1
|
Paul SK, Saddam M, Tabassum N, Hasan M. Molecular dynamics simulation of wild and mutant proteasome subunit beta type 8 (PSMB8) protein: Implications for restoration of inflammation in experimental autoimmune encephalomyelitis pathogenesis. Heliyon 2025; 11:e41166. [PMID: 39802026 PMCID: PMC11719297 DOI: 10.1016/j.heliyon.2024.e41166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune and chronic disease in the brain and spinal cord. MS has inflammatory progression characterized by its hallmark inflammatory plaques. The histological and clinical characteristics of MS are shared by Experimental Autoimmune Encephalomyelitis (EAE). Genetic and environmental factors contribute to the development of MS. In EAE-MS disease, the level of proteasome subunit beta type-8 (PSMB8), encoded by the PSMB8 gene, is increased and regulates the inflammatory response in this disease. In humans, the Nakajo-Nishimura Syndrome is caused by a mutation in the gene PSMB8, a part of the immunoproteasome subunit. Therefore, special attention to wild and mutant (G210V) PSMB8 protein is imperative. In this study, we performed a 100 ns molecular dynamics (MD) simulation for wild-type PSMB8 and the mutant G210V. Then, we analyzed the fundamental and essential simulation results using another Google Colab system. The energy analysis ensures the structural deviation due to point mutation. The trajectory of the fundamental simulation (RMSD, RMSF, and Rg) describes that the G210V mutated protein is more flexible and less stable than the wild type. We observed the conformational changes due to mutation by analyzing the RMSD average linkage hierarchical clustering, total SASA, and SASA autocorrelation. The differences in the protein's overall motion and the atoms' precise location are identified by the principal component analysis, showing that the overall motion and location of the atoms are different. Our study provides valuable insights into the dynamics and structure of this protein, which can aid in further understanding its biological functions and potential implications for disease.
Collapse
Affiliation(s)
- Shamrat Kumar Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Md Saddam
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Nisat Tabassum
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Mahbub Hasan
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
2
|
Guo J, Wang C, Xiang Q, Feng Z, Fei L, Guo G, Shang Y, An Y, Ruan Z, Chen Y, Huang X. MS4A6D Promotes carrageenan-induced footpad swelling in mice through enhancing macrophages-derived inflammation. Mol Immunol 2024; 169:28-36. [PMID: 38493579 DOI: 10.1016/j.molimm.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Our previous work has demonstrated that the tetraspan MS4A6D interacts with MHC-II to be a complex that promotes macrophage activation (Mol Immunol. 2023; 160: 121-132), however, the exact role of MS4A6D in controlling macrophage-derived inflammation is still poorly understood. Here, we showed that Ms4a6d-deficient (Ms4a6d-/-) mice manifested a lower level of footpad swelling induced by subcutaneous injection of 100 μL of 1% Carrageenan (CGN, w/v) plus CaCl2 (50 mM), a phenomenon that is similar to Nlrp3-/-, Casp-1-/-, and Ilr1-/- mice. Mechanistically, F4/80+ macrophages infiltrated in the footpad tissues of the Ms4A6d-/- mice was significantly lower than that of the WT littermates, leading to dramatically lower levels of proIL-1β in vivo. Moreover, macrophages from Ms4a6d-/- mice also showed a dramatical reduction of Il-1β secretion following NLRP3 inflammsome activation in vitro. Interestingly, both Ms4a6dC237G mutant (Interruption of MS4A6D homodimerization) and Ms4a6dY241G mutant (deletion of heITAM motif) mice also significantly inhibited CGN-induced footpad swelling due to lower levels of Il-1β secretion in vivo. Collectively, MS4A6D aggravates CGN-induced footpad swelling in mice by enhancing NLRP3 inflammasome in macrophages and inducing the release of IL-1β, indicating that MS4A6D promotes the progression of acute inflammation.
