1
|
Hraoui G, Grondin M, Breton S, Averill-Bates DA. Nrf2 mediates mitochondrial and NADPH oxidase-derived ROS during mild heat stress at 40 °C. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119897. [PMID: 39800224 DOI: 10.1016/j.bbamcr.2025.119897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Hyperthermia is an adjuvant to chemotherapy and radiotherapy and sensitizes tumors to these treatments. However, repeated heat treatments result in acquisition of heat resistance (thermotolerance) in tumors. Thermotolerance is an adaptive survival response that appears to be mediated by upregulated cellular defenses. However, the mechanisms of activation remain unclear. When HeLa cells were exposed to mild heat shock at 40 °C for 3 h, levels of superoxide and peroxides increased. Cells were treated with mitochondrial antioxidant MitoQ and NADPH oxidase (NOX) inhibitor apocynin to characterize the contribution of these two sources to the total reactive oxygen species (ROS) pool. We found that both mitochondria and NOX are sources of ROS during mild heat shock at 40 °C. Heat-derived ROS are thought to activate the adaptive survival response at 40 °C. Nrf2, the master regulator of the cellular antioxidant response, is thought to play a pivotal role in establishing the adaptive survival response. Nrf2 was overexpressed or knocked down to assess its role. Moreover, Nrf2 levels correlate with the cellular redox state, and do so via scavenging of mitochondria- and NOX-derived ROS. Knockdown of Nrf2 markedly increased levels of ROS that were scavenged by either apocynin or MitoQ. Finally, critical defense proteins such as DJ-1 and PGAM5 seemed to require a two-key activation system mediated by Nrf2 and mitochondrial ROS. Our study characterized mitochondrial and NOX-derived ROS as being essential in activating cellular defenses alongside Nrf2 and underlines potential therapeutic targets that may contribute to the acquisition of thermotolerance.
Collapse
Affiliation(s)
- Georges Hraoui
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Mélanie Grondin
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Diana A Averill-Bates
- Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
2
|
Ertik O, Sezen Us A, Gul IB, Us H, Coremen M, Karabulut Bulan O, Yanardag R. Reduction of oxidative damage in prostate tissue caused by radiation and/or chloroquine by apocynin. Free Radic Res 2024; 58:458-475. [PMID: 39148420 DOI: 10.1080/10715762.2024.2393147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Prostate damage can occur in men due to age and genetic factors, especially when exposed to external factors. Radiation (RAD) is a prominent factor leading to oxidative stress and potential prostate damage. Additionally, chloroquine (CQ), used in malaria treatment, can induce oxidative stress in a dose-dependent manner. Therefore, reducing and preventing oxidative damage in prostate tissue caused by external factors is crucial. Rats used in the study were divided into seven groups, CQ, apocynin (APO), RAD, CQ + APO, CQ + RAD, APO + RAD, CQ + APO + RAD. Subsequently, in vivo biochemical parameters of prostate tissues were examined, including reduced glutathione, lipid peroxidation, superoxide dismutase, glutathione reductase, glutathione peroxidase, glutathione-S-transferase activities, and total antioxidant status, total oxidant status, reactive oxygen species, oxidative stress index, advanced oxidation protein products and histologically. The in vivo results presented in our study showed that APO reduced oxidative stress and had a protective effect on prostate tissue in the CQ, RAD, and CQ + RAD groups as a results of biochemical and histological experiments. Additionally, in silico studies revealed a higher binding affinity of diapocynin to target proteins compared to APO. As a histological results, RAD and CQ alone or in combination did not induce damage in prostate tissues, whereas mild histopathological findings such as hyperemia and haemorrhage were observed in all APO-treated groups. The results suggest that the use of APO for the treatment of oxidative damage induced by CQ and RAD in rats.
