1
|
Chaker Z, Makarouni E, Doetsch F. The Organism as the Niche: Physiological States Crack the Code of Adult Neural Stem Cell Heterogeneity. Annu Rev Cell Dev Biol 2024; 40:381-406. [PMID: 38985883 DOI: 10.1146/annurev-cellbio-120320-040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| | | | - Fiona Doetsch
- Biozentrum, University of Basel, Basel, Switzerland; , ,
| |
Collapse
|
2
|
Ishimoto T, Kosumi H, Natsuga K, Yamaguchi Y. Nail growth arrest under low body temperature during hibernation. J Physiol Sci 2024; 74:27. [PMID: 38678189 PMCID: PMC11055321 DOI: 10.1186/s12576-024-00919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/06/2024] [Indexed: 04/29/2024]
Abstract
Growth and differentiation are reduced or stopped during hibernation, an energy conserving strategy in harsh seasons by lowered metabolism and body temperature. However, few studies evaluated this in a same individual using a non-invasive method. In this study, we applied a non-invasive tracking method of the nail growth throughout the hibernation period in the same hibernating animals, the Syrian hamster (Mesocricetus auratus). We found that nail growth was markedly suppressed during the hibernation period but rapidly recovered by the exit from the hibernation period. Our data suggest that nail growth was arrested during deep torpor, a hypometabolic and hypothermic state, but recovered during periodic arousal, a euthermic phase. Consistent with this, nail stem cells located in the nail matrix did not exit the cell cycle in the deep torpor. Thus, hibernation stops nail growth in a body temperature-dependent manner.
Collapse
Affiliation(s)
- Taiga Ishimoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Neuroscience for Metabolic Control, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan.
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.
- Inamori Research Institute for Science Fellowship (InaRIS), Kyoto, Japan.
| |
Collapse
|
3
|
Soung AL, Vanderheiden A, Nordvig AS, Sissoko CA, Canoll P, Mariani MB, Jiang X, Bricker T, Rosoklija GB, Arango V, Underwood M, Mann JJ, Dwork AJ, Goldman JE, Boon ACM, Boldrini M, Klein RS. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 2022; 145:4193-4201. [PMID: 36004663 PMCID: PMC9452175 DOI: 10.1093/brain/awac270] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 07/05/2022] [Indexed: 01/14/2023] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability. Hamsters and patients deceased from coronavirus disease 2019 (COVID-19) also exhibit microglial activation and expression of interleukin (IL)-1β and IL-6, especially within the hippocampus and the medulla oblongata, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uraemia or trauma. In the hippocampal dentate gyrus of both COVID-19 hamsters and humans, we observed fewer neuroblasts and immature neurons. Protracted inflammation, blood-brain barrier disruption and microglia activation may result in altered neurotransmission, neurogenesis and neuronal damage, explaining neuropsychiatric presentations of COVID-19. The involvement of the hippocampus may explain learning, memory and executive dysfunctions in COVID-19 patients.