Collapse
Affiliation(s)
- Jing Guo
- School of Medicine, Chongqing University, Chongqing 400033, China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China; Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qun Xiang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China; Chongqing International Institute for Immunology, Chongqing 400026, China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China; Chongqing International Institute for Immunology, Chongqing 400026, China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| | - Guoning Guo
- Department of Orthopedics, Kweichow Moutai Hospital, Renhuai, Zunyi City, Guizhou province 564500, China
| | - Yongjun Shang
- Department of Orthopedics, Kweichow Moutai Hospital, Renhuai, Zunyi City, Guizhou province 564500, China
| | - Yunfei An
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihua Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China.
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
3
|
Transcriptome Profiling in the Hippocampi of Mice with Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2022; 23:ijms232314829. [PMID: 36499161 PMCID: PMC9738199 DOI: 10.3390/ijms232314829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), approximates the key histopathological, clinical, and immunological features of MS. Hippocampal dysfunction in MS and EAE causes varying degrees of cognitive and emotional impairments and synaptic abnormalities. However, the molecular alterations underlying hippocampal dysfunctions in MS and EAE are still under investigation. The purpose of this study was to identify differentially expressed genes (DEGs) in the hippocampus of mice with EAE in order to ascertain potential genes associated with hippocampal dysfunction. Gene expression in the hippocampus was analyzed by RNA-sequencing and validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression analysis revealed 1202 DEGs; 1023 were upregulated and 179 were downregulated in the hippocampus of mice with EAE (p-value < 0.05 and fold change >1.5). Gene ontology (GO) analysis showed that the upregulated genes in the hippocampi of mice with EAE were associated with immune system processes, defense responses, immune responses, and regulation of immune responses, whereas the downregulated genes were related to learning or memory, behavior, and nervous system processes in the GO biological process. The expressions of hub genes from the search tool for the retrieval of interacting genes/proteins (STRING) analysis were validated by RT-qPCR. Additionally, gene set enrichment analysis showed that the upregulated genes in the hippocampus were associated with inflammatory responses: interferon-γ responses, allograft rejection, interferon-α responses, IL6_JAK_STAT3 signaling, inflammatory responses, complement, IL2_STAT5 signaling, TNF-α signaling via NF-κB, and apoptosis, whereas the downregulated genes were related to synaptic plasticity, dendritic development, and development of dendritic spine. This study characterized the transcriptome pattern in the hippocampi of mice with EAE and signaling pathways underpinning hippocampal dysfunction. However, further investigation is needed to determine the applicability of these findings from this rodent model to patients with MS. Collectively, these results indicate directions for further research to understand the mechanisms behind hippocampal dysfunction in EAE.
Collapse
|
4
|
Paul SK, Saddam M, Rahaman KA, Choi JG, Lee SS, Hasan M. Molecular modeling, molecular dynamics simulation, and essential dynamics analysis of grancalcin: An upregulated biomarker in experimental autoimmune encephalomyelitis mice. Heliyon 2022; 8:e11232. [PMID: 36340004 PMCID: PMC9626934 DOI: 10.1016/j.heliyon.2022.e11232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The experimental autoimmune encephalomyelitis mouse model is the most commonly used animal model, and it best represents multiple sclerosis. Grancalcin (GCA) was discovered to be upregulated in EAE mice. GCA comprises 220 amino acids that have been assigned the UniprotKB ID Q8VC88. It is a calcium-binding protein that helps neutrophils adhere to fibronectin and the formation of focal adhesions. However, the protein data bank does not contain the crystal structure of mouse GCA. The current study aims to analyze the structural and physicochemical properties of GCA. Mouse GCA showed a high percentage identity (87%) with the crystal structure of des (1-52) grancalcin with bound calcium (chain A) from Homo sapiens identified by its PDB id 1k94_A. Using the SWISS-MODEL server, we used 1k94_A as a template protein to model the mouse GCA protein. Compared to the template structure 1K94, three potential binding sites for calcium-binding have been proposed, ranging from 13 to 20, 80 to 91, and 109 to 120 amino acids. On an i5 personal computer with 8GB of RAM, GROMACS 2020.1 was utilized to run a 100 ns molecular dynamics (MD) simulation. RMSD, Rg, and RMSF analysis of an MD simulation trajectory indicate a stable and compact state throughout the simulation period of modeled proteins. We found that GCA is primarily alpha helical (Class 1), with eight alpha helices. The essential dynamics analysis captures PCA and SASA, culminating in the biological motions that correspond to the last 1000 frames. These findings will aid the development of potential inhibitors as well as the determination of binding pockets and residues for drug-like molecules.
