1
|
Wells AC, Mojica C, Lotfipour S. Hypersensitivity of the nicotinic acetylcholine receptor subunit (CHRNA2 L9'S/L9'S) in female adolescent mice produces deficits in nicotine-induced facilitation of hippocampal-dependent learning and memory. Neurobiol Learn Mem 2024; 213:107959. [PMID: 38964600 DOI: 10.1016/j.nlm.2024.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Adolescence is characterized by a critical period of maturation and growth, during which regions of the brain are vulnerable to long-lasting cognitive disturbances. Adolescent exposure to nicotine can lead to deleterious neurological and psychological outcomes. Moreover, the nicotinic acetylcholine receptor (nAChR) has been shown to play a functionally distinct role in the development of the adolescent brain. CHRNA2 encodes for the α2 subunit of nicotinic acetylcholine receptors associated with CA1 oriens lacunosum moleculare GABAergic interneurons and is associated with learning and memory. Previously, we found that adolescent male hypersensitive CHRNA2L9'S/L9' mice had impairments in learning and memory during a pre-exposure-dependent contextual fear conditioning task that could be rescued by low-dose nicotine exposure. In this study, we assessed learning and memory in female adolescent hypersensitive CHRNA2L9'S/L9' mice exposed to saline or a subthreshold dose of nicotine using a hippocampus-dependent task of pre-exposure-dependent contextual fear conditioning. We found that nicotine-treated wild-type female mice had significantly greater improvements in learning and memory than both saline-treated wild-type mice and nicotine-treated CHRNA2L9'S/L9' female mice. Thus, hyperexcitability of CHRNA2 in female adolescent mice ablated the nicotine-mediated potentiation of learning and memory seen in wild-types. Our results indicate that nicotine exposure during adolescence mediates sexually dimorphic patterns of learning and memory, with wild-type female adolescents being more susceptible to the effects of sub-threshold nicotine exposure. To understand the mechanism underlying sexually dimorphic behavior between hyperexcitable CHRNA2 mice, it is critical that further research be conducted.
Collapse
Affiliation(s)
- Alicia C Wells
- School of Medicine, University of California, Irvine, CA 92697, USA.
| | - Celina Mojica
- Graduate Division, University of California, Irvine, CA 92697, USA
| | - Shahrdad Lotfipour
- School of Medicine, University of California, Irvine, CA 92697, USA; Department of Emergency Medicine, Pharmaceutical Sciences, Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Freitas-Santos J, Brito IRR, Santana-Melo I, Oliveira KB, de Souza FMA, Gitai DLG, Duzzioni M, Bueno NB, de Araujo LA, Shetty AK, Castro OWD. Effects of cocaine, nicotine, and marijuana exposure in Drosophila Melanogaster development: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111049. [PMID: 38844126 DOI: 10.1016/j.pnpbp.2024.111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Abuse-related drug usage is a public health issue. Drosophila melanogaster has been used as an animal model to study the biological effects of these psychoactive substances in preclinical studies. Our objective in this review is to evaluate the adverse effects produced by cocaine, nicotine, and marijuana during the development of D. melanogaster. We searched experimental studies in which D. melanogaster was exposed to these three psychoactive drugs in seven online databases up to January 2023. Two reviewers independently extracted the data. Fifty-one studies met eligibility criteria and were included in the data extraction: nicotine (n = 26), cocaine (n = 20), and marijuana (n = 5). Fifteen studies were eligible for meta-analysis. Low doses (∼0.6 mM) of nicotine increased locomotor activity in fruit flies, while high doses (≥3 mM) led to a decrease. Similarly, exposure to cocaine increased locomotor activity, resulting in decreased climbing response in D. melanogaster. Studies with exposure to marijuana did not present a profile for our meta-analysis. However, this drug has been less associated with locomotor changes, but alterations in body weight and fat content and changes in cardiac function. Our analyses have shown that fruit flies exposed to drugs of abuse during different developmental stages, such as larvae and adults, exhibit molecular, morphological, behavioral, and survival changes that are dependent on the dosage. These phenotypes resemble the adverse effects of psychoactive substances in clinical medicine.
