1
|
Smith BJ, McHugh CF, Hirano AA, Brecha NC, Barnes S. Transient and Sustained Ganglion Cell Light Responses Are Differentially Modulated by Intrinsically Produced Reactive Oxygen Species Acting upon Specific Voltage-Gated Na + Channel Isoforms. J Neurosci 2023; 43:2291-2304. [PMID: 36828637 PMCID: PMC10072295 DOI: 10.1523/jneurosci.1723-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Increasing spike rates drive greater neuronal energy demand. In turn, mitochondrial ATP production leads to the generation of reactive oxygen species (ROS) that can modulate ion channel gating. Does ROS production autoregulate the excitability of a neuron? We investigated the links between retinal ganglion cell (RGC) excitability and spike activity-driven ROS production in male and female mice. Changes to the light-evoked and current-evoked spike patterns of functionally identified αRGC subtypes, along with their NaV channel-gating properties, were recorded during experimentally induced decreases and increases of intracellular ROS. During periods of highest spike rates (e.g., following light onset in ON sustained RGCs and light offset in OFF sustained RGCs), these αRGC subtypes responded to reductions of ROS (induced by catalase or glutathione monoethyl ester) with higher spike rates. Increases in ROS (induced by mercaptosuccinate, antimycin-A, or H2O2) lowered spike rates. In ON and OFF transient RGCs, there were no changes in spike rate during ROS decreases but increased ROS increased spiking. This suggests that endogenous ROS are intrinsic neuromodulators in RGCs having high metabolic demands but not in RGCs with lower energy needs. We identified ROS-induced shifts in the voltage-dependent gating of specific isoforms of NaV channels that account for the modulation of ON and OFF sustained RGC spike frequency by ROS-mediated feedback. ROS-induced changes to NaV channel gating, affecting activation and inactivation kinetics, are consistent with the differing spike pattern alterations observed in RGC subtypes. Cell-autonomous generation of ROS during spiking contributes to tuning the spike patterns of RGCs.SIGNIFICANCE STATEMENT Energy production within retinal ganglion cells (RGCs) is accompanied by metabolic by-products harmful to cellular function. How these by-products modulate the excitability of RGCs bears heavily on visual function and the etiology of optic neuropathies. A novel hypothesis of how RGC metabolism can produce automodulation of electrical signaling was tested by identifying the characteristics and biophysical origins of changes to the excitability of RGCs caused by oxidizing by-products in the retina. This impacts our understanding of the pathophysiology of RGC dysfunction, supporting an emerging model in which increases in oxidizing chemical species during energy production, but not necessarily bioenergetic failure, lead to preferential degeneration of specific subtypes of RGCs, yielding loss of different aspects of visual capacity.
Collapse
Affiliation(s)
- Benjamin J Smith
- Doheny Eye Institute, University of California, Los Angeles, California 91103
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Cyrus F McHugh
- Doheny Eye Institute, University of California, Los Angeles, California 91103
| | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Steven Barnes
- Doheny Eye Institute, University of California, Los Angeles, California 91103
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
2
|
Cheng S, Wang HN, Xu LJ, Li F, Miao Y, Lei B, Sun X, Wang Z. Soluble tumor necrosis factor-alpha-induced hyperexcitability contributes to retinal ganglion cell apoptosis by enhancing Nav1.6 in experimental glaucoma. J Neuroinflammation 2021; 18:182. [PMID: 34419081 PMCID: PMC8380326 DOI: 10.1186/s12974-021-02236-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Neuroinflammation plays an important role in the pathogenesis of glaucoma. Tumor necrosis factor-alpha (TNF-α) is a major pro-inflammatory cytokine released from activated retinal glial cells in glaucoma. Here, we investigated how TNF-α induces retinal ganglion cell (RGC) hyperexcitability and injury. METHODS Whole-cell patch-clamp techniques were performed to explore changes in spontaneous firing and evoked action potentials, and Na+ currents in RGCs. Both intravitreal injection of TNF-α and chronic ocular hypertension (COH) models were used. Western blotting, immunofluorescence, quantitative real-time polymerase chain reaction (q-PCR), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) techniques were employed to investigate the molecular mechanisms of TNF-α effects on RGCs. RESULTS Intravitreal injection of soluble TNF-α significantly increased the spontaneous firing frequencies of RGCs in retinal slices. When the synaptic transmissions were blocked, more than 90% of RGCs still showed spontaneous firing; both the percentage of cells and firing frequency were higher than the controls. Furthermore, the frequency of evoked action potentials was also higher than the controls. Co-injection of the TNF-α receptor 1 (TNFR1) inhibitor R7050 eliminated the TNF-α-induced effects, suggesting that TNF-α may directly act on RGCs to induce cell hyperexcitability through activating TNFR1. In RGCs acutely isolated from TNF-α-injected retinas, Na+ current densities were upregulated. Perfusing TNF-α in RGCs of normal rats mimicked this effect, and the activation curve of Na+ currents shifted toward hyperpolarization direction, which was mediated through p38 MAPK and STAT3 signaling pathways. Further analysis revealed that TNF-α selectively upregulated Nav1.6 subtype of Na+ currents in RGCs. Similar to observations in retinas of rats with COH, intravitreal injection of TNF-α upregulated the expression of Nav1.6 proteins in both total cell and membrane components, which was reversed by the NF-κB inhibitor BAY 11-7082. Inhibition of TNFR1 blocked TNF-α-induced RGC apoptosis. CONCLUSIONS TNF-α/TNFR1 signaling induces RGC hyperexcitability by selectively upregulating Nav1.6 Na+ channels, thus contributing to RGC apoptosis in glaucoma.
