1
|
Giorgi A, Cer AT, Mohan S, Perreault MC. Excitatory and Inhibitory Descending Commissural Interneurons Differentially Integrate Supraspinal and Segmental Sensory Signals. J Neurosci 2023; 43:5014-5029. [PMID: 37286348 PMCID: PMC10324999 DOI: 10.1523/jneurosci.2015-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
The limited information about how descending inputs from the brain and sensory inputs from the periphery use spinal cord interneurons (INs) is a major barrier to understanding how these inputs may contribute to motor functions under normal and pathologic conditions. Commissural interneurons (CINs) are a heterogeneous population of spinal INs that has been implicated in crossed motor responses and bilateral motor coordination (ability to use the right and left side of the body in a coordinated manner) and, therefore, are likely involved in many types of movement (e.g., dynamic posture stabilization, jumping, kicking, walking). In this study, we incorporate mouse genetics, anatomy, electrophysiology, and single-cell calcium imaging to investigate how a subset of CINs, those with descending axons called dCINs, are recruited by descending reticulospinal and segmental sensory signals independently and in combination. We focus on two groups of dCINs set apart by their principal neurotransmitter (glutamate and GABA) and identified as VGluT2+ dCINs and GAD2+ dCINs. We show that VGluT2+ and GAD2+ dCINs are both extensively recruited by reticulospinal and sensory input alone but that VGluT2+ and GAD2+ dCINs integrate these inputs differently. Critically, we find that when recruitment depends on the combined action of reticulospinal and sensory inputs (subthreshold inputs), VGluT2+ dCINs, but not GAD2+ dCINs, are recruited. This difference in the integrative capacity of VGluT2+ and GAD2+ dCINs represents a circuit mechanism that the reticulospinal and segmental sensory systems may avail themselves of to regulate motor behaviors both normally and after injury.SIGNIFICANCE STATEMENT The way supraspinal and peripheral sensory inputs use spinal cord interneurons is fundamental to defining how motor functions are supported both in health and disease. This study, which focuses on dCINs, a heterogeneous population of spinal interneurons critical for crossed motor responses and bilateral motor coordination, shows that both glutamatergic (excitatory) and GABAergic (inhibitory) dCINs can be recruited by supraspinal (reticulospinal) or peripheral sensory inputs. Additionally, the study demonstrates that in conditions where the recruitment of dCINs depends on the combined action of reticulospinal and sensory inputs, only excitatory dCINs are recruited. The study uncovers a circuit mechanism that the reticulospinal and segmental sensory systems may avail themselves of to regulate motor behaviors both normally and after injury.
Collapse
Affiliation(s)
- Andrea Giorgi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Abishag Tluang Cer
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shruthi Mohan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
2
|
Shimizu-Okabe C, Okada S, Okamoto S, Masuzaki H, Takayama C. Specific Expression of KCC2 in the α Cells of Normal and Type 1 Diabetes Model Mouse Pancreatic Islets. Acta Histochem Cytochem 2022; 55:47-56. [PMID: 35444351 PMCID: PMC8913275 DOI: 10.1267/ahc.21-00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the mature brain; however, it acts excitatory during development. This difference in action depends on the intracellular chloride ion concentration, primarily regulated by potassium chloride co-transporter2 (KCC2). Sufficient KCC2 expression results in its inhibitory action. GABA is also abundant in pancreatic islets, where it acts differentially on the islet cells, and is involved in carbohydrate metabolism. However, the mechanisms underlying the differential action remain unknown. We performed immunohistochemistry for glutamic acid decarboxylase (GAD), a synthetic enzyme for GABA, and KCC2 in normal adult islets. GAD was co-localized with insulin in β cells, whereas KCC2 was expressed in glucagon-positive α cells. These results are in line with previous observations that GABA decreases glucagon release but increases insulin release, and suggest that GABA and insulin may work together in reducing blood glucose levels under hyperglycemia. Next, we examined the streptozotocin-induced type1 diabetes mellitus mouse model. GAD and insulin expression levels were markedly decreased. KCC2 was expressed in glucagon-positive cells, whereas insulin- and somatostatin-positive cells were KCC2-negative. These findings suggest that in diabetes model, reduced GABA release may cause disinhibition of glucagon release, resulting in increased blood sugar levels and the maintenance of hyperglycemic state.