Collapse
Affiliation(s)
- Jucilene Freitas-Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Isa Rafaella Rocha Brito
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Igor Santana-Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Daniel Leite Góes Gitai
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Marcelo Duzzioni
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Nassib Bezerra Bueno
- Faculty of nutrition (FANUT), Federal University of Alagoas (UFAL), Maceio, AL, Brazil
| | - Lucas Anhezini de Araujo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
| |
Collapse
|
3
|
Peedikayil-Kurien S, Setty H, Oren-Suissa M. Environmental experiences shape sexually dimorphic neuronal circuits and behaviour. FEBS J 2024; 291:1080-1101. [PMID: 36582142 DOI: 10.1111/febs.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Dimorphic traits, shaped by both natural and sexual selection, ensure optimal fitness and survival of the organism. This includes neuronal circuits that are largely affected by different experiences and environmental conditions. Recent evidence suggests that sexual dimorphism of neuronal circuits extends to different levels such as neuronal activity, connectivity and molecular topography that manifest in response to various experiences, including chemical exposures, starvation and stress. In this review, we propose some common principles that govern experience-dependent sexually dimorphic circuits in both vertebrate and invertebrate organisms. While sexually dimorphic neuronal circuits are predetermined, they have to maintain a certain level of fluidity to be adaptive to different experiences. The first layer of dimorphism is at the level of the neuronal circuit, which appears to be dictated by sex-biased transcription factors. This could subsequently lead to differences in the second layer of regulation namely connectivity and synaptic properties. The third regulator of experience-dependent responses is the receptor level, where dimorphic expression patterns determine the primary sensory encoding. We also highlight missing pieces in this field and propose future directions that can shed light onto novel aspects of sexual dimorphism with potential benefits to sex-specific therapeutic approaches. Thus, sexual identity and experience simultaneously determine behaviours that ultimately result in the maximal survival success.
Collapse
Affiliation(s)
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Dai X, Zhou E, Yang W, Mao R, Zhang W, Rao Y. Molecular resolution of a behavioral paradox: sleep and arousal are regulated by distinct acetylcholine receptors in different neuronal types in Drosophila. Sleep 2021; 44:6119684. [PMID: 33493349 DOI: 10.1093/sleep/zsab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Sleep and arousal are both important for animals. The neurotransmitter acetylcholine (ACh) has long been found to promote both sleep and arousal in mammals, an apparent paradox which has also been found to exist in flies, causing much confusion in understanding sleep and arousal. Here, we have systematically studied all 13 ACh receptors (AChRs) in Drosophila to understand mechanisms underlying ACh function in sleep and arousal. We found that exogenous stimuli-induced arousal was decreased in nAChRα3 mutants, whereas sleep was decreased in nAChRα2 and nAChRβ2 mutants. nAChRα3 functions in dopaminergic neurons to promote exogenous stimuli-induced arousal, whereas nAChRα2 and β2 function in octopaminergic neurons to promote sleep. Our studies have revealed that a single transmitter can promote endogenous sleep and exogenous stimuli-induced arousal through distinct receptors in different types of downstream neurons.