Collapse
Affiliation(s)
- Onur Ertik
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
- Department of Chemistry, Faculty of Engineering and Science, Bursa Technical University, Bursa, Türkiye
| | - Ayca Sezen Us
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ilknur Bugan Gul
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Huseyin Us
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Melis Coremen
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Omur Karabulut Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
3
|
Zhang X, Pang R, Zhang K, Xu Q, Xu C, Shi W, Liang X, Li D, Cui W, Bai S, Li Z, Li H, Zhang H. Apocynin exerts cytoprotective effects on dexamethasone-induced osteoblasts by inhibiting oxidative stress through the Nrf2 signalling pathway. J Cell Mol Med 2023; 27:3911-3927. [PMID: 37749949 PMCID: PMC10718140 DOI: 10.1111/jcmm.17974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/05/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023] Open
Abstract
Steroid-induced femoral head necrosis (SIFHN) is a serious clinical complication that is caused by prolonged or excessive use of glucocorticoids (GCs). Osteoblast apoptosis and osteogenic differentiation dysfunction caused by GC-induced oxidative stress and mitochondrial impairment are strongly implicated in SIFHN. Apocynin (APO) is a kind of acetophenone extracted from an herb. In recent years, APO has received much attention for its antiapoptotic and antioxidant properties. This study aimed to investigate whether APO could protect against SIFHN and explore the mechanism. In our study, low-dose APO had no toxic effects on osteoblasts and restored dexamethasone (Dex)-treated osteoblasts by improving survival, inhibiting OS and restoring mitochondrial dysfunction. Mechanistically, APO alleviated Dex-induced osteoblast injury by activating the Nrf2 pathway, and the use of ML385 to block Nrf2 significantly eliminated the protective effect of APO. In addition, APO could reduce the formation of empty lacunae, restore bone mass and promote the expression of Nrf2 in SIFHN rats. In conclusion, APO protects osteoblasts from Dex-induced oxidative stress and mitochondrial dysfunction through activation of the Nrf2 pathway and may be a beneficial drug for the treatment of SIFHN.
Collapse
Affiliation(s)
- Xinglong Zhang
- Department of OrthopaedicsTianjinNankai HospitalTianjinChina
| | - Ran Pang
- Department of OrthopaedicsTianjinNankai HospitalTianjinChina
| | - Kai Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Qian Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Chunlei Xu
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Wei Shi
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Xinyu Liang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Dong Li
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Wenhao Cui
- Department of PharmacologyKyoto Prefectural University of MedicineKyotoJapan
- R&D CenterYoujia (Hangzhou) Biomedical Technology Co., LtdHangzhouChina
| | - Shucai Bai
- Department of OrthopaedicsTianjin HospitalTianjinChina
| | - Zhijun Li
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Hui Li
- Department of OrthopaedicsTianjinNankai HospitalTianjinChina
| | - Huafeng Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
4
|
Wang W, Zhang X, Lin L, Ren J, He R, Sun K. Inhibition of NADPH oxidase 2 (NOX2) reverses cognitive deficits by modulating excitability and excitatory transmission in the hippocampus after traumatic brain injury. Biochem Biophys Res Commun 2022; 617:1-7. [DOI: 10.1016/j.bbrc.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022]
|
5
|