Collapse
Affiliation(s)
| | - Shigeki Okada
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus
| | - Shiki Okamoto
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology School of Medicine, University of the Ryukyus
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology School of Medicine, University of the Ryukyus
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus
| |
Collapse
|
3
|
Laliberte AM, Farah C, Steiner KR, Tariq O, Bui TV. Changes in Sensorimotor Connectivity to dI3 Interneurons in Relation to the Postnatal Maturation of Grasping. Front Neural Circuits 2022; 15:768235. [PMID: 35153680 PMCID: PMC8828486 DOI: 10.3389/fncir.2021.768235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Primitive reflexes are evident shortly after birth. Many of these reflexes disappear during postnatal development as part of the maturation of motor control. This study investigates the changes of connectivity related to sensory integration by spinal dI3 interneurons during the time in which the palmar grasp reflex gradually disappears in postnatal mice pups. Our results reveal an increase in GAD65/67-labeled terminals to perisomatic Vglut1-labeled sensory inputs contacting cervical and lumbar dI3 interneurons between postnatal day 3 and day 25. In contrast, there were no changes in the number of perisomatic Vglut1-labeled sensory inputs to lumbar and cervical dI3 interneurons other than a decrease between postnatal day 15 and day 25. Changes in postsynaptic GAD65/67-labeled inputs to dI3 interneurons were inconsistent with a role in the sustained loss of the grasp reflex. These results suggest a possible link between the maturation of hand grasp during postnatal development and increased presynaptic inhibition of sensory inputs to dI3 interneurons.
Collapse
Affiliation(s)
- Alex M. Laliberte
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Carl Farah
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kyra R. Steiner
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Omar Tariq
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Tuan V. Bui
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Tuan V. Bui
| |
Collapse
|
4
|
Shimizu-Okabe C, Kobayashi S, Kim J, Kosaka Y, Sunagawa M, Okabe A, Takayama C. Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord. Int J Mol Sci 2022; 23:ijms23020834. [PMID: 35055019 PMCID: PMC8776010 DOI: 10.3390/ijms23020834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine coreleasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play critical roles in regulating pain, locomotive movement, and respiratory rhythms. In this study, we first describe GABAergic and glycinergic transmission and inhibitory networks, consisting of three types of terminals in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with a specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated, and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many GABAergic neurons convert to a coreleasing state. The coreleasing neurons and terminals remain in the dorsal horn, whereas many ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.
Collapse
Affiliation(s)
- Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, Korea;
| | - Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Masanobu Sunagawa
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Akihito Okabe
- Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan;
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
- Correspondence: ; Tel.: +81-98-895-1103 or +81-895-1405
| |
Collapse
|
5
|
Liu P, Zhang X, He X, Jiang Z, Wang Q, Lu Y. Spinal GABAergic neurons are under feed-forward inhibitory control driven by A δ and C fibers in Gad2 td-Tomato mice. Mol Pain 2021; 17:1744806921992620. [PMID: 33586515 PMCID: PMC7890716 DOI: 10.1177/1744806921992620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Spinal GABAergic neurons act as a critical modulator in sensory transmission like pain or itch. The monosynaptic or polysynaptic primary afferent inputs onto GABAergic neurons, along with other interneurons or projection neurons make up the direct and feed-forward inhibitory neural circuits. Previous research indicates that spinal GABAergic neurons mainly receive excitatory inputs from Aδ and C fibers. However, whether they are controlled by other inhibitory sending signals is not well understood. METHODS We applied a transgenic mouse line in which neurons co-expressed the GABA-synthesizing enzyme Gad65 and the enhanced red fluorescence (td-Tomato) to characterize the features of morphology and electrophysiology of GABAergic neurons. Patch-clamp whole cell recordings were used to record the evoked postsynaptic potentials of fluorescent neurons in spinal slices in response to dorsal root stimulation. RESULTS We demonstrated that GABAergic neurons not only received excitatory drive from peripheral Aβ, Aδ and C fibers, but also received inhibitory inputs driven by Aδ and C fibers. The evoked inhibitory postsynaptic potentials (eIPSPs) mediated by C fibers were mainly Glycinergic (66.7%) as well as GABAergic mixed with Glycinergic (33.3%), whereas the inhibition mediated by Aδ fibers was predominately both GABA and Glycine-dominant (57.1%), and the rest of which was purely Glycine-dominant (42.9%). CONCLUSION These results indicated that spinal GABAergic inhibitory neurons are under feedforward inhibitory control driven by primary C and Aδ fibers, suggesting that this feed-forward inhibitory pathway may play an important role in balancing the excitability of GABAergic neurons in spinal dorsal horn.