Collapse
Affiliation(s)
- Shamrat Kumar Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Saddam
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Khandoker Asiqur Rahaman
- Division of Biomedical Science and Technology, KIST-School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Jong-Gu Choi
- Department of Oriental Biomedical Engineering, Sangji University, Wonju 26339, South Korea
| | - Sang-Suk Lee
- Department of Oriental Biomedical Engineering, Sangji University, Wonju 26339, South Korea
| | - Mahbub Hasan
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Department of Oriental Biomedical Engineering, Sangji University, Wonju 26339, South Korea
| |
Collapse
|
5
|
Ivshina MP, van ‘t Spijker HM, Jung S, Ponny SR, Schafer DP, Richter JD. CPEB1 regulates the inflammatory immune response, phagocytosis, and alternative polyadenylation in microglia. Glia 2022; 70:1850-1863. [PMID: 35635122 PMCID: PMC9378487 DOI: 10.1002/glia.24222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
Microglia are myeloid cells of the central nervous system that perform tasks essential for brain development, neural circuit homeostasis, and neural disease. Microglia react to inflammatory stimuli by upregulating inflammatory signaling through several different immune cell receptors such as the Toll-like receptor 4 (TLR4), which signals to several downstream effectors including transforming growth factor beta-activated kinase 1 (TAK1). Here, we show that TAK1 levels are regulated by CPEB1, a sequence-specific RNA binding protein that controls translation as well as RNA splicing and alternative poly(A) site selection in microglia. Lipopolysaccharide (LPS) binds the TLR4 receptor, which in CPEB1-deficient mice leads to elevated expression of ionized calcium binding adaptor molecule 1 (Iba1), a microglial protein that increases with inflammation, and increased levels of the cytokine IL6. This LPS-induced IL6 response is blocked by inhibitors of JNK, p38, ERK, NFκB, and TAK1. In contrast, phagocytosis, which is elevated in CPEB1-deficient microglia, is unaffected by LPS treatment or ERK inhibition, but is blocked by TAK1 inhibition. These data indicate that CPEB1 regulates microglial inflammatory responses and phagocytosis. RNA-seq indicates that these changes in inflammation and phagocytosis are accompanied by changes in RNA levels, splicing, and alternative poly(A) site selection. Thus, CPEB1 regulation of RNA expression plays a role in microglial function.
Collapse
Affiliation(s)
- Maria P. Ivshina
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Heleen M van ‘t Spijker
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Suna Jung
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sithara Raju Ponny
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Joel D. Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Sanchez JMS, DePaula-Silva AB, Libbey JE, Fujinami RS. Role of diet in regulating the gut microbiota and multiple sclerosis. Clin Immunol 2022; 235:108379. [PMID: 32156562 PMCID: PMC7483914 DOI: 10.1016/j.clim.2020.108379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Robert S. Fujinami
- Corresponding author at: University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA. (R.S. Fujinami)
| |
Collapse
|
7
|
Ucciferri CC, Dunn SE. Effect of puberty on the immune system: Relevance to multiple sclerosis. Front Pediatr 2022; 10:1059083. [PMID: 36533239 PMCID: PMC9755749 DOI: 10.3389/fped.2022.1059083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Puberty is a dynamic period marked by changing levels of sex hormones, the development of secondary sexual characteristics and reproductive maturity. This period has profound effects on various organ systems, including the immune system. The critical changes that occur in the immune system during pubertal onset have been shown to have implications for autoimmune conditions, including Multiple Sclerosis (MS). MS is rare prior to puberty but can manifest in children after puberty. This disease also has a clear female preponderance that only arises following pubertal onset, highlighting a potential role for sex hormones in autoimmunity. Early onset of puberty has also been shown to be a risk factor for MS. The purpose of this review is to overview the evidence that puberty regulates MS susceptibility and disease activity. Given that there is a paucity of studies that directly evaluate the effects of puberty on the immune system, we also discuss how the immune system is different in children and mice of pre- vs. post-pubertal ages and describe how gonadal hormones may regulate these immune mechanisms. We present evidence that puberty enhances the expression of co-stimulatory molecules and cytokine production by type 2 dendritic cells (DC2s) and plasmacytoid dendritic cells (pDCs), increases T helper 1 (Th1), Th17, and T follicular helper immunity, and promotes immunoglobulin (Ig)G antibody production. Overall, this review highlights how the immune system undergoes a functional maturation during puberty, which has the potential to explain the higher prevalence of MS and other autoimmune diseases seen in adolescence.