Gilani SJ, Bin-Jumah MN, Al-Abbasi FA, Imam SS, Alshehri S, Ghoneim MM, Shahid Nadeem M, Afzal M, Alzarea SI, Sayyed N, Kazmi I. Antiamnesic Potential of Malvidin on Aluminum Chloride Activated by the Free Radical Scavenging Property. ACS OMEGA 2022; 7:24231-24240. [PMID: 35874261 PMCID: PMC9301734 DOI: 10.1021/acsomega.2c01406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objectives: Malvidin, a dietary anthocyanin can be a potent drug for the treatment of neuronal toxicity. The investigation was aimed to study the antioxidant role of malvidin against aluminum chloride (AlCl3)-induced neurotoxicity in rats. Methods: To evaluate the neuroprotective role of malvidin, the rats were divided into four different groups: group I received saline, group II received AlCl3, and groups III and IV were administered with 100 and 200 mg/kg malvidin after AlCl3 for 60 days. During the evaluation period, all the groups were subjected to a behavioral test. On the 61st day of the study, rat brains were removed and used for a neurochemical assay. Results: From the present study, malvidin ameliorated the effects of AlCl3 on behavioral parameters. Biochemical investigation revealed that oral treatment of malvidin shows neuroprotective effects through regulation of antioxidant levels and neuroinflammation in the AlCl3-exposed rats. Conclusion: The results indicate that malvidin possesses antioxidant activity via acetylcholinesterase inhibition and regulation of oxidative stress in neuronal cells. Hence, malvidin could be a potential drug in correcting Alzheimer's disease.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Nadeem Sayyed
- Glocal School of Pharmacy, Glocal University, Saharanpur, Uttar Pradesh 247121, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Jaiswal G, Kumar P. Neuroprotective role of apocynin against pentylenetetrazole kindling epilepsy and associated comorbidities in mice by suppression of ROS/RNS. Behav Brain Res 2022; 419:113699. [PMID: 34856299 DOI: 10.1016/j.bbr.2021.113699] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023]
Abstract
Epilepsy is a neurological disease that transpires due to the unusual synchronized neuronal discharge within the central nervous system, which drives repetitious unprovoked seizures. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a complex enzyme accountable for reactive oxygen species (ROS) production, neurodegeneration, neurotoxicity, memory impairment, vitiates normal cellular processes, long term potentiation, and thus, implicated in the pathogenesis of epilepsy. Therefore, the present study was sketched to examine the neuroprotective effect of apocynin, NADPH oxidase inhibitor in pentylenetetrazole kindling epilepsy, and induced comorbidities in mice. Mice (either sex) were given pentylenetetrazole (35 mg/kg, i.p.) every other day up to 29 days, and a challenge test was executed on the 33rd day. Pretreatment with apocynin (25, 50, and 100 mg/kg, i.p.) was carried out from 1st to 33rd day. Rotarod and open field test were performed on the 1st, 10th, 20th, and 30th days of the study. Animals were tutored on the morris water maze from 30th to 33rd day, and the retention was registered on the 34th day. Tail suspension test and elevated plus maze were sequentially performed on the 32nd and 33rd day of the study. On the 34th day, animals were sacrificed, and their brains were isolated to conduct biochemical estimation. NADPH oxidase activation due to chronic pentylenetetrazole treatment resulted in generalized tonic-clonic seizures, enhanced oxidative stress, remodeled neurotransmitters' level, and resulted in comorbidities (anxiety, depression, and memory impairment). Pretreatment with apocynin significantly restricted the pentylenetetrazole induced seizure severity, ROS production, neurotransmitter alteration, and comorbid conditions by inhibiting the NADPH oxidase enzyme.
Collapse
Affiliation(s)
- Gagandeep Jaiswal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India.
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab), India; Department of Pharmacology, Central University of Punjab, Bathinda (Punjab), India.