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiao Zhang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaolan He
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenhua Jiang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qun Wang
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan Lu
- Department of Pain Medicine, Department of Anesthesiology & Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
6
|
Kosaka Y, Yafuso T, Shimizu-Okabe C, Kim J, Kobayashi S, Okura N, Ando H, Okabe A, Takayama C. Development and persistence of neuropathic pain through microglial activation and KCC2 decreasing after mouse tibial nerve injury. Brain Res 2020; 1733:146718. [PMID: 32045595 DOI: 10.1016/j.brainres.2020.146718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Gamma-amino butyric acid (GABA) is an inhibitory neurotransmitter in the mature brain, but is excitatory during development and after motor nerve injury. This difference in GABAergic action depends on the intracellular chloride ion concentration ([Cl-]i), primarily regulated by potassium chloride co-transporter 2 (KCC2). To reveal precise processes of the neuropathic pain through changes in GABAergic action, we prepared tibial nerve ligation and severance models using male mice, and examined temporal relationships amongst changes in (1) the mechanical withdrawal threshold in the sural nerve area, (2) localization of the molecules involved in GABAergic transmission and its upstream signaling in the dorsal horn, and (3) histology of the tibial nerve. In the ligation model, tibial nerve degeneration disappeared by day 56, but mechanical allodynia, reduced KCC2 localization, and increased microglia density remained until day 90. Microglia density was higher in the tibial zone than the sural zone before day 21, but this result was inverted after day 28. In contrast, in the severance model, all above changes were detected until day 28, but were simultaneously and significantly recovered by day 90. These results suggested that in male mice, allodynia may be caused by reduced GABAergic synaptic inhibition, resulting from elevated [Cl-]i after the reduction of KCC2 by activated microglia. Furthermore, our results suggested that factors from degenerating nerve terminals may diffuse into the sural zone, whereby they induced the development of allodynia in the sural nerve area, while other factors in the sural zone may mediate persistent allodynia through the same pathway.
Collapse
Affiliation(s)
- Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
7
|
Sala-Jarque J, Mesquida-Veny F, Badiola-Mateos M, Samitier J, Hervera A, del Río JA. Neuromuscular Activity Induces Paracrine Signaling and Triggers Axonal Regrowth after Injury in Microfluidic Lab-On-Chip Devices. Cells 2020; 9:cells9020302. [PMID: 32012727 PMCID: PMC7072511 DOI: 10.3390/cells9020302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
Peripheral nerve injuries, including motor neuron axonal injury, often lead to functional impairments. Current therapies are mostly limited to surgical intervention after lesion, yet these interventions have limited success in restoring functionality. Current activity-based therapies after axonal injuries are based on trial-error approaches in which the details of the underlying cellular and molecular processes are largely unknown. Here we show the effects of the modulation of both neuronal and muscular activity with optogenetic approaches to assess the regenerative capacity of cultured motor neuron (MN) after lesion in a compartmentalized microfluidic-assisted axotomy device. With increased neuronal activity, we observed an increase in the ratio of regrowing axons after injury in our peripheral-injury model. Moreover, increasing muscular activity induces the liberation of leukemia inhibitory factor and glial cell line-derived neurotrophic factor in a paracrine fashion that in turn triggers axonal regrowth of lesioned MN in our 3D hydrogel cultures. The relevance of our findings as well as the novel approaches used in this study could be useful not only after axotomy events but also in diseases affecting MN survival.