Collapse
Affiliation(s)
- Allison L Soung
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna S Nordvig
- Division of Neurodegenerative Diseases, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Cheick A Sissoko
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gorazd B Rosoklija
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - Victoria Arango
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Mark Underwood
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Andrew J Dwork
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje 1000, Republic of Macedonia
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Maura Boldrini
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Robyn S Klein
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Rossi GS, Labbé D, Wright PA. Out of water in the dark: Plasticity in visual structures and function in an amphibious fish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:776-784. [PMID: 35727120 DOI: 10.1002/jez.2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Many fishes encounter periods of prolonged darkness within their lifetime, yet the consequences for the visual system are poorly understood. We used an amphibious fish (Kryptolebias marmoratus) that occupies dark terrestrial environments during seasonal droughts to test whether exposure to prolonged darkness diminishes visual performance owing to reduced optic tectum (OT) size and/or neurogenesis. We performed a 3-week acclimation with a 2 ×$\times $ 2 factorial design, in which fish were either acclimated to a 12 h:12 h or 0 h:24 h light:dark photoperiod in water or in air. We found that water-exposed fish had poorer visual acuity when acclimated to the dark, while air-acclimated fish had poorer visual acuity regardless of photoperiod. The ability of K. marmoratus to capture aerial prey from water followed a similar trend, suggesting that good vision is important for hunting effectively. Changes in visual acuity did not result from changes in OT size, but air-acclimated fish had 37% fewer proliferating cells in the OT than water-acclimated fish. As K. marmoratus are unable to eat on land, reducing cell proliferation in the OT may serve as a mechanism to reduce maintenance costs associated with the visual system. Overall, we suggest that prolonged darkness and air exposure can impair vision in K. marmoratus, and that changes in visual performance may be mediated, in part, by OT neurogenesis. More broadly, we show that plastic changes to the visual system of fishes can have potential consequences for organismal performance and fitness.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Daniel Labbé
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Golpich M, Amini E, Kefayat A, Fesharaki M, Moshtaghian J. In vitro and in vivo anti-cancer effects of hibernating common carp (Cyprinus carpio) plasma on metastatic triple-negative breast cancer. Sci Rep 2022; 12:2855. [PMID: 35190572 PMCID: PMC8861139 DOI: 10.1038/s41598-022-06368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Uncontrollable proliferation is a hallmark of cancer cells. Cell proliferation and migration are significantly depressed during hibernation state. Many studies believe some factors in the plasma of hibernating animals cause these effects. This study aimed to assess the anti-cancer effects of hibernating common carp (Cyprinus carpio) plasma on 4T1 cancer cells in vitro and in vivo. The effect of hibernating plasma on cell viability, morphology, migration, apoptosis rate, and cell cycle distribution of 4T1 cells was investigated in vitro and in vivo. Hibernating plasma at a concentration of 16 mg/ml significantly reduced the viability of 4T1 cancer cells, without any toxicity on L929 normal fibroblast cells. It could change the morphology of cancer cells, induced apoptosis and cell cycle arrest at the G2/M phase, and inhibited migration. Furthermore, intratumoral injection of hibernating plasma (200 µl, 16 mg/ml) in the tumor-bearing mice caused a significant inhibition of 4T1 breast tumors volume (46.9%) and weight (58.8%) compared with controls. A significant decrease in the number of metastatic colonies at the lungs (80%) and liver (52.8%) of hibernating plasma-treated animals was detected which increased the survival time (21.9%) compared to the control groups. Immunohistochemical analysis revealed a considerable reduction in the Ki-67-positive cells in the tumor section of the hibernating plasma-treated animals compared with controls. Taken together, the SDS-PAGE and mass spectrometry analysis indicated the alpha-2-macroglobulin level in the hibernating fish plasma was significantly increased. It could exert an anti-cancer effect on breast cancer cells and suggested as a novel cancer treatment strategy.
Collapse
|
6
|
Klein R, Soung A, Sissoko C, Nordvig A, Canoll P, Mariani M, Jiang X, Bricker T, Goldman J, Rosoklija G, Arango V, Underwood M, Mann JJ, Boon A, Dowrk A, Boldrini M. COVID-19 induces neuroinflammation and loss of hippocampal neurogenesis. RESEARCH SQUARE 2021:rs.3.rs-1031824. [PMID: 34729556 PMCID: PMC8562542 DOI: 10.21203/rs.3.rs-1031824/v1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infection with the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is associated with onset of neurological and psychiatric symptoms during and after the acute phase of illness 1-4 . Acute SARS-CoV-2 disease (COVID-19) presents with deficits of memory, attention, movement coordination, and mood. The mechanisms of these central nervous system symptoms remain largely unknown.In an established hamster model of intranasal infection with SARS-CoV-2 5 , and patients deceased from COVID-19, we report a lack of viral neuroinvasion despite aberrant BBB permeability, microglial activation, and brain expression of interleukin (IL)-1β and IL-6, especially within the hippocampus and the inferior olivary nucleus of the medulla, when compared with non-COVID control hamsters and humans who died from other infections, cardiovascular disease, uremia or trauma. In the hippocampus dentate gyrus of both COVID-19 hamsters and humans, fewer cells expressed doublecortin, a marker of neuroblasts and immature neurons.Despite absence of viral neurotropism, we find SARS-CoV-2-induced inflammation, and hypoxia in humans, affect brain regions essential for fine motor function, learning, memory, and emotional responses, and result in loss of adult hippocampal neurogenesis. Neuroinflammation could affect cognition and behaviour via disruption of brain vasculature integrity, neurotransmission, and neurogenesis, acute effects that may persist in COVID-19 survivors with long-COVID symptoms.