Collapse
Affiliation(s)
- Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Henan Provincial People’s Hospital, Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003 China
| | - Xinghuai Sun
- Department of Ophthalmology at Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200031 China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
3
|
Smith BJ, Côté PD, Tremblay F. Voltage-gated sodium channel-dependent retroaxonal modulation of photoreceptor function during post-natal development in mice. Dev Neurobiol 2021; 81:353-365. [PMID: 33248000 DOI: 10.1002/dneu.22793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022]
Abstract
Juvenile (postnatal day 16) mice lacking Nav 1.6 channels (null-mutant Scn8admu ) have reduced photoreceptor function, which is unexpected given that Nav channels have not been detected in mouse photoreceptors and do not contribute appreciably to photoreceptor function in adults. We demonstrate that acute block of Nav channels with intravitreal TTX in juvenile (P16) wild-type mice has no effect on photoreceptor function. However, reduced light activity by prolonged dark adaptation from P8 caused significant reduction in photoreceptor function at P16. Injecting TTX into the retrobulbar space at P16 to specifically block Nav channels in the optic nerve also caused a reduction in photoreceptor function comparable to that seen at P16 in null-mutant Scn8a mice. In both P16 null-mutant Scn8admu and retrobulbar TTX-injected wild-type mice, photoreceptor function was restored following intravitreal injection of the TrkB receptor agonist 7,8-dihydroxyflavone, linking Nav -dependent retrograde transport to TrkB-dependent neurotrophic factor production pathways as a modulatory influence of photoreceptor function at P16. We also found that in Scn8admu mice, photoreceptor function recovers by P22-25 despite more precarious general health of the animal. Retrobulbar injection of TTX in the wild type still reduced the photoreceptor response at this age but to a lesser extent, suggesting that Nav -dependent modulation of photoreceptor function is largely transient, peaking soon after eye opening. Together, these results suggest that the general photosensitivity of the retina is modulated following eye opening by retrograde transport through activity-dependent retinal ganglion cell axonal signaling targeting TrkB receptors.
Collapse
Affiliation(s)
- Benjamin J Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Patrice D Côté
- Department of Biology, Dalhousie University, Halifax, NS, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - François Tremblay
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,Izaak Walton Killam Health Centre, Halifax, NS, Canada
| |
Collapse
|
4
|
George AK, Homme RP, Stanisic D, Tyagi SC, Singh M. Protecting the aging eye with hydrogen sulfide. Can J Physiol Pharmacol 2021; 99:161-170. [PMID: 32721225 DOI: 10.1139/cjpp-2020-0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Research demonstrates that senescence is associated with tissue and organ dysfunction, and the eye is no exception. Sequelae arising from aging have been well defined as distinct clinical entities and vision impairment has significant psychosocial consequences. Retina and adjacent tissues like retinal pigmented epithelium and choroid are the key structures that are required for visual perception. Any structural and functional changes in retinal layers and blood retinal barrier could lead to age-related macular degeneration, diabetic retinopathy, and glaucoma. Further, there are significant oxygen gradients in the eye that can lead to excessive reactive oxygen species, resulting in endoplasmic reticulum and mitochondrial stress response. These radicals are source of functional and morphological impairment in retinal pigmented epithelium and retinal ganglion cells. Therefore, ocular diseases could be summarized as disturbance in the redox homeostasis. Hyperhomocysteinemia is a risk factor and causes vascular occlusive disease of the retina. Interestingly, hydrogen sulfide (H2S) has been proven to be an effective antioxidant agent, and it can help treat diseases by alleviating stress and inflammation. Concurrent glutamate excitotoxicity, endoplasmic reticulum stress, and microglia activation are also linked to stress; thus, H2S may offer additional interventional strategy. A refined understanding of the aging eye along with H2S biology and pharmacology may help guide newer therapies for the eye.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
5
|
Yan RS, Yang XL, Zhong YM, Zhang DQ. Spontaneous Depolarization-Induced Action Potentials of ON-Starburst Amacrine Cells during Cholinergic and Glutamatergic Retinal Waves. Cells 2020; 9:cells9122574. [PMID: 33271919 PMCID: PMC7759856 DOI: 10.3390/cells9122574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs are thought to be driven by glutamatergic retinal waves initiated by ON-bipolar cells. However, the properties and function of cholinergic and glutamatergic waves in ON- and OFF-SACs still remain poorly understood. In the present work, we performed whole-cell patch-clamp recordings and Ca2+ imaging from genetically labeled ON- and OFF-SACs in mouse flat-mount retinas. We found that both SAC subtypes exhibited spontaneous rhythmic depolarization during cholinergic and glutamatergic waves. Interestingly, ON-SACs had wave-induced action potentials (APs) in an age-dependent manner, but OFF-SACs did not. Simultaneous Ca2+ imaging and patch-clamp recordings demonstrated that, during a cholinergic wave, APs of an ON-SAC appeared to promote the dendritic release of acetylcholine onto neighboring ON- and OFF-SACs, which enhances their Ca2+ transients. These results advance the understanding of the cellular mechanisms underlying correlated spontaneous activity in the developing retina.