Collapse
Affiliation(s)
- Xihuimin Dai
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA
| | - Enxing Zhou
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Wei Yang
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Renbo Mao
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Wenxia Zhang
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Yi Rao
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
5
|
El-Merhie N, Krüger A, Uliczka K, Papenmeier S, Roeder T, Rabe KF, Wagner C, Angstmann H, Krauss-Etschmann S. Sex dependent effect of maternal e-nicotine on F1 Drosophila development and airways. Sci Rep 2021; 11:4441. [PMID: 33627715 PMCID: PMC7904947 DOI: 10.1038/s41598-021-81607-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/01/2021] [Indexed: 01/03/2023] Open
Abstract
E-cigarettes are heavily advertised as healthier alternative to common tobacco cigarettes, leading more and more women to switch from regular cigarettes to ENDS (electronic nicotine delivery system) during pregnancy. While the noxious consequences of tobacco smoking during pregnancy on the offspring health are well-described, information on the long-term consequences due to maternal use of e-cigarettes do not exist so far. Therefore, we aimed to investigate how maternal e-nicotine influences offspring development from earliest life until adulthood. To this end, virgin female Drosophila melanogaster flies were exposed to nicotine vapor (8 µg nicotine) once per hour for a total of eight times. Following the last exposure, e-nicotine or sham exposed females were mated with non-exposed males. The F1-generation was then analyzed for viability, growth and airway structure. We demonstrate that maternal exposure to e-nicotine not only leads to reduced maternal fertility, but also negatively affects size and weight, as well as tracheal development of the F1-generation, lasting from embryonic stage until adulthood. These results not only underline the need for studies investigating the effects of maternal vaping on offspring health, but also propose our established model for analyzing molecular mechanisms and signaling pathways mediating these intergenerational changes.
Collapse
Affiliation(s)
- Natalia El-Merhie
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
| | - Arne Krüger
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
| | - Karin Uliczka
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
- Invertebrate Models, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stephanie Papenmeier
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
- Invertebrate Models, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology and Zoology, Christian Albrechts University, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Kiel, Germany
| | - Klaus F Rabe
- Department of Pneumology, LungenClinic, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Kiel, Germany
| | - Christina Wagner
- Invertebrate Models, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Hanna Angstmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany
| | - Susanne Krauss-Etschmann
- Division of Experimental Asthma Research, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany.
- Institute for Experimental Medicine, Christian Albrechts University, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Kiel, Germany.
| |
Collapse
|
6
|
Genetic deletion of dopamine D1 receptors increases the sensitivity to cannabinoid CB1 receptor antagonist-precipitated withdrawal when compared with wild-type littermates: studies in female mice repeatedly exposed to the Spice cannabinoid HU-210. Psychopharmacology (Berl) 2021; 238:551-557. [PMID: 33410990 DOI: 10.1007/s00213-020-05704-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022]
Abstract
RATIONALE The emergence of the consumption of highly potent synthetic cannabinoid receptor agonists (spice drugs) that produce important neurological symptoms has prompted the research on the consequences of acute and chronic use of these new psychoactive substances. Most studies on cannabinoid dependence have been performed in male animals, and there is a need of studies using female subjects. OBJECTIVES In the present study, we evaluated only in female animals the role of dopamine D1 receptors in the behavioral responses induced by acute and repeated stimulation of cannabinoid CB1 receptors, including the development of physical dependence, since cannabinoid CB1 receptors are co-localized with dopamine D1 receptors on GABAergic neurons projecting to the substantia nigra. METHODS To this end, female dopamine D1 receptor-deficient mice and wild-type littermates were treated with HU-210, a potent synthetic cannabinoid agonist. RESULTS Mutant mice displayed an enhanced response to acute motor and hypothermic effects to HU-210 when compared with wild-type females. The administration of SR141716A precipitated behavioral signs of withdrawal in mice treated subchronically with HU-210. Severity of cannabinoid withdrawal syndrome was potentiated in dopamine D1-deficient female mice. Indeed, 4 of 6 abstinence signs were increased in mutant mice. CONCLUSIONS These results support for a role of dopamine D1 receptors in the acute, chronic, and withdrawal actions of spice drugs.