| |
Collapse
|
7
|
Tayman C, Çakır U, Akduman H, Karabulut Ş, Çağlayan M. The therapeutic effect of Apocynin against hyperoxy and Inflammation-Induced lung injury. Int Immunopharmacol 2021; 101:108190. [PMID: 34607228 DOI: 10.1016/j.intimp.2021.108190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
Lung damage due to hyperoxia and inflammation are important causes of bronchopulmonary dysplasia (BPD). We aimed to investigate the beneficial effects of Apocynin (Apo) on rat pups exposed to hyperoxia and inflammation. Forty-eight rat pups were randomly divided into 3 groups as hyperoxia (95% O2) + lipopolysaccharide (LPS), hyperoxia + LPS + Apo treated and control (21% O2). Rat pups in the Apo group received Apo at a daily dose of 40 mg/kg. Histopathological (Hematoxylin-Eosin, Masson trichrome), immunochemical (surfactant B and C protein staining) evaluations and biochemical studies incluiding, total antioxidant status (TAS), total oxidant status (TOS), OSI (oxidant stress index), AOPP (advanced protein degradation product), Lipid hydroperoxide (LPO), 8-OHdG, NADPH oxidase activity (NOX), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF- α), interleukin-1 beta (IL-1β), IL-18, IL-6, caspase-1 and 3, nuclear factor erythroid 2-related factor 2 (NFR2), Nod-like receptor pyrin domain-containing 3 (NLRP3) activities were studied. After Apo treatment, AOPP, LPO, 8-OHdG, NOX, TOS, OSI levels decreased; SOD, CAT, GSH and TAS levels increased (P < 0.05). Apo reduced inflammatory cell infiltration and proinflammatory cytokines with reduction in NLRP3 inflammasome in addition to increased Nrf2 levels. Moreover, caspase-1 and 3 levels decreased with Apo (P < 0.05). Apo was found to provide preventive and therapeutic effects by reducing oxidant stress, blocking inflammation and increasing antioxidant status. Beyond anti-oxidative effects, Apo also have anti-inflammatory effects by suppressing NLRP3 inflammasome activation and inducing Nrf2 as well. Therefore, Apo might be a potential option in the treatment of BPD.
Collapse
Affiliation(s)
- Cuneyt Tayman
- Department of Neonatology, University of Health Sciences, Ankara City Hospital, Cankaya, Ankara, Turkey.
| | - Ufuk Çakır
- Department of Neonatology, University of Health Sciences, Ankara City Hospital, Cankaya, Ankara, Turkey
| | - Hasan Akduman
- Department of Neonatology, Dr Sami Ulus Gynecology Obstetrics and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Şefika Karabulut
- Department of Medical Microbiology, Gulhane Institue of Health of Science, University of Health Science, Ankara, Turkey
| | - Murat Çağlayan
- Department of Medical Biochemistry, University of Health Sciences, Dışkapı yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
8
|
Abd El-Ghafar OAM, Hassanein EHM, Sayed AM, Rashwan EK, Shalkami AGS, Mahmoud AM. Acetovanillone prevents cyclophosphamide-induced acute lung injury by modulating PI3K/Akt/mTOR and Nrf2 signaling in rats. Phytother Res 2021; 35:4499-4510. [PMID: 33969557 DOI: 10.1002/ptr.7153] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022]
Abstract
Cyclophosphamide (CP) is a medication used as an anticancer drug and to suppress the immune system. However, its clinical applications are restricted because of the toxic and adverse side effects. The present study investigated the protective effect of acetovanillone (AV), a natural NADPH oxidase inhibitor, against acute lung injury (ALI) induced by CP. Rats were administered AV (100 mg/kg) for 10 days and a single injection of CP (200 mg/kg) at day 7. At the end of the experiment, the animals were sacrificed, and lung samples were collected for analyses. CP caused ALI manifested by the histopathological alterations. Lipid peroxidation and NADPH oxidase activity were increased, whereas GSH and antioxidant enzymes were decreased in the lung of CP-intoxicated rats. Oral administration of AV prevented CP-induced lung injury and oxidative stress and enhanced antioxidant defenses. AV downregulated Keap1 and upregulated Nrf2, GCLC, HO-1, and SOD3 mRNA. In addition, AV boosted the expression of PI3K, Akt, mTOR, and cytoglobin. In vitro, AV showed a synergistic anticancer effect when combined with CP. In conclusion, AV protected against CP-induced ALI by attenuating oxidative stress and boosting Nrf2/HO-1 and PI3K/Akt/mTOR signaling. Therefore, AV might represent a promising adjuvant to prevent lung injury in patients receiving CP.
