1
|
Li Y, Shi R, Xia L, Zhang X, Zhang P, Liu S, Liu K, Sik A, Stoika R, Jin M. Identification of Key Active Constituents in Eucommia ulmoides Oliv. Leaves Against Parkinson's Disease and the Alleviative Effects via 4E-BP1 Up-Regulation. Int J Mol Sci 2025; 26:2762. [PMID: 40141407 PMCID: PMC11943294 DOI: 10.3390/ijms26062762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder, affecting an increasing number of older adults. Despite extensive research, a definitive cure remains elusive. Eucommia ulmoides Oliv. leaves (EUOL) have been reported to exhibit protective effects on neurodegenerative diseases, however, their efficacy, key active constituents, and pharmacological mechanisms are not yet understood. This study aims to explore the optimal constituents of EUOL regarding anti-PD activity and its underlying mechanisms. Using a zebrafish PD model, we found that the 30% ethanol fraction extract (EF) of EUOL significantly relieved MPTP-induced locomotor impairments, increased the length of dopaminergic neurons, inhibited the loss of neuronal vasculature, and regulated the misexpression of autophagy-related genes (α-syn, lc3b, p62, and atg7). Assays of key regulators involved in PD further verified the potential of the 30% EF against PD in the cellular PD model. Reverse phase protein array (RPPA) analysis revealed that 30% EF exerted anti-PD activity by activating 4E-BP1, which was confirmed by Western blotting. Phytochemical analysis indicated that cryptochlorogenic acid, chlorogenic acid, asperuloside, caffeic acid, and asperulosidic acid are the main components of the 30% EF. Molecular docking and surface plasmon resonance (SPR) indicated that the main components of the 30% EF exhibited favorable binding interactions with 4E-BP1, further highlighting the roles of 4E-BP1 in this process. Accordingly, these components were observed to ameliorate PD-like behaviors in the zebrafish model. Overall, this study revealed that the 30% EF is the key active constituent of EUOL, which had considerable ameliorative effects on PD by up-regulating 4E-BP1. This suggests that EUOL could serve as a promising candidate for the development of novel functional foods aimed at supporting PD treatment.
Collapse
Affiliation(s)
- Yuqing Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Lijie Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Pengyu Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| | - Attila Sik
- University Research and Innovation Center, Obuda University, Bécsi út 96B, H-1034 Budapest, Hungary
- Institute of Physiology, Medical School, University of Pecs, H-7624 Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, China
| |
Collapse
|
2
|
Xiao X, Tang T, Bi M, Liu J, Liu M, Jiao Q, Chen X, Yan C, Du X, Jiang H. GHSR deficiency exacerbates Parkinson's disease pathology by impairing autophagy. Redox Biol 2024; 76:103322. [PMID: 39180981 PMCID: PMC11388265 DOI: 10.1016/j.redox.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
In Parkinson's disease (PD), exogenous ghrelin protects dopaminergic neurons through its receptor, growth hormone secretagogue receptor (GHSR). However, in contrast to the strikingly low levels of ghrelin, GHSR is highly expressed in the substantia nigra (SN). What role does GHSR play in dopaminergic neurons is unknown. In this study, using GHSR knockout mice (Ghsr-/- mice) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model, we found that GHSR deletion aggravated dopaminergic neurons degeneration, and the expression and activity of GHSR were significantly reduced in PD. Furthermore, we explored the potential mechanism that GHSR deficiency aggregated PD-related neurodegeneration. We showed that DEPTOR, a subunit of mTORC1, was overexpressed in Ghsr-/- mice, positively regulating autophagy and enhancing autophagy initiation. The expression of lysosomal markers was abnormal, implying lysosomal dysfunction. As a result, the damaged mitochondria could not be effectively eliminated, which ultimately exacerbated the injury of nigral dopaminergic neurons. In particular, we demonstrated that DEPTOR could be transcriptionally regulated by KLF4. Specific knockdown of KLF4 in dopaminergic neurons effectively alleviated neurodegeneration in Ghsr-/- mice. In summary, our results suggested that endogenous GHSR deletion-compromised autophagy by impairing lysosomal function, is a key contributor to PD, which provided ideas for therapeutic approaches involving the manipulation of GHSR.