1
|
NPD1 rapidly targets mitochondria-mediated apoptosis after acute injection protecting brain against ischemic injury. Exp Neurol 2020; 335:113495. [PMID: 33038416 DOI: 10.1016/j.expneurol.2020.113495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Mitochondria-related cell death pathways play a major role in ischemic brain injury. Thus, mitochondrial "protective" molecules could be considered for new therapeutic regimens. We recently reported that acute administration of docosahexaenoic acid (DHA) triglyceride lipid emulsion, immediately after hypoxic-ischemic (HI) insult, markedly attenuated brain infarct size. This was associated with an early change of DHA-derived specialized pro-resolving mediator (SPM) profiles. Specifically, DHA treatment induced a 50% increase of neuroprotectin D1 (NPD1) levels in ischemic brain. Based on these findings, we questioned if direct administration of NPD1 after HI injury also affords neuroprotection, and if so, by what mechanisms. Using HI insult to mimic ischemic stroke in neonatal mice, we observed that acute intraperitoneal injection of NPD1 immediately after HI injury prevented the expansion of the ischemic core by ~40% and improved coordination and motor abilities compared to the control group. At 7 days after HI injury, NPD1 treatment decreased ipsilateral hemisphere atrophy and preserved motor functions in wire-holding and bridge-crossing tests compared to control littermates. Brain mitochondria, isolated at 4 h after reperfusion from mice treated with NPD1, showed an increase in the capacity to buffer calcium after HI injury, as result of the preservation of mitochondrial membranes. Further, NPD1 induced a reduction of mitochondrial BAX translocation and oligomerization, attenuated cytochrome C release and decreased AIF nuclear translocation. To confirm whether NPD1 acts as BAX inhibitor, we evaluated NPD1 action co-administrated with a pro-apoptotic agent, staurosporine, using mouse embryonic fibroblasts as in vitro model of apoptosis. NPD1 exposure markedly decreased mitochondria-mediated apoptosis, blocking BAX translocation from cytosol to mitochondria and subsequently reducing caspase-3 activation. Our findings provide novel evidence that the neuroprotective action of NPD1 is elicited rapidly in the first few hours after ischemic injury and is associated with both preserved mitochondrial membrane structure and reduced BAX mitochondrial translocation and activation.
Collapse
|
2
|
WANG Y, LU Y. [Poly adenosine diphosphate-ribosylation and neurodegenerative diseases]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:100-106. [PMID: 32621411 PMCID: PMC8800811 DOI: 10.3785/j.issn.1008-9292.2020.02.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/02/2019] [Indexed: 06/11/2023]
Abstract
The morbidity of neurodegenerative diseases are increased in recent years, however, the treatment is limited. Poly ADP-ribosylation (PARylation) is a post-translational modification of protein that catalyzed by poly(ADP-ribose) polymerase (PARP). Studies have shown that PARylation is involved in many neurodegenerative diseases such as stroke, Parkinson's diseases, Alzheimer's disease, amyotrophic lateral sclerosis and so on, by affecting intracellular translocation of protein molecules, protein aggregation, protein activity, and cell death. PARP inhibitors have showed neuroprotective efficacy for neurodegenerative diseases in pre-clinical studies and phase Ⅰ clinical trials. To find new PARP inhibitors with more specific effects and specific pharmacokinetic characteristics will be the new direction for the treatment of neurodegenerative diseases. This paper reviews the recent progress on PARylation in neurodegenerative diseases.
Collapse
|
3
|
Mashimo M, Bu X, Aoyama K, Kato J, Ishiwata-Endo H, Stevens LA, Kasamatsu A, Wolfe LA, Toro C, Adams D, Markello T, Gahl WA, Moss J. PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells. JCI Insight 2019; 4:124519. [PMID: 30830864 DOI: 10.1172/jci.insight.124519] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Poly(ADP-ribosyl)ation refers to the covalent attachment of ADP-ribose to protein, generating branched, long chains of ADP-ribose moieties, known as poly(ADP-ribose) (PAR). Poly(ADP-ribose) polymerase 1 (PARP1) is the main polymerase and acceptor of PAR in response to DNA damage. Excessive intracellular PAR accumulation due to PARP1 activation leads cell death in a pathway known as parthanatos. PAR degradation is mainly controlled by poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribose-acceptor hydrolase 3 (ARH3). Our previous results demonstrated that ARH3 confers protection against hydrogen peroxide (H2O2) exposure, by lowering cytosolic and nuclear PAR levels and preventing apoptosis-inducing factor (AIF) nuclear translocation. We identified a family with an ARH3 gene mutation that resulted in a truncated, inactive protein. The 8-year-old proband exhibited a progressive neurodegeneration phenotype. In addition, parthanatos was observed in neurons of the patient's deceased sibling, and an older sibling exhibited a mild behavioral phenotype. Consistent with the previous findings, the patient's fibroblasts and ARH3-deficient mice were more sensitive, respectively, to H2O2 stress and cerebral ischemia/reperfusion-induced PAR accumulation and cell death. Further, PARP1 inhibition alleviated cell death and injury resulting from oxidative stress and ischemia/reperfusion. PARP1 inhibitors may attenuate the progression of neurodegeneration in affected patients with ARH3 deficiency.
