Subsequent ketanserin injection reverted DOI-induced respiratory effects. We demonstrated that 6-OHDA treatment decreased the content of serotonin in the injured striatum and on both sides of the brainstem, leaving the concentration of noradrenaline on unchanged level. CONCLUSIONS These observations showed that damage of the nigrostriatal system initiates changes in the serotonergic system, confirmed by reduced concentration of serotonin in the striatum and brainstem, which affects the magnitude of respiratory response to hypoxia after activation of 5-HT2 receptors.
Collapse
Affiliation(s)
- Kryspin Andrzejewski
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Małgorzata Zaremba
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CePT), Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|