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Tingting Tang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jing Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mengru Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
3
|
Mercau ME, Patwa S, Bhat KPL, Ghosh S, Rothlin CV. Cell death in development, maintenance, and diseases of the nervous system. Semin Immunopathol 2022; 44:725-738. [PMID: 35508671 DOI: 10.1007/s00281-022-00938-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Cell death, be it of neurons or glial cells, marks the development of the nervous system. Albeit relatively less so than in tissues such as the gut, cell death is also a feature of nervous system homeostasis-especially in context of adult neurogenesis. Finally, cell death is commonplace in acute brain injuries, chronic neurodegenerative diseases, and in some central nervous system tumors such as glioblastoma. Recent studies are enumerating the various molecular modalities involved in the execution of cells. Intimately linked with cell death are mechanisms of disposal that remove the dead cell and bring about a tissue-level response. Heretofore, the association between these methods of dying and physiological or pathological responses has remained nebulous. It is envisioned that careful cartography of death and disposal may reveal novel understandings of disease states and chart new therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Maria E Mercau
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Siraj Patwa
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, Division of Pathology-Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA.,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA. .,Department of Pharmacology, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Huo Y, Sawant A, Tan Y, Mahdi AH, Li T, Ma H, Bhatt V, Yan R, Coleman J, Dreyfus CF, Guo JY, Mouradian MM, White E, Xia B. Tumor suppressor PALB2 maintains redox and mitochondrial homeostasis in the brain and cooperates with ATG7/autophagy to suppress neurodegeneration. PLoS Genet 2022; 18:e1010138. [PMID: 35404932 PMCID: PMC9022806 DOI: 10.1371/journal.pgen.1010138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/21/2022] [Accepted: 03/09/2022] [Indexed: 01/22/2023] Open
Abstract
The PALB2 tumor suppressor plays key roles in DNA repair and has been implicated in redox homeostasis. Autophagy maintains mitochondrial quality, mitigates oxidative stress and suppresses neurodegeneration. Here we show that Palb2 deletion in the mouse brain leads to mild motor deficits and that co-deletion of Palb2 with the essential autophagy gene Atg7 accelerates and exacerbates neurodegeneration induced by ATG7 loss. Palb2 deletion leads to elevated DNA damage, oxidative stress and mitochondrial markers, especially in Purkinje cells, and co-deletion of Palb2 and Atg7 results in accelerated Purkinje cell loss. Further analyses suggest that the accelerated Purkinje cell loss and severe neurodegeneration in the double deletion mice are due to excessive oxidative stress and mitochondrial dysfunction, rather than DNA damage, and partially dependent on p53 activity. Our studies uncover a role of PALB2 in mitochondrial homeostasis and a cooperation between PALB2 and ATG7/autophagy in maintaining redox and mitochondrial homeostasis essential for neuronal survival.