Collapse
|
7
|
Ilex paraguariensis Attenuates Changes in Mortality, Behavioral and Biochemical Parameters Associated to Methyl Malonate or Malonate Exposure in Drosophila melanogaster. Neurochem Res 2019; 44:2202-2214. [DOI: 10.1007/s11064-019-02862-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/23/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023]
|
8
|
Karam CS, Jones SK, Javitch JA. Come Fly with Me: An overview of dopamine receptors in Drosophila melanogaster. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:56-65. [PMID: 31219669 DOI: 10.1111/bcpt.13277] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) receptors play critical roles in a wide range of behaviours, including sensory processing, motor function, reward and arousal. As such, aberrant DA signalling is associated with numerous neurological and psychiatric disorders. Therefore, understanding the mechanisms by which DA neurotransmission drives intracellular signalling pathways that modulate behaviour can provide critical insights to guide the development of targeted therapeutics. Drosophila melanogaster has emerged as a powerful model with unique advantages to study the mechanisms underlying DA neurotransmission and associated behaviours in a controlled and systematic manner. Many regions in the fly brain innervated by dopaminergic neurons have been mapped and linked to specific behaviours, including associative learning and arousal. Here, we provide an overview of the homology between human and Drosophila dopaminergic systems and review the current literature on the pharmacology, molecular signalling mechanisms and behavioural outcome of DA receptor activation in the Drosophila brain.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA
| | - Sandra K Jones
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA.,Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
| |
Collapse
|
9
|
McCarthy JM, Dumais KM, Zegel M, Pizzagalli DA, Olson DP, Moran LV, Janes AC. Sex differences in tobacco smokers: Executive control network and frontostriatal connectivity. Drug Alcohol Depend 2019; 195:59-65. [PMID: 30592997 PMCID: PMC6625360 DOI: 10.1016/j.drugalcdep.2018.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Women experience greater difficulty quitting smoking than men, which may be explained by sex differences in brain circuitry underlying cognitive control. Prior work has linked reduced interhemispheric executive control network (ECN) coupling with poor executive function, shorter time to relapse, and greater substance use. Lower structural connectivity between a key ECN hub, the dorsolateral prefrontal cortex (DLPFC), and the dorsal striatum (DS) also contributes to less efficient cognitive control recruitment, and reduced intrahemispheric connectivity between these regions has been associated with smoking relapse. Therefore, sex differences were probed by evaluating interhemispheric ECN and intrahemispheric DLPFC-DS connectivity. To assess the potential sex by nicotine interaction, a pilot sample of non-smokers was evaluated following acute nicotine and placebo administration. METHODS Thirty-five smokers (19 women) completed one resting state functional magnetic resonance imaging scan. Seventeen non-smokers (8 women) were scanned twice using a repeated measures design where they received 2 and 0 mg nicotine. RESULTS In smokers, women had less interhemispheric ECN and DLPFC-DS coupling than men. In non-smokers, there was a drug x sex interaction where women, relative to men, had weaker ECN coupling following nicotine but not placebo administration. CONCLUSIONS The current work indicates that nicotine-dependent women, versus men, have weaker connectivity in brain networks critically implicated in cognitive control. How these connectivity differences contribute to the behavioral aspects of smoking requires more testing. However, building on the literature, it is likely these deficits in functional connectivity contribute to the lower abstinence rates noted in women relative to men.
Collapse
Affiliation(s)
- Julie M McCarthy
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA.
| | - Kelly M Dumais
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - Maya Zegel
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA
| | - Diego A Pizzagalli
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - David P Olson
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - Lauren V Moran
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - Amy C Janes
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| |
Collapse
|
10
|
Cheng Y, Chen D. Fruit fly research in China. J Genet Genomics 2018; 45:583-592. [PMID: 30455037 DOI: 10.1016/j.jgg.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.