Collapse
Affiliation(s)
- Rong-Shan Yan
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
| | - Xiong-Li Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Correspondence: (Y.-M.Z.); (D.-Q.Z.); Tel.: +86-21-5423-7736 (Y.-M.Z.); +1-248-3702399 (D.-Q.Z.)
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
- Correspondence: (Y.-M.Z.); (D.-Q.Z.); Tel.: +86-21-5423-7736 (Y.-M.Z.); +1-248-3702399 (D.-Q.Z.)
| |
Collapse
|
6
|
Kuffler DP. Injury-Induced Effectors of Neuropathic Pain. Mol Neurobiol 2019; 57:51-66. [PMID: 31701439 DOI: 10.1007/s12035-019-01756-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Injuries typically result in the development of neuropathic pain, which decreases in parallel with wound healing. However, the pain may remain after the injury appears to have healed, which is generally associated with an ongoing underlying pro-inflammatory state. Injury induces many cells to release factors that contribute to the development of a pro-inflammatory state, which is considered an essential first step towards wound healing. However, pain elimination requires a transition of the injury site from pro- to anti-inflammatory. Therefore, developing techniques that eliminate chronic pain require an understanding of the cells resident at and recruited to injury sites, the factors they release, that promote a pro-inflammatory state, and promote the subsequent transition of that site to be anti-inflammatory. Although a relatively large number of cells, factors, and gene expression changes are involved in these processes, it may be possible to control a relatively small number of them leading to the reduction and elimination of chronic neuropathic pain. This first of two papers examines the roles of the most salient cells and mediators associated with the development and maintenance of chronic neuropathic pain. The following paper examines the cells and mediators involved in reducing and eliminating chronic neuropathic pain.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, 201 Blvd. del Valle, San Juan, PR, 00901, USA.
| |
Collapse
|
7
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Zhou Y, Pan P, Tan ZY, Ji YH. Voltage-gated Sodium Channels in Sensory Information Processing. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:273-278. [DOI: 10.2174/1871527317666180627114849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/04/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
Objective & Background:
Voltage-gated sodium channels (VGSCs) and potassium channels
are critical in the generation of action potentials in the nervous system. VGSCs and potassium
channels play important roles in the five fundamental senses of vision, audition, olfaction, taste and
touch. Dysfunctional VGSCs are associated with clinical sensory symptoms, such as hyperpselaphesia,
parosphresia, and so on.
Conclusion:
This short review highlights the recent advances in the study of VGSCs in sensory information
processing and discusses the potential role of VGSCs to serve as pharmacological targets for
the treatment of sensory system diseases.