Collapse
Affiliation(s)
- Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Akshada Sawant
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Yongmei Tan
- Stomatological Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Amar H Mahdi
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Tao Li
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Hui Ma
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Run Yan
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- RWJMS Institute for Neurological Therapeutics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Jake Coleman
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Cheryl F Dreyfus
- Rutgers School of Environmental and Biological Sciences, New Brunswick, New Jersey, United States of America
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, New Jersey, United States of America
| | - M. Maral Mouradian
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
- RWJMS Institute for Neurological Therapeutics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| |
Collapse
|
5
|
Feng H, Wang N, Zhang N, Liao HH. Alternative autophagy: mechanisms and roles in different diseases. Cell Commun Signal 2022; 20:43. [PMID: 35361231 PMCID: PMC8973741 DOI: 10.1186/s12964-022-00851-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
As an important mechanism to maintain cellular homeostasis, autophagy exerts critical functions via degrading misfolded proteins and damaged organelles. Recent years, alternative autophagy, a new type of autophagy has been revealed, which shares similar morphology with canonical autophagy but is independent of Atg5/Atg7. Investigations on different diseases showed the pivotal role of alternative autophagy during their physio-pathological processes, including heart diseases, neurodegenerative diseases, oncogenesis, inflammatory bowel disease (IBD), and bacterial infection. However, the studies are limited and the precise roles and mechanisms of alternative autophagy are far from clear. It is necessary to review current research on alternative autophagy and get some hint in order to provide new insight for further study. Video Abstract.
Collapse
Affiliation(s)
- Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nian Wang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
6
|
Gorbunova AS, Kopeina GS, Zhivotovsky B. A Balance Between Autophagy and Other Cell Death Modalities in Cancer. Methods Mol Biol 2022; 2445:3-24. [PMID: 34972982 DOI: 10.1007/978-1-0716-2071-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Autophagy is an intracellular self-digestive process involved in catabolic degradation of damaged proteins, and organelles, and the elimination of cellular pathogens. Initially, autophagy was considered as a prosurvival mechanism, but the following insights shed light on its prodeath function. Nowadays, autophagy is established as a crucial player in the development of various diseases through interaction with other molecular pathways within a cell. Additionally, disturbance in autophagy is one of the main pathological alterations that lead to resistance of cancer cells to treatment. These autophagy-related pathologies gave rise to the development of new therapeutic drugs. Here, we summarize the current knowledge on the autophagic role in disease pathogenesis, particularly in cancer, and the interplay between autophagy and other cell death modalities in order to combat cancer.
Collapse
Affiliation(s)
- Anna S Gorbunova
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia.
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden.
| |
Collapse
|
7
|
He X, Xie Y, Zheng Q, Zhang Z, Ma S, Li J, Li M, Huang Q. TFE3-Mediated Autophagy is Involved in Dopaminergic Neurodegeneration in Parkinson's Disease. Front Cell Dev Biol 2021; 9:761773. [PMID: 34912803 PMCID: PMC8667775 DOI: 10.3389/fcell.2021.761773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Impairment of autophagy has been strongly implicated in the progressive loss of nigral dopaminergic neurons in Parkinson’s disease (PD). Transcription factor E3 (TFE3), an MiTF/TFE family transcription factor, has been identified as a master regulator of the genes that are associated with lysosomal biogenesis and autophagy. However, whether TFE3 is involved in parkinsonian neurodegeneration remains to be determined. In this study, we found decreased TFE3 expression in the nuclei of the dopaminergic neurons of postmortem human PD brains. Next, we demonstrated that TFE3 knockdown led to autophagy dysfunction and neurodegeneration of dopaminergic neurons in mice, implying that reduction of nuclear TFE3 may contribute to autophagy dysfunction-mediated cell death in PD. Further, we showed that enhancement of autophagy by TFE3 overexpression dramatically reversed autophagy downregulation and dopaminergic neurons loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Taken together, these findings demonstrate that TFE3 plays an essential role in maintaining autophagy and the survival of dopaminergic neurons, suggesting TFE3 activation may serve as a promising strategy for PD therapy.