Collapse
Affiliation(s)
- Carmen C Ucciferri
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Shannon E Dunn
- Department of Immunology, The University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
8
|
Critical Role of Astrocyte NAD + Glycohydrolase in Myelin Injury and Regeneration. J Neurosci 2021; 41:8644-8667. [PMID: 34493542 DOI: 10.1523/jneurosci.2264-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Western-style diets cause disruptions in myelinating cells and astrocytes within the mouse CNS. Increased CD38 expression is present in the cuprizone and experimental autoimmune encephalomyelitis models of demyelination and CD38 is the main nicotinamide adenine dinucleotide (NAD+)-depleting enzyme in the CNS. Altered NAD+ metabolism is linked to both high fat consumption and multiple sclerosis (MS). Here, we identify increased CD38 expression in the male mouse spinal cord following chronic high fat consumption, after focal toxin [lysolecithin (LL)]-mediated demyelinating injury, and in reactive astrocytes within active MS lesions. We demonstrate that CD38 catalytically inactive mice are substantially protected from high fat-induced NAD+ depletion, oligodendrocyte loss, oxidative damage, and astrogliosis. A CD38 inhibitor, 78c, increased NAD+ and attenuated neuroinflammatory changes induced by saturated fat applied to astrocyte cultures. Conditioned media from saturated fat-exposed astrocytes applied to oligodendrocyte cultures impaired myelin protein production, suggesting astrocyte-driven indirect mechanisms of oligodendrogliopathy. In cerebellar organotypic slice cultures subject to LL-demyelination, saturated fat impaired signs of remyelination effects that were mitigated by concomitant 78c treatment. Significantly, oral 78c increased counts of oligodendrocytes and remyelinated axons after focal LL-induced spinal cord demyelination. Using a RiboTag approach, we identified a unique in vivo brain astrocyte translatome profile induced by 78c-mediated CD38 inhibition in mice, including decreased expression of proinflammatory astrocyte markers and increased growth factors. Our findings suggest that a high-fat diet impairs oligodendrocyte survival and differentiation through astrocyte-linked mechanisms mediated by the NAD+ase CD38 and highlights CD38 inhibitors as potential therapeutic candidates to improve myelin regeneration.SIGNIFICANCE STATEMENT Myelin disturbances and oligodendrocyte loss can leave axons vulnerable, leading to permanent neurologic deficits. The results of this study suggest that metabolic disturbances, triggered by consumption of a diet high in fat, promote oligodendrogliopathy and impair myelin regeneration through astrocyte-linked indirect nicotinamide adenine dinucleotide (NAD+)-dependent mechanisms. We demonstrate that restoring NAD+ levels via genetic inactivation of CD38 can overcome these effects. Moreover, we show that therapeutic inactivation of CD38 can enhance myelin regeneration. Together, these findings point to a new metabolic targeting strategy positioned to improve disease course in multiple sclerosis and other conditions in which the integrity of myelin is a key concern.