Collapse
Affiliation(s)
- Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakakah, Saudi Arabia.,Department of Physiology, College of Medicine, Al-Azhar University, Cairo, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt.,Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
9
|
Hassanein EHM, Abd El-Ghafar OAM, Ahmed MA, Sayed AM, Gad-Elrab WM, Ajarem JS, Allam AA, Mahmoud AM. Edaravone and Acetovanillone Upregulate Nrf2 and PI3K/Akt/mTOR Signaling and Prevent Cyclophosphamide Cardiotoxicity in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5275-5288. [PMID: 33299300 PMCID: PMC7721127 DOI: 10.2147/dddt.s281854] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023]
Abstract
Introduction Cyclophosphamide (CP) causes redox imbalance and its use is associated with marked cardiotoxicity that limits its clinical applications. The present study investigated the protective effects of acetovanillone (AV) and edaravone (ED) against CP-induced oxidative stress and cardiac damage, emphasizing the role of PI3K/Akt/mTOR and Nrf2 signaling. Materials and Methods Rats received either AV (100 mg/kg) or ED (20 mg/kg) orally for 10 days and CP (200 mg/kg) on day 7. At day 11, the rats were sacrificed, and samples were collected for analysis. Results AV and ED ameliorated serum troponin I, CK-MB, LDH, AST and ALP, and prevented cardiac histological alterations in CP-intoxicated rats. Both treatments decreased cardiac lipid peroxidation and enhanced GSH, SOD and cytoglobin in CP-induced rats. AV and ED downregulated Keap1, whereas increased the expression of PI3K, Akt, mTOR and Nrf2 in the heart of rats received CP. Additionally, the binding modes of AV and ED to Keap1 were pinpointed in silico using molecular docking simulations. Conclusion AV and ED prevent CP cardiotoxicity by attenuating oxidative stress and tissue injury, and modulating cytoglobin, and PI3K/Akt/mTOR and Keap1/Nrf2 signaling. Therefore, AV and ED may represent promising agents that can prevent cardiac injury in patients receiving CP.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Human Anatomy & Embryology Department Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Zoology Department Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.,Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
10
|
S-Allylcysteine Protects Against Excitotoxic Damage in Rat Cortical Slices Via Reduction of Oxidative Damage, Activation of Nrf2/ARE Binding, and BDNF Preservation. Neurotox Res 2020; 38:929-940. [DOI: 10.1007/s12640-020-00260-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
|
11
|
Xiao L, Liang S, Ge L, Wan H, Wu W, Fei J, Wu S, Zhou B, Zeng X. 4,5-di-O-caffeoylquinic acid methyl ester isolated from Lonicera japonica Thunb. targets the Keap1/Nrf2 pathway to attenuate H 2O 2-induced liver oxidative damage in HepG2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153219. [PMID: 32361557 DOI: 10.1016/j.phymed.2020.153219] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 4,5-di-O-caffeoylquinic acid methyl ester (4,5-CQME) is a caffeoylquinic acid (CQA) isolated from Lonicera japonica Thunb., a traditional Chinese medicine. To date, the biological activity of 4,5-CQME has not been fully investigated. PURPOSE The aim of the current study was to explore the anti-oxidative activity and the underlying mechanism of 4,5-CQME. METHODS MTT assay was used to evaluate the cytoprotective effect of 4,5-CQME. DCFH-DA was used as a fluorescence probe to detect intracellular ROS. The mitochondrial membrane potential was detected using the fluorescent probe JC-1. MDA and GSH levels were measured using MDA and GSH commercial kits, respectively. Apoptosis assay was performed using the Annexin V-FITC/PI method. The functional mechanism of 4,5-CQME was investigated by analyzing relative signaling pathways through immunofluorescent staining, quantitative PCR and western blot analysis. RESULTS HepG2 cells were incubated with different concentrations of 4,5-CQME for 12 h before exposure to 500 μM H2O2 for 3 h. 4,5-CQME attenuated H2O2-induced oxidative damage and had a higher cytoprotective effect than 3-caffeoylquinic acid, 3-caffeoylquinic acid methyl ester, or 4,5-di-O-caffeoylquinic acid. 4,5-CQME also reduced ROS and MDA levels and rescued GSH depletion. Western blots demonstrated that 4,5-CQME decreased Bax/Bcl-2 and Bak levels. A mechanistic study confirmed that 4,5-CQME significantly suppressed H2O2-induced MAPKs phosphorylation but had little effect on MAPKs phosphorylation under normal conditions. By contrast, 4,5-CQME induced AKT phosphorylation in the presence or absence of H2O2. 4,5-CQME also regulated the Keap1/Nrf2 signaling pathway and enhanced both the mRNA and protein expressions of HO-1 and NQO1. The anti-oxidative effect of 4,5-CQME was greatly abolished by co-incubation with the Nrf2 inhibitor ML385 or PI3K inhibitor wortmannin. CONCLUSIONS Taken together, these results showed that 4,5-CQME offered significant protection against H2O2-induced oxidative stress, and its effect was in part due to the modulation of the Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Lingyun Xiao
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Shu Liang
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Lanlan Ge
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Haoqiang Wan
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China; Department of Pathology (Longhua Branch), 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Weigang Wu
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Jia Fei
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Shipin Wu
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China
| | - Boping Zhou
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China.
