1
|
Burboa PC, Puebla M, Gaete PS, Durán WN, Lillo MA. Connexin and Pannexin Large-Pore Channels in Microcirculation and Neurovascular Coupling Function. Int J Mol Sci 2022; 23:ijms23137303. [PMID: 35806312 PMCID: PMC9266979 DOI: 10.3390/ijms23137303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood–brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.
Collapse
Affiliation(s)
- Pía C. Burboa
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Mariela Puebla
- Departamento de Morfología y Función, Facultad de Salud y Ciencias Sociales, Sede Santiago Centro, Universidad de las Américas, Avenue República 71, Santiago 8370040, Chile;
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California at Davis, Davis, CA 95616, USA;
| | - Walter N. Durán
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Rutgers School of Graduate Studies, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, 185 South Orange Avenue, Newark, NJ 07103, USA; (P.C.B.); (W.N.D.)
- Correspondence:
| |
Collapse
|
2
|
Gap Junctions and Hemichannels Composed of Connexins and Pannexins Mediate the Secondary Brain Injury Following Intracerebral Hemorrhage. BIOLOGY 2021; 11:biology11010027. [PMID: 35053024 PMCID: PMC8772966 DOI: 10.3390/biology11010027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Intracerebral hemorrhage (ICH) is a leading medical problem without effective treatment options. The poor prognosis is attributed to the primary brain injury of the mechanical compression caused by hematoma, and secondary brain injury (SBI) that includes inflammation, glutamate excitotoxicity, oxidative stress and disruption of the blood brain barrier (BBB). Evidences suggests that gap junctions and hemichannels composed of connexins and pannexins regulate the inflammation and excitotoxicity insult in the pathological process of central nervous system disease, such as cerebral ischemia and neurodegeneration disease. In this manuscript, we discuss the fact that connexins- and pannexins-based channels could be involved in secondary brain injury of ICH, particularly through mediating inflammation, oxidative stress, BBB disruption and cell death. The details provided in this manuscript may help develop potential targets for therapeutic intervention of ICH. Abstract Intracerebral hemorrhage (ICH) is a devastating disease with high mortality and morbidity; the mortality rate ranges from 40% at 1 month to 54% at 1 year; only 12–39% achieve good outcomes and functional independence. ICH affects nearly 2 million patients worldwide annually. In ICH development, the blood leakage from ruptured vessels generates sequelae of secondary brain injury (SBI). This mechanism involves activated astrocytes and microglia, generation of reactive oxygen species (ROS), the release of reactive nitrogen species (RNS), and disrupted blood brain barrier (BBB). In addition, inflammatory cytokines and chemokines, heme compounds, and products of hematoma are accumulated in the extracellular spaces, thereby resulting in the death of brain cells. Recent evidence indicates that connexins regulate microglial activation and their phenotypic transformation. Moreover, communications between neurons and glia via gap junctions have crucial roles in neuroinflammation and cell death. A growing body of evidence suggests that, in addition to gap junctions, hemichannels (composed of connexins and pannexins) play a key role in ICH pathogenesis. However, the precise connection between connexin and pannexin channels and ICH remains to be resolved. This review discusses the pathological roles of gap junctions and hemichannels in SBI following ICH, with the intent of discovering effective therapeutic options of strategies to treat ICH.
Collapse
|
3
|
Liu JA, Walton JC, DeVries AC, Nelson RJ. Disruptions of Circadian Rhythms and Thrombolytic Therapy During Ischemic Stroke Intervention. Front Neurosci 2021; 15:675732. [PMID: 34177452 PMCID: PMC8222607 DOI: 10.3389/fnins.2021.675732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Several endogenous and exogenous factors interact to influence stroke occurrence, in turn contributing to discernable daily distribution patterns in the frequency and severity of cerebrovascular events. Specifically, strokes that occur during the morning tend to be more severe and are associated with elevated diastolic blood pressure, increased hospital stay, and worse outcomes, including mortality, compared to strokes that occur later in the day. Furthermore, disrupted circadian rhythms are linked to higher risk for stroke and play a role in stroke outcome. In this review, we discuss the interrelation among core clock genes and several factors contributing to ischemic outcomes, sources of disrupted circadian rhythms, the implications of disrupted circadian rhythms in foundational stroke scientific literature, followed by a review of clinical implications. In addition to highlighting the distinct daily pattern of onset, several aspects of physiology including immune response, endothelial/vascular and blood brain barrier function, and fibrinolysis are under circadian clock regulation; disrupted core clock gene expression patterns can adversely affect these physiological processes, leading to a prothrombotic state. Lastly, we discuss how the timing of ischemic onset increases morning resistance to thrombolytic therapy and the risk of hemorrhagic transformation.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.,Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV, United States.,West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
Chu H, Gao Z, Huang C, Dong J, Tang Y, Dong Q. Relationship Between Hematoma Expansion Induced by Hypertension and Hyperglycemia and Blood-brain Barrier Disruption in Mice and Its Possible Mechanism: Role of Aquaporin-4 and Connexin43. Neurosci Bull 2020; 36:1369-1380. [PMID: 32623691 PMCID: PMC7674541 DOI: 10.1007/s12264-020-00540-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to select an optimized hematoma expansion (HE) model and investigate the possible mechanism of blood-brain barrier (BBB) damage in mice. The results showed that HE occurred in the group with hypertension combined with hyperglycemia (HH-HE) from 3 to 72 h after intracerebral hemorrhage; this was accompanied by neurological deficits and hardly influenced the survival rate. The receiver operating characteristic curve suggested the criterion for this model was hematoma volume expansion ≥ 45.0%. Meanwhile, HH-HE aggravated BBB disruption. A protector of the BBB reduced HH-HE, while a BBB disruptor induced a further HH-HE. Aquaporin-4 (AQP4) knock-out led to larger hematoma volume and more severe BBB disruption. Furthermore, hematoma volume and BBB disruption were reduced by multiple connexin43 (Cx43) inhibitors in the wild-type group but not in the AQP4 knock-out group. In conclusion, the optimized HE model is induced by hypertension and hyperglycemia with the criterion of hematoma volume expanding ≥ 45.0%. HH-HE leads to BBB disruption, which is dependent on AQP4 and Cx43.