Collapse
|
9
|
Obesity and Multiple Sclerosis-A Multifaceted Association. J Clin Med 2021; 10:jcm10122689. [PMID: 34207197 PMCID: PMC8234028 DOI: 10.3390/jcm10122689] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Given the common elements in the pathophysiological theories that try to explain the appearance and evolution of obesity and multiple sclerosis, the association between the two pathologies has become an increasingly researched topic in recent years. On the one hand, there is the chronic demyelinating inflammation caused by the autoimmune cascade of multiple sclerosis, while on the other hand, according to the latest research, it has been shown that obesity shares an inflammatory component with most chronic diseases. METHODS The authors performed independent research of the available literature in the most important electronic databases (PubMed, Google Scholar, Embase, and Science Direct) in February 2021. After applying the exclusion criteria, the reviewers focused on the most relevant articles published during the last 10 years with respect to epidemiology and pathophysiology. RESULTS The data presented are a step forward in trying to elucidate the intricate relationship between obesity and MS, especially the causal relationship between childhood and adolescent obesity and MS, focusing on the epidemiological associations observed in the most relevant observational studies conducted in recent years. In the second part, the authors comment on the latest findings related to the pathophysiological mechanisms that may explain the correlations between obesity and multiple sclerosis, focusing also on the role of adipokines. CONCLUSIONS Based on available epidemiological data, obesity in early life appears to be strongly associated with a higher risk of MS development, independent of other risk factors. Although much research has been done on the pathophysiology of obesity, MS, their possible common mechanism, and the role of adipokines, further studies are needed in order to explain what remains unknown. No relevant data were found regarding the association between obesity, disability (high EDSS score), and mortality risk in MS patients. Thus, we consider that this topic should be elucidated in future research.
Collapse
|
10
|
Li J, Du W, Xu N, Tao T, Tang X, Huang L. RNA-seq analysis for exploring the pathogenesis of Retinitis pigmentosa in P23H knock-in mice. Ophthalmic Res 2021; 64:798-810. [PMID: 33971646 DOI: 10.1159/000515727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Jiarui Li
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China,
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China,
- College of Optometry, Peking University Health Science Center, Beijing, China,
| | - Wei Du
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Tianchang Tao
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xin Tang
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Eye diseases and Optometry Institute, Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
11
|
Le CT, Khuat LT, Caryotakis SE, Wang M, Dunai C, Nguyen AV, Vick LV, Stoffel KM, Blazar BR, Monjazeb AM, Murphy WJ, Soulika AM. PD-1 Blockade Reverses Obesity-Mediated T Cell Priming Impairment. Front Immunol 2020; 11:590568. [PMID: 33193426 PMCID: PMC7658608 DOI: 10.3389/fimmu.2020.590568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023] Open
Abstract
Despite obesity reaching pandemic proportions, its impact on antigen-specific T cell responses is still unclear. We have recently demonstrated that obesity results in increased expression of PD-1 on T cells, and checkpoint blockade targeting PD-1/PD-L1 surprisingly resulted in greater clinical efficacy in cancer therapy. Adverse events associated with this therapy center around autoimmune reactions. In this study, we examined the impact of obesity on T cell priming and on autoimmune pathogenesis using the mouse model experimental autoimmune encephalomyelitis (EAE), which is mediated by autoreactive myelin-specific T cells generated after immunization. We observed that diet-induced obese (DIO) mice had a markedly delayed EAE onset and developed milder clinical symptoms compared to mice on control diet (CD). This delay was associated with impaired generation of myelin-specific T cell numbers and concurrently correlated with increased PD-L1 upregulation on antigen-presenting cells in secondary lymphoid organs. PD-1 blockade during the priming stage of EAE restored disease onset and severity and increased numbers of pathogenic CD4+ T cells in the central nervous system (CNS) of DIO mice to similar levels to those of CD mice. Administration of anti-PD-1 after onset of clinical symptoms did not increase EAE pathogenesis demonstrating that initial priming is the critical juncture affected by obesity. These findings demonstrate that obesity impairs antigen-specific T cell priming, but this can be reversed with PD-1 blockade. Our results further suggest that PD-1 blockade may increase the risk of autoimmune toxicities, particularly in obesity.