Collapse
Affiliation(s)
- Julia Sala-Jarque
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Francina Mesquida-Veny
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Maider Badiola-Mateos
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (A.H.); (J.A.d.R.)
| | - José Antonio del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (J.S.-J.); (F.M.-V.); (M.B.-M.); (J.S.)
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (A.H.); (J.A.d.R.)
| |
Collapse
|
8
|
Kobayashi S, Kim J, Yanagawa Y, Suzuki N, Saito H, Takayama C. Hyper-Formation of GABA and Glycine Co-Releasing Terminals in the Mouse Cerebellar Nuclei after Deprivation of GABAergic Inputs from Purkinje Cells. Neuroscience 2019; 426:88-100. [PMID: 31846755 DOI: 10.1016/j.neuroscience.2019.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 11/27/2022]
Abstract
GABA and glycine are inhibitory neurotransmitters. However, the mechanisms underlying the formation of GABAergic and glycinergic synapses remain unclear. The influence of GABAergic input deprivation on inhibitory terminal formation was investigated using Purkinje cell (PC)-specific vesicular GABA transporter (VGAT) knockout (L7-VGAT) mice, in which GABA release from PCs diminishes in an age-dependent manner. We compared the late development of GABAergic and glycinergic terminals in the cerebellar nucleus (CN) between control and L7-VGAT mice. In the control CN, the density of glutamate decarboxylase (GAD)-positive dots remained unchanged between postnatal 2 months (P2M) and 13 months (P13M), whereas glycine transporter 2 (GlyT2)-positive dots increased in density during this time frame. No difference in the density of GlyT2-positive dots was observed between control and L7-VGAT mice at P2M, but the density was significantly higher in the L7-VGAT fastigial nuclei (FN) than the control FN at P13M. When VGAT was absent from PC terminals, GlyT2-positive dots included GAD and VGAT and formed synapses. These results indicated that GABAergic terminals were formed by P2M, glycinergic terminals were actively formed after P2M, and more glycinergic terminals were formed in the L7-VGAT FN than in the control FN, suggesting that the increased glycinergic terminals may derive from interneurons within the FN and may also release GABA. These results suggest that the deprivation of GABAergic inputs from PCs may accelerate the formation of co-releasing terminals derived from interneurons and that the inhibitory terminal numbers and types may be regulated by the quantity of functional GABAergic inputs.
Collapse
Affiliation(s)
- Shiori Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511, Japan
| | - Noboru Suzuki
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, 2-174 Edobashi, Tsu, Mie 5148507, Japan
| | - Hiromitsu Saito
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, 2-174 Edobashi, Tsu, Mie 5148507, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
9
|
Waldvogel H, Biggins F, Singh A, Arasaratnam C, Faull R. Variable colocalisation of GABAA receptor subunits and glycine receptors on neurons in the human hypoglossal nucleus. J Chem Neuroanat 2019; 97:99-111. [DOI: 10.1016/j.jchemneu.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/28/2022]
|
10
|
Kobayashi M, Shimizu-Okabe C, Kim J, Kobayashi S, Matsushita M, Masuzaki H, Takayama C. Embryonic development of GABAergic terminals in the mouse hypothalamic nuclei involved in feeding behavior. Neurosci Res 2018; 134:39-48. [PMID: 29174921 DOI: 10.1016/j.neures.2017.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/18/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022]
Abstract
The inhibitory neurotransmitter gamma-amino butyric acid (GABA) plays important roles in energy balance and feeding behavior in the hypothalamus. To reveal the time course of GABAergic network formation, we examined the immunohistochemical localization of glutamic acid decarboxylase (GAD), a GABAergic neuron marker, vesicular GABA transporter (VGAT), a marker of inhibitory terminals, and K+-Cl--cotransporter2 (KCC2), which shifts GABA action from excitation to inhibition, in the developing mouse hypothalamus. GABAergic terminals, seen as GAD- and VGAT-positive dots, increased in density during embryonic development. Moreover, the onset of KCC2 localization was almost concomitant with GABAergic terminal formation, and KCC2-positive profiles increased in density during development. This suggested that after the formation of GABAergic terminals, GABAergic action may change to inhibition in the hypothalamus. This maturation appears to proceed as follows: the lateral hypothalamus (LH) matures first, followed by the paraventricular nucleus (PVN) by the time of birth, while the ventromedial hypothalamus (VMH) and the arcuate nucleus (Arc) are not fully mature at the time of birth. Our findings suggest that GABAergic networks in the "feeding center" (LH) and the "exit" (PVN) may mature before birth, while those in the "satiety center" (VMH) and "higher control center" (Arc) may mature after birth.