Collapse
|
7
|
Falvo S, Santillo A, Di Fiore MM, Rosati L, Chieffi Baccari G. JNK/Elk1 signaling and PCNA protein expression in the brain of hibernating frog Pelophylax esculentus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:529-536. [PMID: 33970561 DOI: 10.1002/jez.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Mitogen activated protein kinase (MAPK) activation and neurogenesis are known to play a role in neuronal survival during hibernation. Herein, we investigate the activity of c-Jun N-terminal kinases (JNK) and Ets like-1 protein (Elk1) kinase involved in cell survival, as well as the expression of proliferating cell nuclear antigen (PCNA), a cell proliferation marker, in the brain of the frog Pelophylax esculentus. The study was conducted on female and male frogs collected during the annual cycle. Our results demonstrated that JNK activity increased during the hibernating phase in relation to the active phase. Interestingly, P-Elk1 levels were positively correlated with P-JNK levels, suggesting that the JNK/Elk1 pathway is pivotal in mediating neuroprotective adaptations that are essential to successful hibernation. On the contrary, we detected higher PCNA expression levels during the active period compared with the hibernating period. A sex dimorphism was observed in the expression levels of P-JNK/P-Elk1 that were specifically higher in males, and in the expression of PCNA reporting higher levels in female brains. Much remains to be learned regarding the regulation of hibernation, however, our findings provide new insights into the role of MAPK and proliferative pathways in hibernation, adding new knowledge concerning the mechanisms activated in the brain of ectothermic species to counteract the damage resulting from extreme temperatures.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, Naples, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
8
|
Skałbania J, Pałasz A, Błaszczyk I, Suszka-Świtek A, Krzystanek M, Tulcanaz KP, Worthington JJ, Mordecka-Chamera K. Chlorpromazine affects the numbers of Sox-2, Musashi1 and DCX-expressing cells in the rat brain subventricular zone. Pharmacol Rep 2021; 73:1164-1169. [PMID: 33843023 PMCID: PMC8413197 DOI: 10.1007/s43440-021-00259-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/05/2022]
Abstract
Background Adult neurogenesis observed both in the subventricular zone (SVZ) and hippocampus may be regulated and modulated by several endogenous factors, xenobiotics and medications. Classical and atypical antipsychotic drugs are able to affect neuronal and glial cell proliferation in the rat brain. The main purpose of this structural study was to determine whether chronic chlorpromazine treatment affects adult neurogenesis in the canonical sites of the rat brain. At present, the clinical application of chlorpromazine is rather limited; however, it may still represent an important model in basic neuropharmacological and toxicological studies. Methods The number of neural progenitors and immature neurons was enumerated using immunofluorescent detection of Sox2, Musashi1 and doublecortin (DCX) expression within SVZ. Results Chlorpromazine has a depressive effect on the early phase of adult neurogenesis in the rat subventricular zone (SVZ), as the mean number of Sox-2 immunoexpressing cells decreased following treatment. Conclusion Collectively, these results may suggest that long-term treatment with chlorpromazine may decrease neurogenic stem/progenitor cell formation in the rat SVZ and may affect rostral migratory stream formation. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00259-7.