Collapse
Affiliation(s)
- Catherine T Le
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Lam T Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Sofia E Caryotakis
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| | - Marilyn Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Alan V Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| | - Logan V Vick
- Department of Radiation-Oncology, School of Medicine, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
| | - Kevin M Stoffel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Bruce R Blazar
- Masonic Cancer Center, and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Arta M Monjazeb
- Department of Radiation-Oncology, School of Medicine, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Department of Internal Medicine, Division of Hematology and Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| |
Collapse
|
12
|
Dietary influence on central nervous system myelin production, injury, and regeneration. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165779. [DOI: 10.1016/j.bbadis.2020.165779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
|
13
|
Langley MR, Yoon H, Kim HN, Choi CI, Simon W, Kleppe L, Lanza IR, LeBrasseur NK, Matveyenko A, Scarisbrick IA. High fat diet consumption results in mitochondrial dysfunction, oxidative stress, and oligodendrocyte loss in the central nervous system. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165630. [PMID: 31816440 PMCID: PMC7982965 DOI: 10.1016/j.bbadis.2019.165630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome is a key risk factor and co-morbidity in multiple sclerosis (MS) and other neurological conditions, such that a better understanding of how a high fat diet contributes to oligodendrocyte loss and the capacity for myelin regeneration has the potential to highlight new treatment targets. Results demonstrate that modeling metabolic dysfunction in mice with chronic high fat diet (HFD) consumption promotes loss of oligodendrocyte progenitors across the brain and spinal cord. A number of transcriptomic and metabolomic changes in ER stress, mitochondrial dysfunction, and oxidative stress pathways in HFD-fed mouse spinal cords were also identified. Moreover, deficits in TCA cycle intermediates and mitochondrial respiration were observed in the chronic HFD spinal cord tissue. Oligodendrocytes are known to be particularly vulnerable to oxidative damage, and we observed increased markers of oxidative stress in both the brain and spinal cord of HFD-fed mice. We additionally identified that increased apoptotic cell death signaling is underway in oligodendrocytes from mice chronically fed a HFD. When cultured under high saturated fat conditions, oligodendrocytes decreased both mitochondrial function and differentiation. Overall, our findings show that HFD-related changes in metabolic regulators, decreased mitochondrial function, and oxidative stress contribute to a loss of myelinating cells. These studies identify HFD consumption as a key modifiable lifestyle factor for improved myelin integrity in the adult central nervous system and in addition new tractable metabolic targets for myelin protection and repair strategies.
Collapse
Affiliation(s)
- Monica R Langley
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyesook Yoon
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Ha Neui Kim
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Chan-Il Choi
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Whitney Simon
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Laurel Kleppe
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian R Lanza
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
14
|
Jiao Y, Li Y, Jiang P, Fu Z, Liu Y. High MAST2 mRNA expression and its role in diagnosis and prognosis of liver cancer. Sci Rep 2019; 9:19865. [PMID: 31882722 PMCID: PMC6934750 DOI: 10.1038/s41598-019-56476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Liver cancer is a high morbidity and low survival disease all over the world. Chromosomal instability is hallmark of liver cancer. Microtubule-associated serine and threonine kinase 2 (MAST2), as a microtubule associated protein, may involve in tumorous chromosomal instability and plays important roles in cell proliferation and survival. The role of MAST2 in liver cancer has not been well elucidated, which is the aim of our study. In this study, The Cancer Genome Atlas database was used to study the MAST2 mRNA expression in liver cancer, and Chi-squared tests were performed to test the correlation between clinical features and MAST2 expression. ROC curve was performed to examined the diagnostic capacity. The prognostic value of MAST2 in liver cancer was assessed through Kaplan-Meier curves as well as Cox analysis. Our results showed MAST2 was upregulated in liver cancer, and the area under the curve (AUC) was 0.925 and indicated powerful diagnostic capability. High MAST2 expression was associated with advanced clinical status such as histological type (p = 0.0059), histologic grade (p = 0.0142), stage (p = 0.0008), T classification (p = 0.0028), N classification (p = 0.0107), survival status (p = 0.0062), and poor prognosis of patients. Importantly, MAST2 was an independent risk factor for patients' prognosis after adjusting for other risk factors including stage, T classification, and residual tumor. In total, MAST2 is a potential diagnostic and prognostic biomarker of liver cancer.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Peiqiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China