Collapse
Affiliation(s)
- Heling Chu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, China
- Department of Neurology, North Huashan Hospital, Fudan University, Shanghai, 201907, China
| | - Zidan Gao
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Chuyi Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, China.
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
5
|
Zechariah A, Tran CHT, Hald BO, Sandow SL, Sancho M, Kim MSM, Fabris S, Tuor UI, Gordon GR, Welsh DG. Intercellular Conduction Optimizes Arterial Network Function and Conserves Blood Flow Homeostasis During Cerebrovascular Challenges. Arterioscler Thromb Vasc Biol 2020; 40:733-750. [PMID: 31826653 PMCID: PMC7058668 DOI: 10.1161/atvbaha.119.313391] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cerebral arterial networks match blood flow delivery with neural activity. Neurovascular response begins with a stimulus and a focal change in vessel diameter, which by themselves is inconsequential to blood flow magnitude, until they spread and alter the contractile status of neighboring arterial segments. We sought to define the mechanisms underlying integrated vascular behavior and considered the role of intercellular electrical signaling in this phenomenon. Approach and Results: Electron microscopic and histochemical analysis revealed the structural coupling of cerebrovascular cells and the expression of gap junctional subunits at the cell interfaces, enabling intercellular signaling among vascular cells. Indeed, robust vasomotor conduction was detected in human and mice cerebral arteries after focal vessel stimulation: a response attributed to endothelial gap junctional communication, as its genetic alteration attenuated this behavior. Conducted responses were observed to ascend from the penetrating arterioles, influencing the contractile status of cortical surface vessels, in a simulated model of cerebral arterial network. Ascending responses recognized in vivo after whisker stimulation were significantly attenuated in mice with altered endothelial gap junctional signaling confirming that gap junctional communication drives integrated vessel responses. The diminishment in vascular communication also impaired the critical ability of the cerebral vasculature to maintain blood flow homeostasis and hence tissue viability after stroke. CONCLUSIONS Our findings highlight the integral role of intercellular electrical signaling in transcribing focal stimuli into coordinated changes in cerebrovascular contractile activity and expose, a hitherto unknown mechanism for flow regulation after stroke.
Collapse
Affiliation(s)
- Anil Zechariah
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Cam Ha T. Tran
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Department of Physiology and Cell Biology, University of Nevada, Reno, Nevada, USA 89557
| | - Bjorn O. Hald
- Department of Neuroscience, Translational Neurobiology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Shaun L. Sandow
- University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4558 Australia
| | - Maria Sancho
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Michelle Sun Mi Kim
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Sergio Fabris
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Ursula I. Tuor
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Grant R.J. Gordon
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Donald G. Welsh
- Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5B7
- Hotchkiss Brain Institute, Libin Cardiovascular Institute and the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
6
|
Tao S, Jia M, Qiu T. Expression and role of CaMKII and Cx43 in a rat model of post-stroke depression. Exp Ther Med 2019; 18:2153-2159. [PMID: 31410169 PMCID: PMC6676183 DOI: 10.3892/etm.2019.7782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Expression of Ca2+/CaM-dependent protein kinase II (CaMKII) and connexin 43 (Cx43) in a rat model of post-stroke depression (PSD) was investigated. Rats were separated into control group (10 rats underwent a sham operation and were not ligated after incision), PSD group (13 PSD rats) and KN93 group (12 rats were treated with KN93, an inhibitor of CaMKII, on the basis of the PSD group). After PSD modeling, Longa scoring was performed, and an open field test as well as a step-through test were carried out to observe rat behavior. RT-qPCR and western blot analysis were used to detect the expression of CaMKII and CX43 in the hippocampus tissue. On the 14th day, the Longa scores in the PSD and KN93 groups were higher than that in the control group (P<0.05), while on the 18th day, Longa score was higher in the PSD group than that in the control and KN93 groups, and higher in the KN93 group than that in the control group (both P<0.05). In the PSD group, the Longa score on the 18th day was significantly higher than that on the 14th day, whereas in the KN93 group, the Longa score on the 18th day was significantly lower than that on the 14th day (both P<0.05). Compared with the PSD group on the 18th day, the passive avoidance defects in the KN93 group were improved, and the frequency of activity in the open field test was significantly increased. On the 18th day, the expression levels of the mRNA and protein of CaMKII were higher in the PSD group than in the control group, whereas those of Cx43 were lower in the PSD group than those in the control group (P<0.05). The mRNA and protein expression levels of CaMKII in the KN93 group were lower than those in the PSD group, but higher than those in the control group. In PSD rats, CaMKII expression is upregulated, but Cx43 expression is downregulated, and both CaMKII and Cx43 may participate in PSD. The inhibitor of CaMKII, KN93, can improve the depression in PSD rats.