Collapse
Affiliation(s)
- Jakub Skałbania
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Iwona Błaszczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Clinic of Psychiatric Rehabilitation, Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Ziołowa 45/47, 40-635, Katowice, Poland
| | - Karina Paola Tulcanaz
- Faculty of Medicine, Pontifical Catholic University of Ecuador, Av. 12 de Octubre 1076, 170143, Quito, Ecuador
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kinga Mordecka-Chamera
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| |
Collapse
|
9
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
10
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
11
|
Bai J, Li L, Zhao S, Fan X, Zhang J, Hu M, Chen Y, Sun Y, Wang B, Jin J, Wang X, Zhang D, Hu J, Li Y. Heterotropic activation of flavonoids on cytochrome P450 3A4: A case example of alleviating dronedarone-induced cytotoxicity. Toxicol Lett 2020; 319:187-196. [DOI: 10.1016/j.toxlet.2019.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
|
12
|
León-Espinosa G, DeFelipe J, Muñoz A. The Golgi Apparatus of Neocortical Glial Cells During Hibernation in the Syrian Hamster. Front Neuroanat 2019; 13:92. [PMID: 31824270 PMCID: PMC6882278 DOI: 10.3389/fnana.2019.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Hibernating mammals undergo torpor periods characterized by a general decrease in body temperature, metabolic rate, and brain activity accompanied by complex adaptive brain changes that appear to protect the brain from extreme conditions of hypoxia and low temperatures. These processes are accompanied by morphological and neurochemical changes in the brain including those in cortical neurons such as the fragmentation and reduction of the Golgi apparatus (GA), which both reverse a few hours after arousal from the torpor state. In the present study, we characterized – by immunofluorescence and confocal microscopy – the GA of cortical astrocytes, oligodendrocytes, and microglial cells in the Syrian hamster, which is a facultative hibernator. We also show that after artificial induction of hibernation, in addition to neurons, the GA of glia in the Syrian hamster undergoes important structural changes, as well as modifications in the intensity of immunostaining and distribution patterns of Golgi structural proteins at different stages of the hibernation cycle.
Collapse
Affiliation(s)
- Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Departamento de Química y Bioquímica, Facultad de Farmacia, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Muñoz
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain.,Instituto Cajal, CSIC, Madrid, Spain.,Departamento de Biología Celular, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Chen YC, Aui SP, Lai YS, Chang KT. Adult Stem Cells in Hibernation: Future Perspectives of Space Travel. Int J Stem Cells 2019; 12:381-387. [PMID: 31474026 PMCID: PMC6881040 DOI: 10.15283/ijsc19048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 07/05/2019] [Indexed: 11/09/2022] Open
Abstract
Space traveling is imperative for mankind in the future. Expectedly, hibernation will become an option for space traveler to overcome the endless voyage. With regard to some of the studies pointed out that during hibernation, muscle will undergo atrophy and meantime neurogenesis will reduce, these obstacles were frequently related with stem cell regeneration. Thus, investigation on whether hibernation will lead to dysfunction of stem cell becomes an important issue. By going through four main systems in this article, such as, hematopoietic system, skeletal muscle system, central nervous system and orthopedic system, we are expecting that stem cells regeneration capacity will be affected by hibernation. To date, these researches are majorly the read-out from short term or seasonal hibernating mammals. Proposing and creating a simulated long-term hibernation animal model is turning essential for the further investigation on the effect of longer period of hibernation to human stem cells.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Shin-Peir Aui
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Yin-Siew Lai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Taiwan.,Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Ko-Tung Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Taiwan.,Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Taiwan
| |
Collapse
|
14
|
Abstract
Tau protein, which was discovered in Prof. Kirschner's laboratory in 1975, has been the focus of my research over the last 40 years. In this issue of the Journal of Alzheimer's Disease commemorating its 20th year of publication, I will provide a short review of some of the features of my relationship with tau.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,CIBERNED, Madrid, Spain
| |
Collapse
|
15
|