| | - Zhuo Fu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| |
Collapse
|
15
|
Rahaman KA, Hasan M, Seo JE, Muresan AR, Song HJ, Min H, Son J, Lee J, Lee J, Kim B, Kwon OS. Severity of the autoimmune encephalomyelitis symptoms in mouse model by inhibition of LAT-1 transporters. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Healy LM, Yaqubi M, Ludwin S, Antel JP. Species differences in immune-mediated CNS tissue injury and repair: A (neuro)inflammatory topic. Glia 2019; 68:811-829. [PMID: 31724770 DOI: 10.1002/glia.23746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
Cells of the adaptive and innate immune systems in the brain parenchyma and in the meningeal spaces contribute to physiologic functions and disease states in the central nervous system (CNS). Animal studies have demonstrated the involvement of immune constituents, along with major histocompatibility complex (MHC) molecules, in neural development and rare genetic disorders (e.g., colony stimulating factor 1 receptor [CSF1R] deficiency). Genome wide association studies suggest a comparable role of the immune system in humans. Although the CNS can be the target of primary autoimmune disorders, no current experimental model captures all of the features of the most common human disorder placed in this category, multiple sclerosis (MS). Such features include spontaneous onset, environmental contributions, and a recurrent/progressive disease course in a genetically predisposed host. Numerous therapeutic interventions related to antigen and cytokine specific therapies have demonstrated effectiveness in experimental autoimmune encephalomyelitis (EAE), the animal model used to define principles underlying immune-mediated mechanisms in MS. Despite the similarities in the two diseases, most treatments used to ameliorate EAE have failed to translate to the human disease. As directly demonstrated in animal models and implicated by correlative studies in humans, adaptive and innate immune constituents within the systemic compartment and resident in the CNS contribute to the disease course of neurodegenerative and neurobehavioral disorders. The expanding knowledge of the molecular properties of glial cells provides increasing insights into species related variables. These variables affect glial bidirectional interactions with the immune system as well as their own production of "immune molecules" that mediate tissue injury and repair.
Collapse
Affiliation(s)
- Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Samuel Ludwin
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
17
|
Blossom SJ, Fernandes L, Bai S, Khare S, Gokulan K, Yuan Y, Dewall M, Simmen FA, Gilbert KM. Opposing Actions of Developmental Trichloroethylene and High-Fat Diet Coexposure on Markers of Lipogenesis and Inflammation in Autoimmune-Prone Mice. Toxicol Sci 2018; 164:313-327. [PMID: 29669109 PMCID: PMC6016708 DOI: 10.1093/toxsci/kfy091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trichloroethylene (TCE) is a widespread environmental pollutant associated with immunotoxicity and autoimmune disease. Previous studies showed that mice exposed from gestation through early life demonstrated CD4+ T cell alterations and autoimmune hepatitis. Determining the role of one environmental risk factor for any disease is complicated by the presence of other stressors. Based on its known effects, we hypothesized that developmental overnutrition in the form of a moderately high-fat diet (HFD) consisting of 40% kcal fat would exacerbate the immunotoxicity and autoimmune-promoting effects of low-level (<10 μg/kg/day) TCE in autoimmune-prone MRL+/+ mice over either stressor alone. When female offspring were evaluated at 27 weeks of age we found that a continuous exposure beginning at 4 weeks preconception in the dams until 10 weeks of age in offspring that TCE and HFD promoted unique effects that were often antagonistic. For a number of adiposity endpoints, TCE significantly reversed the expected effects of HFD on expression of genes involved in fatty acid synthesis/insulin resistance, as well as mean pathology scores of steatosis. Although none of the animals developed pathological signs of autoimmune hepatitis, the mice generated unique patterns of antiliver antibodies detected by western blotting attributable to TCE exposure. A majority of cytokines in liver, gut, and splenic CD4+ T cells were significantly altered by TCE, but not HFD. Levels of bacterial populations in the intestinal ileum were also altered by TCE exposure rather than HFD. Thus, in contrast to our expectations this coexposure did not promote synergistic effects.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Lorenzo Fernandes
