1
|
Cropper EC, Perkins M, Jing J. Persistent modulatory actions and task switching in the feeding network of Aplysia. Curr Opin Neurobiol 2023; 82:102775. [PMID: 37625344 PMCID: PMC10530010 DOI: 10.1016/j.conb.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The activity of multifunctional networks is configured by neuromodulators that exert persistent effects. This raises a question, does this impact the ability of a network to switch from one type of activity to another? We review studies that have addressed this question in the Aplysia feeding circuit. Task switching in this system occurs "asymmetrically." When there is a switch from egestion to ingestion neuromodulation impedes switching (creates a "negative bias"). When there is a switch from ingestion to egestion the biasing is "positive." Ingestion promotes subsequent egestion. We contrast mechanisms responsible for the two types of biasing and show that the observed asymmetry is a consequence of the fact that there is more than one set of egestive circuit parameters.
Collapse
Affiliation(s)
- Elizabeth C Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Matthew Perkins
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jian Jing
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Musienko PE, Lyalka VF, Gorskii OV, Zelenin PV, Deliagina TG. Activity of Spinal Interneurons during Forward and Backward Locomotion. J Neurosci 2022; 42:3570-3586. [PMID: 35296546 PMCID: PMC9053856 DOI: 10.1523/jneurosci.1884-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 11/21/2022] Open
Abstract
Higher vertebrates are capable not only of forward but also backward and sideways locomotion. Also, single steps in different directions are generated for postural corrections. While the networks responsible for the control of forward walking (FW) have been studied in considerable detail, the networks controlling steps in other directions are mostly unknown. Here, to characterize the operation of the spinal locomotor network during FW and backward walking (BW), we recorded the activity of individual spinal interneurons from L4 to L6 during both FW and BW evoked by epidural stimulation (ES) of the spinal cord at L5-L6 in decerebrate cats of either sex. Three groups of neurons were revealed. Group 1 (45%) had a similar phase of modulation during both FW and BW. Group 2 (27%) changed the phase of modulation in the locomotor cycle depending on the direction of locomotion. Group 3 neurons were modulated during FW only (Group 3a, 21%) or during BW only (Group 3b, 7%). We suggest that Group 1 neurons belong to the network generating the vertical component of steps (the limb elevation and lowering) because it should operate similarly during locomotion in any direction, while Groups 2 and 3 neurons belong to the networks controlling the direction of stepping. Results of this study provide new insights into the organization of the spinal locomotor circuits, advance our understanding of ES therapeutic effects, and can potentially be used for the development of novel strategies for recuperation of impaired balance control, which requires the generation of corrective steps in different directions.SIGNIFICANCE STATEMENT Animals and humans can perform locomotion in different directions in relation to the body axis (forward, backward, sideways). While the networks that control forward walking have been studied in considerable detail, the networks controlling steps in other directions are unknown. Here, by recording the activity of the same spinal neurons during forward and backward walking, we revealed three groups of neurons forming, respectively, the network operating similarly during stepping in different directions, the network changing its operation with a change in the direction of stepping, and the network operating only during locomotion in a specific direction. These networks presumably control different aspects of the step. The obtained results provide new insights into the organization of the spinal locomotor networks.
Collapse
Affiliation(s)
- Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Motor and Visceral Functions Neuromodulation, Pavlov Institute of Physiology, St. Petersburg 199034, Russia
- Sirius National Technical University, Sochi 354340, Russia
| | - Vladimir F Lyalka
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Oleg V Gorskii
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Motor and Visceral Functions Neuromodulation, Pavlov Institute of Physiology, St. Petersburg 199034, Russia
| | - Pavel V Zelenin
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Tatiana G Deliagina
- Department of Neuroscience, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
3
|
Murray AJ, Croce K, Belton T, Akay T, Jessell TM. Balance Control Mediated by Vestibular Circuits Directing Limb Extension or Antagonist Muscle Co-activation. Cell Rep 2019; 22:1325-1338. [PMID: 29386118 DOI: 10.1016/j.celrep.2018.01.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/29/2017] [Accepted: 01/03/2018] [Indexed: 11/28/2022] Open
Abstract
Maintaining balance after an external perturbation requires modification of ongoing motor plans and the selection of contextually appropriate muscle activation patterns that respect body and limb position. We have used the vestibular system to generate sensory-evoked transitions in motor programming. In the face of a rapid balance perturbation, the lateral vestibular nucleus (LVN) generates exclusive extensor muscle activation and selective early extension of the hindlimb, followed by the co-activation of extensor and flexor muscle groups. The temporal separation in EMG response to balance perturbation reflects two distinct cell types within the LVN that generate different phases of this motor program. Initially, an LVNextensor population directs an extension movement that reflects connections with extensor, but not flexor, motor neurons. A distinct LVNco-activation population initiates muscle co-activation via the pontine reticular nucleus. Thus, distinct circuits within the LVN generate different elements of a motor program involved in the maintenance of balance.