León-Espinosa G, Antón-Fernández A, Tapia-González S, DeFelipe J, Muñoz A. Modifications of the axon initial segment during the hibernation of the Syrian hamster. Brain Struct Funct 2018; 223:4307-4321. [PMID: 30219944 DOI: 10.1007/s00429-018-1753-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Mammalian hibernation is a natural process in which the brain undergoes profound adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. In addition to a virtual cessation of neural and metabolic activity, these changes include a decrease in adult neurogenesis; the retraction of neuronal dendritic trees; changes in dendritic spines and synaptic connections; fragmentation of the Golgi apparatus; and the phosphorylation of the microtubule-associated protein tau. Furthermore, alterations of microglial cells also occur in torpor. Importantly, all of these changes are rapidly and fully reversed when the animals arouse from torpor state, with no apparent brain damage occurring. Thus, hibernating animals are excellent natural models to study different aspects of brain plasticity. The axon initial segment (AIS) is critical for the initiation of action potentials in neurons and is an efficient site for the regulation of neural activity. This specialized structure-characterized by the expression of different types of ion channels and adhesion, scaffolding and cytoskeleton proteins-is subjected to morpho-functional plastic changes upon variations in neural activity or in pathological conditions. Here, we used immunocytochemistry and 3D confocal microscopy reconstruction techniques to measure the possible morphological differences in the AIS of neocortical (layers II-III and V) and hippocampal (CA1) neurons during the hibernation of the Syrian hamster. Our results indicate that the general integrity of the AIS is resistant to the ischemia/hypoxia conditions that are characteristic of the torpor phase of hibernation. In addition, the length of the AIS significantly increased in all the regions studied-by about 16-20% in torpor animals compared to controls, suggesting the existence of compensatory mechanisms in response to a decrease in neuronal activity during the torpor phase of hibernation. Furthermore, in double-labeling experiment, we found that the AIS in layer V of torpid animals was longer in neurons expressing phospho-tau than in those not labeled for phospho-tau. This suggests that AIS plastic changes were more marked in phospho-tau accumulating neurons. Overall, the results further emphasize that mammalian hibernation is a good physiological model to study AIS plasticity mechanisms in non-pathological conditions.
Collapse
Affiliation(s)
- Gonzalo León-Espinosa
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.,Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Alejandro Antón-Fernández
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Silvia Tapia-González
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Javier DeFelipe
- Instituto Cajal, CSIC, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Muñoz
- Instituto Cajal, CSIC, Madrid, Spain. .,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain. .,Departamento de Biología Celular, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
16
|
Hernández F, Llorens-Martín M, Bolós M, Pérez M, Cuadros R, Pallas-Bazarra N, Zabala JC, Avila J. New Beginnings in Alzheimer’s Disease: The Most Prevalent Tauopathy. J Alzheimers Dis 2018; 64:S529-S534. [DOI: 10.3233/jad-179916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| | - María Llorens-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autonoma de Madrid, Spain
| | - Marta Bolós
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Mar Pérez
- Departamento de Anatomía Histología y Neurociencia, Facultad de Medicina UAM, Madrid, Spain
| | - Raquel Cuadros
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Noemí Pallas-Bazarra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Juan C. Zabala
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| |
Collapse
|
17
|
Cogut V, Bruintjes JJ, Eggen BJL, van der Zee EA, Henning RH. Brain inflammatory cytokines and microglia morphology changes throughout hibernation phases in Syrian hamster. Brain Behav Immun 2018; 68:17-22. [PMID: 29038037 DOI: 10.1016/j.bbi.2017.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022] Open
Abstract
Hibernators tolerate low metabolism, reduced cerebral blood flow and hypothermia during torpor without noticeable neuronal or synaptic dysfunction upon arousal. Previous studies found extensive changes in brain during torpor, including synaptic rearrangements, documented both morphologically and molecularly. As such adaptations may represent organ damage, we anticipated an inflammatory response in brain during specific hibernation phases. In this study, signs of inflammation in the brain were investigated in the Syrian hamster hippocampus (Mesocricetus Auratus) both during hibernation (torpor and arousal phases) and in summer and winter euthermic animals. mRNA expression of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1β was quantified by RT-qPCR. Morphological changes of microglia were studied by immunohistochemistry staining for IBA-1. Activation of microglia based on retraction and thickening of the dendritic branches and an increase in cell body size was quantified by calculation of cell body size to total cell size ratio. Expression of pro-inflammatory cytokines was upregulated early in arousal (90 min), and normalized after 8 h of arousal. Substantial loss of microglia ramification was found throughout torpor and early arousal together with a 2-fold increase in the cell body size to total cell size ratio. Notably, microglia changes were fully reversed in late arousal (8 h) to euthermic levels. These results demonstrate an upregulation of inflammatory cytokines and signs of microglia activation during hibernation, which completely resolves by late arousal. Activation of this response may serve to prevent or offset brain damage resulting from the substantial physiological changes accompanying torpor and their rapid change during early arousal.