Collapse
Affiliation(s)
- Xin He
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yue Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiongping Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zeyu Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Honarmand Tamizkar K, Gorji P, Gholipour M, Hussen BM, Mazdeh M, Eslami S, Taheri M, Ghafouri-Fard S. Parkinson's Disease Is Associated With Dysregulation of Circulatory Levels of lncRNAs. Front Immunol 2021; 12:763323. [PMID: 34868009 PMCID: PMC8632636 DOI: 10.3389/fimmu.2021.763323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been recently reported to be involved in the pathoetiology of Parkinson’s disease (PD). Circulatory levels of lncRNAs might be used as markers for PD. In the present work, we measured expression levels of HULC, PVT1, MEG3, SPRY4-IT1, LINC-ROR and DSCAM-AS1 lncRNAs in the circulation of patients with PD versus healthy controls. Expression of HULC was lower in total patients compared with total controls (Expression ratio (ER)=0.19, adjusted P value<0.0001) as well as in female patients compared with female controls (ER=0.071, adjusted P value=0.0004). Expression of PVT1 was lower in total patients compared with total controls (ER=0.55, adjusted P value=0.0124). Expression of DSCAM-AS1 was higher in total patients compared with total controls (ER=5.67, P value=0.0029) and in male patients compared with male controls (ER=9.526, adjusted P value=0.0024). Expression of SPRY4-IT was higher in total patients compared with total controls (ER=2.64, adjusted P value<0.02) and in male patients compared with male controls (ER=3.43, P value<0.03). Expression of LINC-ROR was higher in total patients compared with total controls (ER=10.36, adjusted P value<0.0001) and in both male and female patients compared with sex-matched controls (ER=4.57, adjusted P value=0.03 and ER=23.47, adjusted P value=0.0019, respectively). Finally, expression of MEG3 was higher in total patients compared with total controls (ER=13.94, adjusted P value<0.0001) and in both male and female patients compared with sex-matched controls (ER=8.60, adjusted P value<0.004 and ER=22.58, adjusted P value<0.0085, respectively). ROC curve analysis revealed that MEG3 and LINC-ROR have diagnostic power of 0.77 and 0.73, respectively. Other lncRNAs had AUC values less than 0.7. Expression of none of lncRNAs was correlated with age of patients, disease duration, disease stage, MMSE or UPDRS. The current study provides further evidence for dysregulation of lncRNAs in the circulation of PD patients.
Collapse
Affiliation(s)
| | - Pooneh Gorji
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Behehsti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Behehsti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
GSK-3 mediates nuclear translocation of p62/SQSTM1 in MPTP-induced mouse model of Parkinson's disease. Neurosci Lett 2021; 763:136177. [PMID: 34400288 DOI: 10.1016/j.neulet.2021.136177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022]
Abstract
p62/SQSTM1 is a multifunctional, cytoplasmic protein with fundamental roles in autophagy and antioxidant responses. Here we showed that p62 translocated from the cytoplasm to the nucleus in nigral dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid (MPTP)-induced mouse model of Parkinson's disease (PD). We found that p62 was physically associated with glycogen synthase kinase (GSK)-3β, a serine/threonine protein kinase implicated in dopaminergic neurodegeneration in PD, and that MPTP treatment promoted dissociation of the complex in mice. Conditional knockout of GSK-3 prevented nuclear translocation of p62, suggesting that this translocation was detrimental to dopaminergic neurons. p62 knockout mice were used to investigate the role of p62 in MPTP-induced neuronal death. Knockout of p62 aggravated neuronal injury induced by MPTP intoxication, suggesting that p62 plays an important role in dopaminergic cell survival in stress conditions. Together, our data demonstrate that GSK-3 mediates nuclear translocation of p62 during MPTP-induced parkinsonian neurodegeneration. These findings shed new light on the role of the cytoplasmic-nuclear shuttling of p62 and the mechanism underlying GSK-3-depedent neuronal death in PD pathogenesis.
