1
|
Kojima L, Seiriki K, Rokujo H, Nakazawa T, Kasai A, Hashimoto H. Optimization of AAV vectors for transactivator-regulated enhanced gene expression within targeted neuronal populations. iScience 2024; 27:109878. [PMID: 38799556 PMCID: PMC11126825 DOI: 10.1016/j.isci.2024.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/03/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Adeno-associated virus (AAV) vectors are potential tools for cell-type-selective gene delivery to the central nervous system. Although cell-type-specific enhancers and promoters have been identified for AAV systems, there is limited information regarding the effects of AAV genomic components on the selectivity and efficiency of gene expression. Here, we offer an alternative strategy to provide specific and efficient gene delivery to a targeted neuronal population by optimizing recombinant AAV genomic components, named TAREGET (TransActivator-Regulated Enhanced Gene Expression within Targeted neuronal populations). We established this strategy in oxytocinergic neurons and showed that the TAREGET enabled sufficient gene expression to label long-projecting axons in wild-type mice. Its application to other cell types, including serotonergic and dopaminergic neurons, was also demonstrated. These results demonstrate that optimization of AAV expression cassettes can improve the specificity and efficiency of cell-type-specific gene expression and that TAREGET can renew previously established cell-type-specific promoters with improved performance.
Collapse
Affiliation(s)
- Leo Kojima
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Rokujo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Kasai
- Systems Neuropharmacology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
- Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Fan CH, Tsai HC, Tsai YS, Wang HC, Lin YC, Chiang PH, Wu N, Chou MH, Ho YJ, Lin ZH, Yeh CK. Selective Activation of Cells by Piezoelectric Molybdenum Disulfide Nanosheets with Focused Ultrasound. ACS NANO 2023; 17:9140-9154. [PMID: 37163347 DOI: 10.1021/acsnano.2c12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An accurate method for neural stimulation within the brain could be very useful for treating brain circuit dysfunctions and neurological disorders. With the aim of developing such a method, this study investigated the use of piezoelectric molybdenum disulfide nanosheets (MoS2 NS) to remotely convert ultrasound energy into localized electrical stimulation in vitro and in vivo. The application of ultrasound to cells surrounding MoS2 NS required only a single pulse of 2 MHz ultrasound (400 kPa, 1,000,000 cycles, and 500 ms pulse duration) to elicit significant responses in 37.9 ± 7.4% of cells in terms of fluxes of calcium ions without detectable cellular damage. The proportion of responsive cells was mainly influenced by the acoustic pressure, number of ultrasound cycles, and concentration of MoS2 NS. Tests using appropriate blockers revealed that voltage-gated membrane channels were activated. In vivo data suggested that, with ultrasound stimulation, neurons closest to the MoS2 NS were 3-fold more likely to present c-Fos expression than cells far from the NS. The successful activation of neurons surrounding MoS2 NS suggests that this represents a method with high spatial precision for selectively modulating one or several targeted brain circuits.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701401, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701401, Taiwan
| | - Hong-Chieh Tsai
- Division of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Sheng Tsai
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Hsien-Chu Wang
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yu-Chun Lin
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Po-Han Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Min-Hwa Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| |
Collapse
|
3
|
Jimenez-Gonzalez M, Li R, Pomeranz LE, Alvarsson A, Marongiu R, Hampton RF, Kaplitt MG, Vasavada RC, Schwartz GJ, Stanley SA. Mapping and targeted viral activation of pancreatic nerves in mice reveal their roles in the regulation of glucose metabolism. Nat Biomed Eng 2022; 6:1298-1316. [PMID: 35835995 PMCID: PMC9669304 DOI: 10.1038/s41551-022-00909-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
A lack of comprehensive mapping of ganglionic inputs into the pancreas and of technology for the modulation of the activity of specific pancreatic nerves has hindered the study of how they regulate metabolic processes. Here we show that the pancreas-innervating neurons in sympathetic, parasympathetic and sensory ganglia can be mapped in detail by using tissue clearing and retrograde tracing (the tracing of neural connections from the synapse to the cell body), and that genetic payloads can be delivered via intrapancreatic injection to target sites in efferent pancreatic nerves in live mice through optimized adeno-associated viruses and neural-tissue-specific promoters. We also show that, in male mice, the targeted activation of parasympathetic cholinergic intrapancreatic ganglia and neurons doubled plasma-insulin levels and improved glucose tolerance, and that tolerance was impaired by stimulating pancreas-projecting sympathetic neurons. The ability to map the peripheral ganglia innervating the pancreas and to deliver transgenes to specific pancreas-projecting neurons will facilitate the examination of ganglionic inputs and the study of the roles of pancreatic efferent innervation in glucose metabolism.