Collapse
Affiliation(s)
- Andrew J Murray
- Zuckerman Mind Brain Behavior Institute, Kavli Institute of Brain Science, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, and Howard Hughes Medical Institute, Columbia University, New York, NY, USA; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| | - Katherine Croce
- Zuckerman Mind Brain Behavior Institute, Kavli Institute of Brain Science, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, and Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Timothy Belton
- Zuckerman Mind Brain Behavior Institute, Kavli Institute of Brain Science, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, and Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Turgay Akay
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Thomas M Jessell
- Zuckerman Mind Brain Behavior Institute, Kavli Institute of Brain Science, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, and Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Deliagina TG, Musienko PE, Zelenin PV. Nervous mechanisms of locomotion in different directions. CURRENT OPINION IN PHYSIOLOGY 2018; 8:7-13. [PMID: 31468024 DOI: 10.1016/j.cophys.2018.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locomotion, that is active propulsive movement of the body in space, is a vital motor function. Intensive studies of the main, for the majority of living beings, form of locomotion, forward locomotion, have revealed essential features of the organization and operation of underlying neural mechanisms. However, animals and humans are capable to locomote not only forward but also in other directions in relation to the body axis, e.g. backward, sideways, etc. Single steps in different directions are also used for postural corrections during locomotion and during standing. Recent studies of mechanisms underlying control of locomotion in different directions have greatly expanded our knowledge about locomotor system and can contribute to improvement of rehabilitation strategies aimed at restoration of locomotion and balance control in patients. This review outlines recent advances in the studies of locomotion in different directions in lower and higher vertebrates, with special attention given to the neuronal locomotor mechanisms.
Collapse
Affiliation(s)
- Tatiana G Deliagina
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Pavel E Musienko
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Pavlov Institute of Physiology, 199034 St. Petersburg, Russia
- Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the RF, 197758 St. Petersburg, Russia
| | - Pavel V Zelenin
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| |
Collapse
|
5
|
Distribution of Spinal Neuronal Networks Controlling Forward and Backward Locomotion. J Neurosci 2018; 38:4695-4707. [PMID: 29678875 DOI: 10.1523/jneurosci.2951-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023] Open
Abstract
Higher vertebrates, including humans, are capable not only of forward (FW) locomotion but also of walking in other directions relative to the body axis [backward (BW), sideways, etc.]. Although the neural mechanisms responsible for controlling FW locomotion have been studied in considerable detail, the mechanisms controlling steps in other directions are mostly unknown. The aim of the present study was to investigate the distribution of spinal neuronal networks controlling FW and BW locomotion. First, we applied electrical epidural stimulation (ES) to different segments of the spinal cord from L2 to S2 to reveal zones triggering FW and BW locomotion in decerebrate cats of either sex. Second, to determine the location of spinal neurons activated during FW and BW locomotion, we used c-Fos immunostaining. We found that the neuronal networks responsible for FW locomotion were distributed broadly in the lumbosacral spinal cord and could be activated by ES of any segment from L3 to S2. By contrast, networks generating BW locomotion were activated by ES of a limited zone from the caudal part of L5 to the caudal part of L7. In the intermediate part of the gray matter within this zone, a significantly higher number of c-Fos-positive interneurons was revealed in BW-stepping cats compared with FW-stepping cats. We suggest that this region of the spinal cord contains the network that determines the BW direction of locomotion.SIGNIFICANCE STATEMENT Sequential and single steps in various directions relative to the body axis [forward (FW), backward (BW), sideways, etc.] are used during locomotion and to correct for perturbations, respectively. The mechanisms controlling step direction are unknown. In the present study, for the first time we compared the distributions of spinal neuronal networks controlling FW and BW locomotion. Using a marker to visualize active neurons, we demonstrated that in the intermediate part of the gray matter within L6 and L7 spinal segments, significantly more neurons were activated during BW locomotion than during FW locomotion. We suggest that the network determining the BW direction of stepping is located in this area.
Collapse
|