Collapse
|
10
|
Zhao X, Chen Y, Wang L, Li X, Chen X, Zhang H. Associations of ATG7 rs1375206 polymorphism and elevated plasma ATG7 levels with late-onset sporadic Parkinson's disease in a cohort of Han Chinese from southern China. Int J Neurosci 2020; 130:1206-1214. [PMID: 32065549 DOI: 10.1080/00207454.2020.1731507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 01/25/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
Abstract
Background: Autophagy-related gene 7 (ATG7) plays a key role in autophagy and is strongly implicated in Parkinson's disease (PD). This study investigated the associations of rs1375206 polymorphism in ATG7 gene promoter and plasma ATG7 levels with late-onset sporadic PD in a cohort of Han Chinese from southern China.Methods: Variant genotypes were identified using polymerase chain reaction-restriction fragment length polymorphism and gene sequencing in 124 patients with late-onset sporadic PD, as well as in 105 age- and sex-matched healthy controls. Plasma ATG7 levels were determined using an enzyme-linked immunosorbent assay.Results: No significant differences in genotype distributions were found between the two groups. Stratification analyses by sex and clinical motor subtypes revealed that the differences remained non-significant in each subgroup (all p > 0.05). Plasma ATG7 protein levels were significantly higher in the PD group than in the control group (p = 0.000). Haplotype analysis demonstrated that the A-T haplotype was significantly associated with late-onset sporadic PD (p = 0.045).Conclusion: Our study suggests that the rs1375206 polymorphism in ATG7 may not be associated with late-onset sporadic PD; however, high plasma ATG7 levels and the A-T haplotype may be associated with susceptibility to late-onset sporadic PD in the Han population from Zhejiang and Guangdong provinces.
Collapse
Affiliation(s)
- Xiyao Zhao
- Department of Neurology, The Second Affiliated Hospital (Jiande Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yusen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Li Wang
- Department of Neurology, The Second Affiliated Hospital (Jiande Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiangxin Li
- Department of Neurology, The Second Affiliated Hospital (Jiande Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaoyi Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Hao Zhang
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Hunn BHM, Vingill S, Threlfell S, Alegre-Abarrategui J, Magdelyns M, Deltheil T, Bengoa-Vergniory N, Oliver PL, Cioroch M, Doig NM, Bannerman DM, Cragg SJ, Wade-Martins R. Impairment of Macroautophagy in Dopamine Neurons Has Opposing Effects on Parkinsonian Pathology and Behavior. Cell Rep 2020; 29:920-931.e7. [PMID: 31644913 PMCID: PMC6856726 DOI: 10.1016/j.celrep.2019.09.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/28/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the death of dopamine neurons in the substantia nigra pars compacta (SNc) and accumulation of α-synuclein. Impaired autophagy has been implicated and activation of autophagy proposed as a treatment strategy. We generate a human α-synuclein-expressing mouse model of PD with macroautophagic failure in dopamine neurons to understand the interaction between impaired macroautophagy and α-synuclein. We find that impaired macroautophagy generates p62-positive inclusions and progressive neuron loss in the SNc. Despite this parkinsonian pathology, motor phenotypes accompanying human α-synuclein overexpression actually improve with impaired macroautophagy. Real-time fast-scan cyclic voltammetry reveals that macroautophagy impairment in dopamine neurons increases evoked extracellular concentrations of dopamine, reduces dopamine uptake, and relieves paired-stimulus depression. Our findings show that impaired macroautophagy paradoxically enhances dopamine neurotransmission, improving movement while worsening pathology, suggesting that changes to dopamine synapse function compensate for and conceal the underlying PD pathogenesis, with implications for therapies that target autophagy. Impaired macroautophagy in DA neurons leads to p62+ inclusions and DA neuron death Macroautophagy impairment increases evoked extracellular DA and reduces DA uptake Impaired macroautophagy improves human α-synuclein overexpression motor phenotypes Paradox of enhanced DA neurotransmission but increased neuropathology in PD model
Collapse
Affiliation(s)
- Benjamin H M Hunn
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Siv Vingill
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Sarah Threlfell
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Javier Alegre-Abarrategui
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Morgane Magdelyns
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK; Université Catholique de Louvain, Louvain-la-neuve, Region Wallone 1348, Belgium