Collapse
Affiliation(s)
- Masato Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Shiori Kobayashi
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa, 9030215, Japan.
| |
Collapse
|
11
|
Iizuka M, Ikeda K, Onimaru H, Izumizaki M. Expressions of VGLUT1/2 in the inspiratory interneurons and GAD65/67 in the inspiratory Renshaw cells in the neonatal rat upper thoracic spinal cord. IBRO Rep 2018; 5:24-32. [PMID: 30135953 PMCID: PMC6095097 DOI: 10.1016/j.ibror.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/01/2018] [Indexed: 01/06/2023] Open
Abstract
About half of the inspiratory interneurons in the ventromedial area of the third thoracic segment are glutamatergic. These glutamatergic interneurons may enhance the inspiratory intercostal motor activity. Inspiratory Renshaw cells exist in the ventromedial area of the third thoracic segments. Most of these Renshaw cells are GABAergic, and cause a single spike followed by ventral root stimulation at neonatal stage.
Although the inspiratory spinal interneurons are thought to provide a major fraction of the excitatory synaptic potentials to the inspiratory intercostal motoneurons, this has not been confirmed. To clarify whether some inspiratory spinal interneurons are glutamatergic, we obtained whole-cell recordings from the ventromedial area of the third thoracic segments in an isolated brainstem-spinal cord preparation from neonatal rat, and the recorded cells were filled with Lucifer Yellow for later visualization. We then examined the existence of mRNA of vesicular glutamate transporters 1 and/or 2 (VGLUT1/2) by performing in situ hybridization. To discriminate the interneurons from motoneurons, we electrically stimulated the third thoracic ventral root on the recorded side, and the results verified that the antidromic spike or excitatory postsynaptic potential was not evoked. In cases in which the ventral root stimulation evoked depolarizing postsynaptic potentials, we examined the existence of glutamic acid decarboxylase 65 and/or 67 (GAD65/67) mRNA using a mixed probe to verify whether the cell was truly a Renshaw cell. The long diameter of the recorded interneurons was 22 ± 8 μm; the short diameter was 13 ± 4 μm. The interneurons' input resistance was 598 ± 274 MΩ. The Renshaw cells had similar sizes and input resistance. Six of 11 interneurons expressed VGLUT1/2, and four of five Renshaw cells expressed GAD65/67. Our findings suggest that approximately one-half of the inspiratory interneurons in the ventromedial area of the neonatal rat thoracic spinal cord are glutamatergic, and these interneurons might enhance the inspiratory intercostal motor activity.
Collapse
Affiliation(s)
- Makito Iizuka
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keiko Ikeda
- Department of Physiology, School of Medicine, International University of Health and Welfare, Narita Campus 4-3 Kozunomori, Narita-shi, Chiba, 286-8686, Japan.,Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
12
|
Krishnan VS, Shavlakadze T, Grounds MD, Hodgetts SI, Harvey AR. Age-related loss of VGLUT1 excitatory, but not VGAT inhibitory, immunoreactive terminals on motor neurons in spinal cords of old sarcopenic male mice. Biogerontology 2018; 19:385-399. [DOI: 10.1007/s10522-018-9765-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022]
|