| | - Xiaobin Zeng
- Centre Lab of Longhua Branch and Department of Infectious Disease, 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China; Department of Pathology (Longhua Branch), 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, Guangdong Province, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen 518037, Guangdong Province, China.
| |
Collapse
|
12
|
Wang M, Luo L. An Effective NADPH Oxidase 2 Inhibitor Provides Neuroprotection and Improves Functional Outcomes in Animal Model of Traumatic Brain Injury. Neurochem Res 2020; 45:1097-1106. [PMID: 32072445 DOI: 10.1007/s11064-020-02987-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) has become a leading cause of death and disability all over the world. Pharmacological suppression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) can inhibit oxidative stress which is implicated in the pathology of TBI. GSK2795039 was reported to target NOX2 to inhibit [Formula: see text] and ROS production. The present study aimed to investigate the effect of GSK2795039 on NOX2 activity and neurological deficits in a TBI mouse model. TBI mouse model was established by a weight-drop to mouse skull. GSK2795039 at a dose of 100 mg/kg was administrated to mice 30 min before TBI. NOX2 expression and activity were detected by Western blot and biochemical method. Neurological damage and apoptosis were detected by behavioral test and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. GSK2795039 significantly inhibited NOX2 expression and activity in the TBI mouse model. It also attenuated TBI-induced neurological deficits, apoptosis, and neurological recovery. The results indicate that GSK2795039 can be used as a potential drug for TBI treatment.
Collapse
Affiliation(s)
- Mengwei Wang
- Department of Emergency, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| | - Le Luo
- Shanghai Zhuole Biotechnology Center, No. 2066 Wangyuan Road, Shanghai, 201499, China
| |
Collapse
|
13
|
The Therapeutic Effect of Curcumin in Quinolinic Acid-Induced Neurotoxicity in Rats is Associated with BDNF, ERK1/2, Nrf2, and Antioxidant Enzymes. Antioxidants (Basel) 2019; 8:antiox8090388. [PMID: 31514267 PMCID: PMC6769626 DOI: 10.3390/antiox8090388] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
In the present study we investigated the participation of brain-derived neurotropic factor (BDNF) on the activation of the mitogen activated protein kinase (MAPK) protein extracellular signal-regulated kinase-1/2 (ERK1/2) as a mechanism of curcumin (CUR) to provide an antioxidant defense system mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2) in the neurotoxic model induced by quinolinic acid (QUIN). Wistar rats received CUR (400 mg/kg, intragastrically) for 6 days after intrastriatal injection with QUIN (240 nmol). CUR improved the motor deficit and morphological alterations induced by QUIN and restored BDNF, ERK1/2, and Nrf2 levels. CUR treatment avoided the decrease in the protein levels of glutathione peroxidase (GPx), glutathione reductase (GR), γ-glutamylcysteine ligase (γ-GCL), and glutathione (GSH) levels. Only, the QUIN-induced decrease in the GR activity was prevented by CUR treatment. Finally, QUIN increased superoxide dismutase 2 (SOD2) and catalase (CAT) levels, and the γGCL and CAT activities; however, this increase was major in the QUIN+CUR group for γ-GCL, CAT, and SOD activities. These data suggest that the therapeutic effect of CUR could involve BDNF action on the activation of ERK1/2 to induce increased levels of protein and enzyme activity of antioxidant proteins regulated by Nrf2 and GSH levels.