Collapse
Affiliation(s)
- V Cogut
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | - J J Bruintjes
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - B J L Eggen
- Department of Neuroscience, Medical Physiology, Antonius Deusinglaan 1, University of Groningen, 9713 AV Groningen, The Netherlands
| | - E A van der Zee
- Department of Molecular Neurobiology, University of Groningen, Linnaeusborg (building 5171), 9700 CC Groningen, The Netherlands
| | - R H Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
18
|
Changes in neocortical and hippocampal microglial cells during hibernation. Brain Struct Funct 2017; 223:1881-1895. [PMID: 29260372 DOI: 10.1007/s00429-017-1596-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/15/2017] [Indexed: 12/29/2022]
Abstract
Mammalian hibernation proceeds alongside a wide range of complex brain adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. Using immunofluorescence, confocal microscopy, quantitative analysis methods and intracellular injections, we have characterized microglia morphological changes that occur in the neocortex and hippocampus of the Syrian hamster during hibernation. In euthermic hamsters, microglial cells showed the typical ramified/resting morphology with multiple long, thin and highly-branched processes homogeneously immunostained for Iba-1. However, during torpor, microglial cell process numbers increase significantly accompanied by a shortening of the Iba-1 immunoreactive processes, which show a fragmented appearance. Adaptative changes of microglial cells during torpor coursed with no expression of microglial cell activation markers. We discuss the possibility that these morphological changes may contribute to neuronal damage prevention during hibernation.
Collapse
|
19
|
Dioli C, Patrício P, Trindade R, Pinto LG, Silva JM, Morais M, Ferreiro E, Borges S, Mateus-Pinheiro A, Rodrigues AJ, Sousa N, Bessa JM, Pinto L, Sotiropoulos I. Tau-dependent suppression of adult neurogenesis in the stressed hippocampus. Mol Psychiatry 2017; 22:1110-1118. [PMID: 28555078 DOI: 10.1038/mp.2017.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Stress, a well-known sculptor of brain plasticity, is shown to suppress hippocampal neurogenesis in the adult brain; yet, the underlying cellular mechanisms are poorly investigated. Previous studies have shown that chronic stress triggers hyperphosphorylation and accumulation of the cytoskeletal protein Tau, a process that may impair the cytoskeleton-regulating role(s) of this protein with impact on neuronal function. Here, we analyzed the role of Tau on stress-driven suppression of neurogenesis in the adult dentate gyrus (DG) using animals lacking Tau (Tau-knockout; Tau-KO) and wild-type (WT) littermates. Unlike WTs, Tau-KO animals exposed to chronic stress did not exhibit reduction in DG proliferating cells, neuroblasts and newborn neurons; however, newborn astrocytes were similarly decreased in both Tau-KO and WT mice. In addition, chronic stress reduced phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/glycogen synthase kinase-3β (GSK3β)/β-catenin signaling, known to regulate cell survival and proliferation, in the DG of WT, but not Tau-KO, animals. These data establish Tau as a critical regulator of the cellular cascades underlying stress deficits on hippocampal neurogenesis in the adult brain.