Collapse
Affiliation(s)
- Ying Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Pyakurel P, Shin M, Venton BJ. Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochem Int 2018; 114:33-41. [PMID: 29305920 DOI: 10.1016/j.neuint.2017.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/04/2017] [Accepted: 12/29/2017] [Indexed: 01/13/2023]
Abstract
Acetylcholine is an excitatory neurotransmitter in the central nervous system of insects and the nicotinic acetylcholine receptor (nAChR) is a target for neonicotinoid insecticides. Functional insect nAChRs are difficult to express in host cells, and hence difficult to study. In mammals, acetylcholine and nicotine evoke dopamine release, but the extent to which this mechanism is conserved in insects is unknown. In intact larval ventral nerve cords (VNCs), we studied dopamine evoked by acetylcholine, nicotine, or neonicotinoids. Using fast-scan cyclic voltammetry, we confirmed dopamine was measured by its cyclic voltammogram and also by feeding Drosophila the synthesis inhibitor, 3-iodotyrosine, which lowered the evoked dopamine response. Acetylcholine (1.8 pmol) evoked on average 0.43 ± 0.04 μM dopamine. Dopamine release significantly decreased after incubation with α-bungarotoxin, demonstrating the release is mediated by nAChR, but atropine, a muscarinic AChR antagonist, had no effect. Nicotine (t1/2 = 71 s) and the neonicotinoids nitenpyram and imidacloprid (t1/2 = 86 s, 121 s respectively) also evoked dopamine release, which lasted longer than acetylcholine-stimulated release (t1/2 = 19 s). Nicotine-stimulated dopamine was significantly lower in the presence of sodium channel blocker, tetrodotoxin, showing that the release is exocytotic. Drosophila that have mutations in the nAChR subunit α1 or β2 have significantly lower neonicotinoid-stimulated release but no changes in nicotine-stimulated release. This work demonstrates that nAChR agonists mediate dopamine release in Drosophila larval VNC and that mutations in nAChR subunits affect how insecticides stimulate dopamine release.
Collapse
Affiliation(s)
- Poojan Pyakurel
- Department of Chemistry, University of Virginia, United States
| | - Mimi Shin
- Department of Chemistry, University of Virginia, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, United States.
| |
Collapse
|
12
|
Velazquez-Ulloa NA. A Drosophila model for developmental nicotine exposure. PLoS One 2017; 12:e0177710. [PMID: 28498868 PMCID: PMC5428972 DOI: 10.1371/journal.pone.0177710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
Despite the known health risks of tobacco smoking, many people including pregnant women continue smoking. The effects of developmental nicotine exposure are known, but the underlying mechanisms are not well understood. Drosophila melanogaster is a model organism that can be used for uncovering genetic and molecular mechanisms for drugs of abuse. Here I show that Drosophila can be a model to elucidate the mechanisms for nicotine’s effects on a developing organism. Drosophila reared on nicotine food display developmental and behavioral effects similar to those in mammals including decreased survival and weight, increased developmental time, and decreased sensitivity to acute nicotine and ethanol. The Drosophila nicotinic acetylcholine receptor subunit alpha 7 (Dα7) mediates some of these effects. A novel role for Dα7 on ethanol sedation in Drosophila is also shown. Future research taking advantage of the genetic and molecular tools for Drosophila will allow additional discovery of the mechanisms behind the effects of nicotine during development.
Collapse
|
13
|
Caenorhabditis elegans Male Copulation Circuitry Incorporates Sex-Shared Defecation Components To Promote Intromission and Sperm Transfer. G3-GENES GENOMES GENETICS 2017; 7:647-662. [PMID: 28031243 PMCID: PMC5295609 DOI: 10.1534/g3.116.036756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sexual dimorphism can be achieved using a variety of mechanisms, including sex-specific circuits and sex-specific function of shared circuits, though how these work together to produce sexually dimorphic behaviors requires further investigation. Here, we explore how components of the sex-shared defecation circuitry are incorporated into the sex-specific male mating circuitry in Caenorhabditis elegans to produce successful copulation. Using behavioral studies, calcium imaging, and genetic manipulation, we show that aspects of the defecation system are coopted by the male copulatory circuitry to facilitate intromission and ejaculation. Similar to hermaphrodites, male defecation is initiated by an intestinal calcium wave, but circuit activity is coordinated differently during mating. In hermaphrodites, the tail neuron DVB promotes expulsion of gut contents through the release of the neurotransmitter GABA onto the anal depressor muscle. However, in the male, both neuron and muscle take on modified functions to promote successful copulation. Males require calcium-dependent activator protein for secretion (CAPS)/unc-31, a dense core vesicle exocytosis activator protein, in the DVB to regulate copulatory spicule insertion, while the anal depressor is remodeled to promote release of sperm into the hermaphrodite. This work shows how sex-shared circuitry is modified in multiple ways to contribute to sex-specific mating.
Collapse
|