Collapse
Affiliation(s)
- Masato Mashimo
- Pulmonary Branch, National Heart, Lung, and Blood Institute (NHLBI)
| | - Xiangning Bu
- Pulmonary Branch, National Heart, Lung, and Blood Institute (NHLBI)
| | - Kazumasa Aoyama
- Pulmonary Branch, National Heart, Lung, and Blood Institute (NHLBI)
| | - Jiro Kato
- Pulmonary Branch, National Heart, Lung, and Blood Institute (NHLBI)
| | | | - Linda A Stevens
- Pulmonary Branch, National Heart, Lung, and Blood Institute (NHLBI)
| | | | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and
| | - David Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and.,Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Thomas Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, and.,Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute (NHLBI)
| |
Collapse
|
4
|
Hribljan V, Salamon I, Đemaili A, Alić I, Mitrečić D. Transplantation of neural stem cells in the mouse model of ischemic brain stroke and expression of genes involved in programmed cell death. Croat Med J 2018; 59:203-212. [PMID: 30394012 PMCID: PMC6240818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2023] Open
Abstract
Aim To analyze how neural stem cells (NSC) transplantation in the stroke-affected mouse brain influences the expression of genes involved in apoptosis-inducing factor (AIF)-mediated cell death – apoptosis inducing factor mitochondria associated 1 (Aifm1 ), ring finger protein 146 (Rnf146, Iduna ), and cyclophilin A (CypA ); necroptosis –receptor interaction protein kinase 1 (Ripk1 ), Ripk3 , and mixed-lineage kinase domain-like protein (Mlkl ); and apoptosis – Caspase 3 (Casp3 ) and Casp8 . Methods Four groups of animals were used to obtain mRNA for quantitative reverse transcription polymerase chain reaction analysis: healthy animals (n = 3), animals with stroke (n = 4), animals with stroke treated by stem cell transplantation (n = 7), and animals with stroke treated by proliferation-supporting medium (n = 5). Ischemic brain injury was induced by transient left middle cerebral artery occlusion. Statistical analysis was performed using one-way analysis of variance with post-hoc Tukey test. Results NSC transplantation in the stroke-affected mouse brain significantly increased the expression of Iduna (P < 0.05), a gene-encoding protein with well-known protective effects on hypoxic damage, and significantly down-regulated the expression of damage-supportive genes, Casp3 (P < .01) and Aifm1 (P < 0.001). We were able to distinguish between the effect produced by stem cell transplantation (Iduna , Aifm1 , Ripk3 , Mlkl ) and the effect produced by supporting the tissue with proliferation-supporting medium (Ripk1 , Casp8 ). Conclusion Beside revealing some clearly positive effects of stem cells transplantation on the stroke-affected brain, our results suggest that the tissue response triggered by stem cells points toward the desired, regeneration-supporting levels of expression of a certain gene at a certain time point.