Collapse
Affiliation(s)
- C Dioli
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - P Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R Trindade
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - L G Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J M Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - M Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - E Ferreiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research of the University of Coimbra (IIIUC), Coimbra, Portugal
| | - S Borges
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - L Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - I Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Trefna M, Goris M, Thissen CMC, Reitsema VA, Bruintjes JJ, de Vrij EL, Bouma HR, Boerema AS, Henning RH. The influence of sex and diet on the characteristics of hibernation in Syrian hamsters. J Comp Physiol B 2017; 187:725-734. [PMID: 28324158 PMCID: PMC5486544 DOI: 10.1007/s00360-017-1072-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/24/2016] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
Research on deep hibernators almost exclusively uses species captured from the wild or from local breeding. An exception is Syrian hamster (Mesocricetus auratus), the only standard laboratory animal showing deep hibernation. In deep hibernators, several factors influence hibernation quality, including body mass, sex and diet. We examined hibernation quality in commercially obtained Syrian hamsters in relation to body mass, sex and a diet enriched in polyunsaturated fatty acids. Animals (M/F:30/30, 12 weeks of age) were obtained from Harlan (IN, USA) and individually housed at 21 °C and L:D 14:10 until 20 weeks of age, followed by L:D 8:16 until 27 weeks. Then conditions were changed to 5 °C and L:D 0:24 for 9 weeks to induce hibernation. Movement was continuously monitored with passive infrared detectors. Hamsters were randomized to control diet or a diet 3× enriched in linoleic acid from 16 weeks of age. Hamsters showed a high rate of premature death (n = 24, 40%), both in animals that did and did not initiate torpor, which was unrelated to body weight, sex and diet. Time to death (31.7 ± 3.1 days, n = 12) or time to first torpor bout (36.6 ± 1.6 days, n = 12) was similar in prematurely deceased hamsters. Timing of induction of hibernation and duration of torpor and arousal was unaffected by body weight, sex or diet. Thus, commercially obtained Syrian hamsters subjected to winter conditions showed poor survival, irrespective of body weight, sex and diet. These factors also did not affect hibernation parameters. Possibly, long-term commercial breeding from a confined genetic background has selected against the hibernation trait.
Collapse
Affiliation(s)
- Marie Trefna
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Maaike Goris
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Cynthia M C Thissen
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Vera A Reitsema
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jojanneke J Bruintjes
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Edwin L de Vrij
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ate S Boerema
- Departments of Chronobiology and Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
21
|
Tarahovsky YS, Fadeeva IS, Komelina NP, Khrenov MO, Zakharova NM. Antipsychotic inductors of brain hypothermia and torpor-like states: perspectives of application. Psychopharmacology (Berl) 2017; 234:173-184. [PMID: 27933367 DOI: 10.1007/s00213-016-4496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/26/2016] [Indexed: 12/12/2022]
Abstract
Hypothermia and hypometabolism (hypometabothermia) normally observed during natural hibernation and torpor, allow animals to protect their body and brain against the damaging effects of adverse environment. A similar state of hypothermia can be achieved under artificial conditions through physical cooling or pharmacological effects directed at suppression of metabolism and the processes of thermoregulation. In these conditions called torpor-like states, the mammalian ability to recover from stroke, heart attack, and traumatic injuries greatly increases. Therefore, the development of therapeutic methods for different pathologies is a matter of great concern. With the discovery of the antipsychotic drug chlorpromazine in the 1950s of the last century, the first attempts to create a pharmacologically induced state of hibernation for therapeutic purposes were made. That was the beginning of numerous studies in animals and the broad use of therapeutic hypothermia in medicine. Over the last years, many new agents have been discovered which were capable of lowering the body temperature and inhibiting the metabolism. The psychotropic agents occupy a significant place among them, which, in our opinion, is not sufficiently recognized in the contemporary literature. In this review, we summarized the latest achievements related to the ability of modern antipsychotics to target specific receptors in the brain, responsible for the initiation of hypometabothermia.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290. .,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.
| | - Irina S Fadeeva
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Natalia P Komelina
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Maxim O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Nadezhda M Zakharova
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|