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Shasha Bai
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas 72079
| | | | | | - Frank A Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kathleen M Gilbert
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
18
|
De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol 2018; 97:319-338. [DOI: 10.1016/j.ejcb.2018.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
|
19
|
Voytyuk I, Mueller SA, Herber J, Snellinx A, Moechars D, van Loo G, Lichtenthaler SF, De Strooper B. BACE2 distribution in major brain cell types and identification of novel substrates. Life Sci Alliance 2018; 1:e201800026. [PMID: 30456346 PMCID: PMC6238391 DOI: 10.26508/lsa.201800026] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/22/2023] Open
Abstract
β-Site APP-cleaving enzyme 1 (BACE1) inhibition is considered one of the most promising therapeutic strategies for Alzheimer's disease, but current BACE1 inhibitors also block BACE2. As the localization and function of BACE2 in the brain remain unknown, it is difficult to predict whether relevant side effects can be caused by off-target inhibition of BACE2 and whether it is important to generate BACE1-specific inhibitors. Here, we show that BACE2 is expressed in discrete subsets of neurons and glia throughout the adult mouse brain. We uncover four new substrates processed by BACE2 in cultured glia: vascular cell adhesion molecule 1, delta and notch-like epidermal growth factor-related receptor, fibroblast growth factor receptor 1, and plexin domain containing 2. Although these substrates were not prominently cleaved by BACE2 in healthy adult mice, proinflammatory TNF induced a drastic increase in BACE2-mediated shedding of vascular cell adhesion molecule 1 in CSF. Thus, although under steady-state conditions the effect of BACE2 cross-inhibition by BACE1-directed inhibitors is rather subtle, it is important to consider that side effects might become apparent under physiopathological conditions that induce TNF expression.
Collapse
Affiliation(s)
- Iryna Voytyuk
- Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Stephan A Mueller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Julia Herber
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - An Snellinx
- Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Dieder Moechars
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Geert van Loo
- Center for Inflammation Research, VIB, Gent, Belgium
- Department of Biomedical Molecular Biology, Gent University, Gent, Belgium
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Bart De Strooper
- Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Munich Cluster for Systems Neurology, Munich, Germany
- Dementia Research Institute, Institute of Neurology, University College London, London, UK
| |
Collapse
|
20
|
Cui C, Li Y, Gao H, Zhang H, Han J, Zhang D, Li Y, Zhou J, Lu C, Su X. Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS One 2017; 12:e0186216. [PMID: 29016689 PMCID: PMC5633193 DOI: 10.1371/journal.pone.0186216] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022] Open
Abstract
Previous studies confirmed that dietary supplements of fish oil and krill oil can alleviate obesity in mice, but the underlying mechanism remains unclear. This study aims to discern whether oil treatment change the structure of the gut microbiota during the obesity alleviation. The ICR mice received high-fat diet (HFD) continuously for 12 weeks after two weeks of acclimatization with a standard chow diet, and the mice fed with a standard chow diet were used as the control. In the groups that received HFD with oil supplementation, the weight gains were attenuated and the liver index, total cholesterol, triglyceride and low-density lipoprotein cholesterol were reduced stepwise compared with the HFD group, and the overall structure of the gut microbiota, which was modulated in the HFD group, was shifted toward the structure found in the control group. Moreover, eighty-two altered operational taxonomic units responsive to oil treatment were identified and nineteen of them differing in one or more parameters associated with obesity. In conclusion, this study confirmed the effect of oil treatment on obesity alleviation, as well as on the microbiota structure alterations. We proposed that further researches are needed to elucidate the causal relationship between obesity alleviation and gut microbiota modulation.
Collapse
Affiliation(s)
- Chenxi Cui
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yanyan Li
- Department of Food Science, Cornell University, New York, NY, United States of America
| | - Hang Gao
- The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyan Zhang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaojiao Han
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Dijun Zhang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Ye Li
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chenyang Lu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|