Collapse
Affiliation(s)
- Shuiliang Tao
- College of Basic Medicine, Zhengjiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Mengmeng Jia
- Department of Neurology, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325005, P.R. China
| | - Tao Qiu
- Department of Neurology, Zhejiang Provincial Hospital of TCM, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
7
|
Lei C, Ruan Y, Cai C, He B, Zhao D. Role of P38 mitogen-activated protein kinase on Cx43 phosphorylation in cerebral vasospasm after subarachnoid hemorrhage. Int J Neurosci 2018; 129:461-469. [PMID: 30369282 DOI: 10.1080/00207454.2018.1538992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Lei
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Xinjiang, China
| | - Yutian Ruan
- Department of Thoracic Surgery and Neurosurgery, Beitun Hospital of the Ten Division of the Xinjiang Production and Construction Corps, Xinjiang, China
| | - Changcheng Cai
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Xinjiang, China
| | - Bao He
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Xinjiang, China
| | - Dong Zhao
- Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Xinjiang, China
| |
Collapse
|
8
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
9
|
Li Y, Zhu ZY, Huang TT, Zhou YX, Wang X, Yang LQ, Chen ZA, Yu WF, Li PY. The peripheral immune response after stroke-A double edge sword for blood-brain barrier integrity. CNS Neurosci Ther 2018; 24:1115-1128. [PMID: 30387323 PMCID: PMC6490160 DOI: 10.1111/cns.13081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The blood‐brain barrier (BBB) is a highly regulated interface that separates the peripheral circulation and the brain. It plays a vital role in regulating the trafficking of solutes, fluid, and cells at the blood‐brain interface and maintaining the homeostasis of brain microenvironment for normal neuronal activity. Growing evidence has led to the realization that ischemic stroke elicits profound immune responses in the circulation and the activation of multiple subsets of immune cells, which in turn affect both the early disruption and the later repair of the BBB after stroke. Distinct phenotypes or subsets of peripheral immune cells along with diverse intracellular mechanisms contribute to the dynamic changes of BBB integrity after stroke. This review focuses on the interaction between the peripheral immune cells and the BBB after ischemic stroke. Understanding their reciprocal interaction may generate new directions for stroke research and may also drive the innovation of easy accessible immune modulatory treatment strategies targeting BBB in the pursuit of better stroke recovery.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting-Ting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Xi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng-Ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Dong MX, Li CM, Shen P, Hu QC, Wei YD, Ren YF, Yu J, Gui SW, Liu YY, Pan JX, Xie P. Recombinant tissue plasminogen activator induces long-term anxiety-like behaviors via the ERK1/2-GAD1-GABA cascade in the hippocampus of a rat model. Neuropharmacology 2018; 128:119-131. [DOI: 10.1016/j.neuropharm.2017.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 01/04/2023]
|
11
|
Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, Keep RF, Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 2017; 163-164:144-171. [PMID: 28987927 DOI: 10.1016/j.pneurobio.2017.10.001] [Citation(s) in RCA: 638] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/30/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) plays a vital role in regulating the trafficking of fluid, solutes and cells at the blood-brain interface and maintaining the homeostatic microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the BBB can be disrupted, followed by the extravasation of blood components into the brain and compromise of normal neuronal function. This article reviews recent advances in our knowledge of the mechanisms underlying BBB dysfunction and recovery after ischemic stroke. CNS cells in the neurovascular unit, as well as blood-borne peripheral cells constantly modulate the BBB and influence its breakdown and repair after ischemic stroke. The involvement of stroke risk factors and comorbid conditions further complicate the pathogenesis of neurovascular injury by predisposing the BBB to anatomical and functional changes that can exacerbate BBB dysfunction. Emphasis is also given to the process of long-term structural and functional restoration of the BBB after ischemic injury. With the development of novel research tools, future research on the BBB is likely to reveal promising potential therapeutic targets for protecting the BBB and improving patient outcome after ischemic stroke.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Ling Zhu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tuo Yang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael V L Bennett
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Abstract
Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.
Collapse
|