Collapse
Affiliation(s)
- You Zhou
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Ping Pan
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| | - Zhi-Yong Tan
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Yong-Hua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Gospe SM, Travis AM, Kolesnikov AV, Klingeborn M, Wang L, Kefalov VJ, Arshavsky VY. Photoreceptors in a mouse model of Leigh syndrome are capable of normal light-evoked signaling. J Biol Chem 2019; 294:12432-12443. [PMID: 31248988 DOI: 10.1074/jbc.ra119.007945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/12/2019] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction is an important cause of heritable vision loss. Mutations affecting mitochondrial bioenergetics may lead to isolated vision loss or life-threatening systemic disease, depending on a mutation's severity. Primary optic nerve atrophy resulting from death of retinal ganglion cells is the most prominent ocular manifestation of mitochondrial disease. However, dysfunction of other retinal cell types has also been described, sometimes leading to a loss of photoreceptors and retinal pigment epithelium that manifests clinically as pigmentary retinopathy. A popular mouse model of mitochondrial disease that lacks NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4), a subunit of mitochondrial complex I, phenocopies many traits of the human disease Leigh syndrome, including the development of optic atrophy. It has also been reported that ndufs4 -/- mice display diminished light responses at the level of photoreceptors or bipolar cells. By conducting electroretinography (ERG) recordings in live ndufs4 -/- mice, we now demonstrate that this defect occurs at the level of retinal photoreceptors. We found that this deficit does not arise from retinal developmental anomalies, photoreceptor degeneration, or impaired regeneration of visual pigment. Strikingly, the impairment of ndufs4 -/- photoreceptor function was not observed in ex vivo ERG recordings from isolated retinas, indicating that photoreceptors with complex I deficiency are intrinsically capable of normal signaling. The difference in electrophysiological phenotypes in vivo and ex vivo suggests that the energy deprivation associated with severe mitochondrial impairment in the outer retina renders ndufs4 -/- photoreceptors unable to maintain the homeostatic conditions required to operate at their normal capacity.
Collapse
Affiliation(s)
- Sidney M Gospe
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710.
| | - Amanda M Travis
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710
| | - Luyu Wang
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710
| |
Collapse
|
10
|
George AK, Singh M, Homme RP, Majumder A, Sandhu HS, Tyagi SC. A hypothesis for treating inflammation and oxidative stress with hydrogen sulfide during age-related macular degeneration. Int J Ophthalmol 2018; 11:881-887. [PMID: 29862191 DOI: 10.18240/ijo.2018.05.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness and is becoming a global crisis since affected people will increase to 288 million by 2040. Genetics, age, diabetes, gender, obesity, hypertension, race, hyperopia, iris-color, smoking, sun-light and pyroptosis have varying roles in AMD, but oxidative stress-induced inflammation remains a significant driver of pathobiology. Eye is a unique organ as it contains a remarkable oxygen-gradient that generates reactive oxygen species (ROS) which upregulates inflammatory pathways. ROS becomes a source of functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells and retinal ganglion cells. Reports demonstrated that hydrogen sulfide (H2S) acts as a signaling molecule and that it may treat ailments. Therefore, we propose a novel hypothesis that H2S may restore homeostasis in the eyes thereby reducing damage caused by oxidative injury and inflammation. Since H2S has been shown to be a powerful antioxidant because of its free-radicals' inhibition properties in addition to its beneficial effects in age-related conditions, therefore, patients may benefit from H2S salubrious effects not only by minimizing their oxidant and inflammatory injuries to retina but also by lowering retinal glutamate excitotoxicity.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Rubens Petit Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Avisek Majumder
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Harpal S Sandhu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.,Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
11
|
Du J, Jin H, Yang L. Role of Hydrogen Sulfide in Retinal Diseases. Front Pharmacol 2017; 8:588. [PMID: 28900398 PMCID: PMC5581915 DOI: 10.3389/fphar.2017.00588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022] Open
Abstract
As the third gasotransmitter, hydrogen sulfide (H2S) plays a crucial role in the physiology and pathophysiology of many systems in the body, such as the nervous, cardiovascular, respiratory, and gastrointestinal systems. The mechanisms for its effects, including inhibiting ischemic injury, reducing oxidative stress damage, regulating apoptosis, and reducing the inflammation reaction in different systems, have not been fully understood. Recently, H2S and its endogenous synthesis pathway were found in the mammalian retina. This review describes the production and the metabolism of H2S and the evidence of a role of H2S in the retina physiology and in the different retinal diseases, including retinal degenerative diseases and vascular diseases. In the retina, H2S is generated in the presence of cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase from L-cysteine. The role of endogenous H2S and its physiologic effect in the retina are still elusive. However, strong evidence shows that retina-derived H2S might play protective or deleterious role in the pathogenesis of retinal diseases. For example, by regulating Ca2+ influx, H2S can protect retinal neurons against light-induced degeneration. H2S preconditioning can mediate the anti-apoptotic effect of retinal ganglion cells in retinal ischemia/reperfusion injury. Treatment with H2S in rats relieves diabetic retinopathy by suppressing oxidative stress and reducing inflammation. Further studies would greatly improve our understanding of the pathophysiologic mechanisms responsible for retinal diseases and the potential for the H2S-related therapy of the retinal diseases as well.
Collapse
Affiliation(s)
- Jiantong Du
- Department of Ophthalmology, Peking University First HospitalBeijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First HospitalBeijing, China
| | - Liu Yang
- Department of Ophthalmology, Peking University First HospitalBeijing, China
| |
Collapse
|