Collapse
Affiliation(s)
- M Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L E Pomeranz
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA
| | - A Alvarsson
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - R C Vasavada
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - G J Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Björklund T, Davidsson M. Next-Generation Gene Therapy for Parkinson's Disease Using Engineered Viral Vectors. JOURNAL OF PARKINSON'S DISEASE 2022; 11:S209-S217. [PMID: 34366370 PMCID: PMC8543274 DOI: 10.3233/jpd-212674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
Recent technological and conceptual advances have resulted in a plethora of exciting novel engineered adeno associated viral (AAV) vector variants. They all have unique characteristics and abilities. This review summarizes the development and their potential in treating Parkinson's disease (PD). Clinical trials in PD have shown over the last decade that AAV is a safe and suitable vector for gene therapy but that it also is a vehicle that can benefit significantly from improvement in specificity and potency. This review provides a concise collection of the state-of-the-art for synthetic capsids and their utility in PD. We also summarize what therapeutical strategies may become feasible with novel engineered vectors, including genome editing and neuronal rejuvenation.
Collapse
Affiliation(s)
- Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Parmar M, Björklund A, Björklund T. In vivo conversion of dopamine neurons in mouse models of Parkinson's disease - a future approach for regenerative therapy? Curr Opin Genet Dev 2021; 70:76-82. [PMID: 34175529 DOI: 10.1016/j.gde.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Recent advances in cell reprogramming have made it possible to form new therapeutic cells within the body itself via a process called direct conversion or lineage reprogramming. A series of studies have shown that it is possible to reprogram resident glia into new neurons within the brain parenchyma. These studies opened up for the targeted attempts to achieve functional brain repair using in vivo conversion. Because of the relatively focal degeneration, Parkinson's Disease (PD) is an attractive target for both transplantation-based and in vivo conversion-based reparative approaches. Fetal cell transplants have provided proof-of-concept and stem cell-based therapies for PD are now on the verge of entering clinical trials. In the future, in vivo conversion may be an alternative to transplantation-based therapies.
Collapse
Affiliation(s)
- Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden.
| | - Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| |
Collapse
|
6
|
Le Cann K, Foerster A, Rösseler C, Erickson A, Hautvast P, Giesselmann S, Pensold D, Kurth I, Rothermel M, Mattis VB, Zimmer-Bensch G, von Hörsten S, Denecke B, Clarner T, Meents J, Lampert A. The difficulty to model Huntington's disease in vitro using striatal medium spiny neurons differentiated from human induced pluripotent stem cells. Sci Rep 2021; 11:6934. [PMID: 33767215 PMCID: PMC7994641 DOI: 10.1038/s41598-021-85656-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.
Collapse
Affiliation(s)
- Kim Le Cann
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Alec Foerster
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Corinna Rösseler
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Petra Hautvast
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | | | - Daniel Pensold
- Institute of Biology II, Division of Functional Epigenetics in the Animal Model, RWTH Aachen University, 52074, Aachen, Germany
| | - Ingo Kurth
- Intitute of Human Genetic, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Institute Für Biology II, Department Chemosensation, AG Neuromodulation, 52074, Aachen, Germany
| | - Virginia B Mattis
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Fujifilm Cellular Dynamics, Madison, WI, 53711, USA
| | - Geraldine Zimmer-Bensch
- Institute of Biology II, Division of Functional Epigenetics in the Animal Model, RWTH Aachen University, 52074, Aachen, Germany
| | - Stephan von Hörsten
- Intitute of Virology, Clinical and Molecular Virology, Animal Center of Preclinical Experiments (PETZ), 91054, Erlangen, Germany
| | | | - Tim Clarner
- Intitute for Neuroanatomy, MIT 1, 52074, Aachen, Germany
| | - Jannis Meents
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Multi Channel Systems MCS GmbH, Aspenhaustrasse 21, 72770, Reutlingen, Germany.