| | - Thierry Deltheil
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Nora Bengoa-Vergniory
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK; Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Milena Cioroch
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Natalie M Doig
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK
| | - Stephanie J Cragg
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| |
Collapse
|
12
|
Xia L, Xu J, Song J, Xu Y, Zhang B, Gao C, Zhu D, Zhou C, Bi D, Wang Y, Zhang X, Shang Q, Qiao Y, Wang X, Xing Q, Zhu C. Autophagy-Related Gene 7 Polymorphisms and Cerebral Palsy in Chinese Infants. Front Cell Neurosci 2019; 13:494. [PMID: 31749688 PMCID: PMC6848160 DOI: 10.3389/fncel.2019.00494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Cerebral palsy (CP) is a group of non-progressive motor impairment syndromes that are secondary to brain injury in the early stages of brain development. Numerous etiologies and risk factors of CP have been reported, and genetic contributions have recently been identified. Autophagy has an important role in brain development and pathological process, and autophagy-related gene 7 (ATG7) is essential for autophagosome biogenesis. The purpose of this study was to investigate the genetic association between ATG7 gene single nucleotide polymorphisms (SNPs) and CP in Han Chinese children. Six SNPs (rs346078, rs1470612, rs11706903, rs2606750, rs2594972, and rs4684787) were genotyped in 715 CP patients and 658 healthy controls using the MassArray platform. Plasma ATG7 protein was determined in 73 CP patients and 79 healthy controls. The differences in the allele and genotype frequencies of the rs1470612 and rs2594972 SNPs were determined between the CP patients and controls (p allele = 0.02 and 0.0004, p genotype = 0.044 and 0.0012, respectively). Subgroup analysis revealed a more significant association of rs1470612 (p allele = 0.004, p genotype = 0.0036) and rs2594972 (p allele = 0.0004, p genotype < 0.0001) with male CP, and more significant differences in allele and genotype frequencies were also noticed between CP patients with spastic diplegia and controls for rs1470612 (p allele = 0.0024, p genotype = 0.008) and rs2594972 (p allele < 0.0001, p genotype = 0.006). The plasma ATG7 level was higher in CP patients compared to the controls (10.58 ± 0.85 vs. 8.18 ± 0.64 pg/mL, p = 0.024). The luciferase reporter gene assay showed that the T allele of rs2594972 SNP could significantly increase transcriptional activity of the ATG7 promoter compared to the C allele (p = 0.009). These findings suggest that an association exists between genetic variants of ATG7 and susceptibility to CP, which provides novel evidence for the role of ATG7 in CP and contributes to our understanding of the molecular mechanisms of this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Lei Xia
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Xu
- Institutes of Biomedical Sciences and Children's Hospital, NHC Key Lab of Reproduction Regulation, Fudan University, Shanghai, China
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Child Rehabilitation Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Child Rehabilitation Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chongchen Zhou
- Henan Key Laboratory of Child Inherited Metabolic Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Dan Bi
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangong Wang
- Institutes of Biomedical Sciences and Children's Hospital, NHC Key Lab of Reproduction Regulation, Fudan University, Shanghai, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Child Rehabilitation Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Qing Shang
- Child Rehabilitation Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yimeng Qiao
- Institutes of Biomedical Sciences and Children's Hospital, NHC Key Lab of Reproduction Regulation, Fudan University, Shanghai, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center for Perinatal Medicine and Helath, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, NHC Key Lab of Reproduction Regulation, Fudan University, Shanghai, China.,Shanghai Center for Women and Children's Health, Shanghai, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
13
|
Li S, Nie K, Zhang Q, Guo M, Qiu Y, Li Y, Gao Y, Wang L. Macrophage Migration Inhibitory Factor Mediates Neuroprotective Effects by Regulating Inflammation, Apoptosis and Autophagy in Parkinson's Disease. Neuroscience 2019; 416:50-62. [DOI: 10.1016/j.neuroscience.2019.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/15/2023]
|
14
|
Ren YH, Niu XY, Huang HJ, Hao XD, Wang PX, Chi YL, Ding YQ, Liao M. Dopamine neuron loss by selective deletion of autophagy-related gene 5 is not exacerbated by MPTP toxicity in midbrain. Neurosci Lett 2018; 675:140-144. [DOI: 10.1016/j.neulet.2017.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