Collapse
Affiliation(s)
| | | | | | | | - Dinko Mitrečić
- Dinko Mitrečić, Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, Croatia,
| |
Collapse
|
5
|
Sheng Z, Xu Y, Wang S, Yuan Y, Huang T, Lu P. XPO1-mediated nuclear export of RNF146 protects from angiotensin II-induced endothelial cellular injury. Biochem Biophys Res Commun 2018; 503:1544-1549. [PMID: 30029878 DOI: 10.1016/j.bbrc.2018.07.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 01/03/2023]
Abstract
Endothelial cells death induced by angiotensin II (Ang II) plays a role in vascular injury. RNF146 is identified as a E3 ubiquitin ligase, which promotes cell survival under many types of stresses. However, the role of RNF146 in endothelial cellular injury is unknown. In human umbilical vein endothelial cells (HUVECs), Ang II treatment led to cell death by oxidative stress and promoted RNF146 to accumulate in nucleus in time dependent manner. Nuclear export signal was found in the RNF146's sequence. The interaction between RNF146 and XPO1 was further confirmed by co-immunoprecipitation. Inhibition of XPO1 with KPT-185 increased the level of RNF146 in nucleus. The expression of XPO1 was suppressed responding to Ang II treatment. Overexpression of XPO1 facilitated the nuclear shuttling of RNF146, which protected from Ang II-induced cell death. Moreover, overexpression of RNF146 in HUVECs reduced the cell death induced by Ang II, whereas inhibition of XPO1 abolished the protective effect of RNF146. Therefore, our data demonstrated that RNF146 was a protective factor against cell death induced by AngII in human endothelial cells, which was dependent on XPO1-mediated nuclear export.
Collapse
Affiliation(s)
- Zhiyong Sheng
- Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yun Xu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shu Wang
- Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Ying Yuan
- Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Tieqiu Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Peng Lu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
6
|
Berberine Ameliorates MCAO Induced Cerebral Ischemia/Reperfusion Injury via Activation of the BDNF–TrkB–PI3K/Akt Signaling Pathway. Neurochem Res 2018; 43:702-710. [DOI: 10.1007/s11064-018-2472-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
|
7
|
Thornton C, Jones A, Nair S, Aabdien A, Mallard C, Hagberg H. Mitochondrial dynamics, mitophagy and biogenesis in neonatal hypoxic-ischaemic brain injury. FEBS Lett 2017; 592:812-830. [PMID: 29265370 DOI: 10.1002/1873-3468.12943] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischaemic encephalopathy, resulting from asphyxia during birth, affects 2-3 in every 1000 term infants and depending on severity, brings about life-changing neurological consequences or death. This hypoxic-ischaemia (HI) results in a delayed neural energy failure during which the majority of brain injury occurs. Currently, there are limited treatment options and additional therapies are urgently required. Mitochondrial dysfunction acts as a focal point in injury development in the immature brain. Not only do mitochondria become permeabilised, but recent findings implicate perturbations in mitochondrial dynamics (fission, fusion), mitophagy and biogenesis. Mitoprotective therapies may therefore offer a new avenue of intervention for babies who suffer lifelong disabilities due to birth asphyxia.
Collapse
Affiliation(s)
- Claire Thornton
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Adam Jones
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Syam Nair
- Perinatal Center, Department of Physiology, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Afra Aabdien
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Carina Mallard
- Perinatal Center, Department of Physiology, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Henrik Hagberg
- Perinatal Brain Injury Group, Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK.,Perinatal Center, Department of Clinical Sciences & Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
8
|
Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell Death in the Developing Brain after Hypoxia-Ischemia. Front Cell Neurosci 2017; 11:248. [PMID: 28878624 PMCID: PMC5572386 DOI: 10.3389/fncel.2017.00248] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies.
Collapse
Affiliation(s)
- Claire Thornton
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Carina Mallard
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Syam Nair
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Masako Jinnai
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Department of Clinical Sciences and Physiology and Neuroscience, Perinatal Center, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
9
|
Belayev L, Mukherjee PK, Balaszczuk V, Calandria JM, Obenaus A, Khoutorova L, Hong SH, Bazan NG. Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke. Cell Death Differ 2017; 24:1091-1099. [PMID: 28430183 PMCID: PMC5442474 DOI: 10.1038/cdd.2017.55] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 12/31/2022] Open
Abstract
Ring finger protein 146 (Iduna) facilitates DNA repair and protects against cell death induced by NMDA receptor-mediated glutamate excitotoxicity or by cerebral ischemia. Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes cell survival under uncompensated oxidative stress (UOS). Our data demonstrate that NPD1 potently upregulates Iduna expression and provides remarkable cell protection against UOS. Iduna, which was increased by the lipid mediator, requires the presence of the poly(ADP-ribose) (PAR) sites. Moreover, astrocytes and neurons in the penumbra display an enhanced abundance of Iduna, followed by remarkable neurological protection when DHA, a precursor of NPD1, is systemically administered 1 h after 2 h of ischemic stroke. These findings provide a conceptual advancement for survival of neural cells undergoing challenges to homeostasis because a lipid mediator, made 'on demand,' modulates the abundance of a critically important protein for cell survival.
Collapse
Affiliation(s)
- Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Veronica Balaszczuk
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sung-Ha Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|