| | - Angelika Lampert
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
7
|
Wu CY, Huang RY, Liao EC, Lin YC, Ho YJ, Chang CW, Chan HL, Huang YZ, Hsieh TH, Fan CH, Yeh CK. A preliminary study of Parkinson's gene therapy via sono-magnetic sensing gene vector for conquering extra/intracellular barriers in mice. Brain Stimul 2020; 13:786-799. [PMID: 32289709 DOI: 10.1016/j.brs.2020.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Non-virus genetic treatment for Parkinson's disease (PD) via plasmid glial cell-line derived neurotrophic factor (pGDNF) has shown potential for repairing damaged dopaminergic neurons. However, development of this gene therapy is largely hampered by the insufficient transfection efficiency as a result of the cell membrane, lysosome, and cytoskeleton meshwork. METHODS In this study, we propose the use of polyethylenimine (PEI)-superparamagnetic iron oxide-plasmid DNA (pDNA)-loaded microbubbles (PSp-MBs) in conjunction with focused ultrasound (FUS) and two-step magnetic navigation to provide cavitation, proton sponge effect and magnetic effects to increase the efficiency of gene delivery. RESULTS The gene transfection rate in the proposed system was 2.2-fold higher than that of the commercial agent (TransIT®-LT1). The transfection rate could be boosted ∼11%, ∼10%, and 6% by cavitation-magnetic hybrid enhanced cell membrane permeabilization, proton sponge effect, and magnetic-assisted cytoskeleton-reorganization, respectively. In vivo data suggested that effective gene delivery with this system results in a 3.2-fold increase in recovery of dopaminergic neurons and a 3.9-fold improvement in the motor behavior when compared to untreated genetic PD mice. CONCLUSIONS We proposed that this novel FUS-magnetic hybrid gene delivery platform could be integrated with a variety of therapeutic genes for treating neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Chun-Yao Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Rih-Yang Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; Department of Molecular Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Department of Medical Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Healthy Aging Research Center and Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy & Neuroscience Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
8
|
Wu CY, Fan CH, Chiu NH, Ho YJ, Lin YC, Yeh CK. Targeted delivery of engineered auditory sensing protein for ultrasound neuromodulation in the brain. Am J Cancer Res 2020; 10:3546-3561. [PMID: 32206107 PMCID: PMC7069068 DOI: 10.7150/thno.39786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/08/2020] [Indexed: 12/26/2022] Open
Abstract
Sonogenetics is a promising approach for in vivo neuromodulation using ultrasound (US) to non-invasively stimulate cells in deep tissue. However, sonogenetics requires accurate transduction of US-responsive proteins into target cells. Here, we introduce a non-invasive and non-viral approach for intracerebral gene delivery. This approach utilizes temporary ultrasonic disruption of the blood-brain barrier (BBB) to transfect neurons at specific sites in the brain via DNA that encodes engineered US-responsive protein (murine Prestin (N7T, N308S))-loaded microbubbles (pPrestin-MBs). Prestin is a transmembrane protein that exists in the mammalian auditory system and functions as an electromechanical transducer. We further improved the US sensitivity of Prestin by introducing specific amino acid substitutions that frequently occur in sonar species into the mouse Prestin protein. We demonstrated this concept in mice using US with pPrestin-MBs to non-invasively modify and activate neurons within the brain for spatiotemporal neuromodulation. Method: MBs composed of cationic phospholipid and C3F8 loaded with mouse Prestin plasmid (pPrestin) via electrostatic interactions. The mean concentration and size of the pPrestin-MBs were (16.0 ± 0.2) × 109 MBs/mL and 1.1 ± 0.2 μm, respectively. SH-SY5Y neuron-like cells and C57BL mice were used in this study. We evaluated the gene transfection efficiency and BBB-opening region resulting from pPrestin-MBs with 1-MHz US (pressure = 0.1-0.5 MPa, cycle = 50-10000, pulse repetition frequency (PRF): 0.5-5 Hz, sonication time = 60 s) using green fluorescence protein (Venus) and Evans blue staining. Results: The maximum pPrestin expression with the highest cell viability occurred at a pressure of 0.5 MPa, cycle number of 5000, and PRF of 1 Hz. The cellular transfection rate with pPrestin-MBs and US was 20.2 ± 2.5%, which was 1.5-fold higher than that of commercial transfection agents (LT-1). In vivo data suggested that the most profound expression of pPrestin occurred at 2 days after performing pPrestin-MBs with US (0.5 MPa, 240 s sonication time). In addition, no server erythrocyte extravasations and apoptosis cells were observed at US-sonicated region. We further found that with 0.5-MHz US stimulation, cells with Prestin expression were 6-fold more likely to exhibit c-Fos staining than cells without Prestin expression. Conclusion: Successful activation of Prestin-expressing neurons suggests that this technology provides non-invasive and spatially precise selective modulation of one or multiple specific brain regions.