|
15
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 770] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
16
|
Sukseree S, László L, Gruber F, Bergmann S, Narzt MS, Nagelreiter IM, Höftberger R, Molnár K, Rauter G, Birngruber T, Larue L, Kovacs GG, Tschachler E, Eckhart L. Filamentous Aggregation of Sequestosome-1/p62 in Brain Neurons and Neuroepithelial Cells upon Tyr-Cre-Mediated Deletion of the Autophagy Gene Atg7. Mol Neurobiol 2018; 55:8425-8437. [PMID: 29550918 PMCID: PMC6153718 DOI: 10.1007/s12035-018-0996-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Abstract
Defects in autophagy and the resulting deposition of protein aggregates have been implicated in aging and neurodegenerative diseases. While gene targeting in the mouse has facilitated the characterization of these processes in different types of neurons, potential roles of autophagy and accumulation of protein substrates in neuroepithelial cells have remained elusive. Here we report that Atg7f/fTyr-Cre mice, in which autophagy-related 7 (Atg7) is conditionally deleted under the control of the tyrosinase promoter, are a model for accumulations of the autophagy adapter and substrate sequestosome-1/p62 in both neuronal and neuroepithelial cells. In the brain of Atg7f/fTyr-Cre but not of fully autophagy competent control mice, p62 aggregates were present in sporadic neurons in the cortex and other brain regions as well in epithelial cells of the choroid plexus and the ependyma. Western blot analysis confirmed a dramatic increase of p62 abundance and formation of high-molecular weight species of p62 in the brain of Atg7f/fTyr-Cre mice relative to Atg7f/f controls. Immuno-electron microscopy showed that p62 formed filamentous aggregates in neurons and ependymal cells. p62 aggregates were also highly abundant in the ciliary body in the eye. Atg7f/fTyr-Cre mice reached an age of more than 2 years although neurological defects manifesting in abnormal hindlimb clasping reflexes were evident in old mice. These results show that p62 filaments form in response to impaired autophagy in vivo and suggest that Atg7f/fTyr-Cre mice are a model useful to study the long-term effects of autophagy deficiency on the homeostasis of different neuroectoderm-derived cells.
Collapse
Affiliation(s)
- Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Lajos László
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Sophie Bergmann
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Marie Sophie Narzt
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Ionela Mariana Nagelreiter
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Günther Rauter
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Thomas Birngruber
- Joanneum Research, Health - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Lionel Larue
- Institut Curie, INSERM U1021, CNRS UMR3347, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France.,INSERM, Orsay, France.,Equipe labellisée - Ligue Nationale contre le Cancer, Université Paris 11, Orsay, France
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Bone marrow mesenchymal stem cells protect against n-hexane-induced neuropathy through beclin 1-independent inhibition of autophagy. Sci Rep 2018. [PMID: 29540747 PMCID: PMC5852116 DOI: 10.1038/s41598-018-22857-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic exposure to n-hexane, a widely used organic solvent in industry, induces central-peripheral neuropathy, which is mediated by its active metabolite, 2,5-hexanedione (HD). We recently reported that transplantation of bone marrow-mesenchymal stem cells (BMSC) significantly ameliorated HD-induced neuronal damage and motor deficits in rats. However, the mechanisms remain unclear. Here, we reported that inhibition of HD-induced autophagy contributed to BMSC-afforded protection. BMSC transplantation significantly reduced the levels of microtubule-associated protein 1 light chain 3-II (LC3-II) and the degradation of sequestosome-1 (p62) in the spinal cord and sciatic nerve of HD-intoxicated rats. Downregulation of autophagy by BMSC was also confirmed in VSC4.1 cells exposed to HD. Moreover, inhibition of autophagy by PIK III mitigated the neurotoxic effects of HD and, meanwhile, abolished BMSC-afforded neuroprotection. Furthermore, we found that BMSC failed to interfere with Beclin 1, but promoted activation of mammalian target of rapamycin (mTOR). Unc-like kinse 1 (ULK1) was further recognized as the downstream target of mTOR responsible for BMSC-mediated inhibition of autophagy. Altogether, BMSC transplantation potently ameliorated HD-induced autophagy through beclin 1-independent activation of mTOR pathway, providing a novel insight for the therapeutic effects of BMSC against n-hexane and other environmental toxicants-induced neurotoxicity.
Collapse
|
18
|
Salidroside Protects against MPP+-Induced Neuronal Injury through DJ-1-Nrf2 Antioxidant Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5398542. [PMID: 29234413 PMCID: PMC5637855 DOI: 10.1155/2017/5398542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. We have found that salidroside (Sal) exhibited neuroprotective effects against MPP+ toxicity. However, the molecular mechanism is not fully understood. In this study, we found that Sal significantly prevented MPP+-induced decrease of mRNA and protein expression of Nrf2, GCLc, SOD1, and SOD2 in SH-SY5Y cells. Moreover, silencing of Nrf2 significantly inhibited Sal-induced increase in mRNA and protein expression of GCLc, SOD1, and SOD2. But Nrf2 silence did not significantly impact Sal-exhibited effects on DJ-1 expression. Silencing of Nrf2 significantly suppressed the decrease of apoptosis induced by Sal in MPP+-treated SH-SY5Y cells. Sal significantly prevented MPP+-induced decrease of the mRNA and protein expression of DJ-1 in SH-SY5Y cells. Moreover, silencing of DJ-1 significantly inhibited Sal-induced increase in mRNA and protein expression of Nrf2, GCLc, SOD1, and SOD2 in MPP+-treated SH-SY5Y cells. These results indicated that DJ-1 was an upstream regulator of Nrf2 in the neuroprotective effects of Sal. Furthermore, silencing of DJ-1 significantly suppressed the decrease of apoptosis induced by Sal in MPP+-treated SH-SY5Y cells. In conclusion, Sal prevented MPP+-induced neurotoxicity through upregulation of DJ-1-Nrf2-antioxidant pathway. Our findings provide novel insights into the neuroprotective effects of Sal against PD.
Collapse
|
19
|
Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5856071. [PMID: 28593174 PMCID: PMC5448050 DOI: 10.1155/2017/5856071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/30/2017] [Indexed: 12/14/2022]
Abstract
Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer.
Collapse
|
20
|
Bourdenx M, Dehay B. [Autophagy and brain: the case of neurodegenerative diseases]. Med Sci (Paris) 2017; 33:268-274. [PMID: 28367813 DOI: 10.1051/medsci/20173303013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The autophagy-lysosome system is an essential pathway to get rid of unwanted cellular components (proteins and organelles). The brain, and specifically neurons, are very sensitive to abnormalities of the proteome because altered proteins or damaged organelles cannot be diluted by cell division that does not occur in these cells. Most neurodegenerative disorders are characterized by accumulation of undegraded misfolded proteins and are currently associated with autophagy-lysosome dysfunctions. Recent studies have highlighted the modulation of this complex pathway as a putative therapeutic strategy. This review provides an update on the brain-related specificities and dysfunctions of this pathway and discusses the autophagy-based therapies couteracting neurodegeneration.
Collapse
Affiliation(s)
- Mathieu Bourdenx
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, F-33000 Bordeaux, France - CNRS, Institut des maladies neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Benjamin Dehay
- Université de Bordeaux, Institut des maladies neurodégénératives, UMR 5293, F-33000 Bordeaux, France - CNRS, Institut des maladies neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|