Collapse
|
9
|
You Y, Botros MB, Enoo AAV, Bockmiller A, Herron S, Delpech JC, Ikezu T. Cre-inducible Adeno Associated Virus-mediated Expression of P301L Mutant Tau Causes Motor Deficits and Neuronal Degeneration in the Substantia Nigra. Neuroscience 2019; 422:65-74. [PMID: 31689387 DOI: 10.1016/j.neuroscience.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/04/2023]
Abstract
Accumulation of microtubule associated protein tau in the substantia nigra is associated with several tauopathies including progressive supranuclear palsy (PSP). A number of studies have used mutant tau transgenic mouse model to mimic the neuropathology of tauopathies and disease phenotypes. However, tau expression in these transgenic mouse models is not specific to brain subregions, and may not recapitulate subcortical disease phenotypes of PSP. It is necessary to develop a new disease modeling system for cell and region-specific expression of pathogenic tau for modeling PSP in mouse brain. In this study, we developed a novel strategy to express P301L mutant tau to the dopaminergic neurons of substantia nigra by coupling tyrosine hydroxylase promoter Cre-driver mice with a Cre-inducible adeno-associated virus (iAAV). The results showed that P301L mutant tau was successfully transduced in the dopaminergic neurons of the substantia nigra at the presence of Cre recombinase and iAAV. Furthermore, the iAAV-tau-injected mice displayed severe motor deficits including impaired movement ability, motor balance, and motor coordination compared to the control groups over a short time-course. Immunochemical analysis revealed that tau gene transfer significantly resulted in loss of tyrosine hydroxylase-positive dopaminergic neurons and elevated phosphorylated tau in the substantia nigra. Our development of dopaminergic neuron-specific neurodegenerative mouse model with tauopathy will be helpful for studying the underlying mechanism of pathological protein propagation as well as development of new therapies.
Collapse
Affiliation(s)
- Yang You
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Mina B Botros
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Alicia A Van Enoo
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Aaron Bockmiller
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Shawn Herron
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Jean Christophe Delpech
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Tsuneya Ikezu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA.
| |
Collapse
|
10
|
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective. Molecules 2019; 24:molecules24142640. [PMID: 31330843 PMCID: PMC6680436 DOI: 10.3390/molecules24142640] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered.
Collapse
|
11
|
Grames MS, Dayton RD, Jackson KL, Richard AD, Lu X, Klein RL. Cre‐dependent AAV vectors for highly targeted expression of disease‐related proteins and neurodegeneration in the substantia nigra. FASEB J 2018. [DOI: 10.1096/fj.201701529rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mychal S. Grames
- Department of Pharmacology, Toxicology, and NeuroscienceLouisiana State University (LSU) Health ShreveportShreveportLouisianaUSA
| | - Robert D. Dayton
- Department of Pharmacology, Toxicology, and NeuroscienceLouisiana State University (LSU) Health ShreveportShreveportLouisianaUSA
| | - Kasey L. Jackson
- Department of Pharmacology, Toxicology, and NeuroscienceLouisiana State University (LSU) Health ShreveportShreveportLouisianaUSA
| | - Adam D. Richard
- Department of Pharmacology, Toxicology, and NeuroscienceLouisiana State University (LSU) Health ShreveportShreveportLouisianaUSA
| | - Xiaohong Lu
- Department of Pharmacology, Toxicology, and NeuroscienceLouisiana State University (LSU) Health ShreveportShreveportLouisianaUSA
| | - Ronald L. Klein
- Department of Pharmacology, Toxicology, and NeuroscienceLouisiana State University (LSU) Health ShreveportShreveportLouisianaUSA
| |
Collapse
|
12
|
Apigenin as neuroprotective agent: Of mice and men. Pharmacol Res 2018; 128:359-365. [DOI: 10.1016/j.phrs.2017.10.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/05/2023]
|