Collapse
|
14
|
Bansal Y, Singh R, Parhar I, Kuhad A, Soga T. Quinolinic Acid and Nuclear Factor Erythroid 2-Related Factor 2 in Depression: Role in Neuroprogression. Front Pharmacol 2019; 10:452. [PMID: 31164818 PMCID: PMC6536572 DOI: 10.3389/fphar.2019.00452] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Depression is an incapacitating neuropsychiatric disorder. The serotonergic system in the brain plays an important role in the pathophysiology of depression. However, due to delayed and/or poor performance of selective serotonin reuptake inhibitors in treating depressive symptoms, the role of the serotonergic system in depression has been recently questioned further. Evidence from recent studies suggests that increased inflammation and oxidative stress may play significant roles in the pathophysiology of depression. The consequences of these factors can lead to the neuroprogression of depression, involving neurodegeneration, astrocytic apoptosis, reduced neurogenesis, reduced plasticity (neuronal and synaptic), and enhanced immunoreactivity. Specifically, increased proinflammatory cytokine levels have been shown to activate the kynurenine pathway, which causes increased production of quinolinic acid (QA, an N-Methyl-D-aspartate agonist) and decreases the synthesis of serotonin. QA exerts many deleterious effects on the brain via mechanisms including N-methyl-D-aspartate excitotoxicity, increased oxidative stress, astrocyte degeneration, and neuronal apoptosis. QA may also act directly as a pro-oxidant. Additionally, the nuclear translocation of antioxidant defense factors, such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2), is downregulated in depression. Hence, in the present review, we discuss the role of QA in increasing oxidative stress in depression by modulating the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 and thus affecting the synthesis of antioxidant enzymes.
Collapse
Affiliation(s)
- Yashika Bansal
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Raghunath Singh
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Anurag Kuhad
- Pharmacology Research Lab, University Institute of Pharmaceutical Sciences UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Tomoko Soga
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
15
|
Hu W, Liu D, Li Q, Wang L, Tang Q, Wang G. Decreasing serum 25-hydroxyvitamin D levels and risk of early neurological deterioration in patients with ischemic stroke. Brain Behav 2019; 9:e01227. [PMID: 30724487 PMCID: PMC6422815 DOI: 10.1002/brb3.1227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Vitamin D deficiency has been linked to a higher risk of ischemic stroke. We therefore explored the relationship between serum 25-hydroxyvitamin D [25(OH)D] levels and early neurological deterioration (END) after acute ischemic stroke in a hospital-based prospective study. METHODS From June 2016 to June 2018, patients with ischemic stroke within 48 hr from symptom onset were consecutively recruited. Serum 25(OH)D levels were measured at admission. END was defined as an increase of ≥1 point in motor power or ≥2 points in the total National Institute of Health Stroke Scale score within 7 days after admission. Multiple logistic regression models were performed to calculate the odds ratio (OR) and confidence intervals (CI) of 25(OH)D levels in predicting END. RESULTS A total of 478 subjects were enrolled, of which 136 (28.5%) patients developed END. The mean 25(OH)D levels were 49.5 ± 15.8 nmol/L. Univariate logistic regression analysis showed that advanced age, white matter lesions, high level of body mass index, diastolic blood pressure, fasting blood glucose and homocysteine, and low 25(OH)D levels were associated with END. Furthermore, multivariate regression analysis demonstrated that the first quartile of 25(OH)D concentrations [OR, 2.628; 95% CI,1.223-5.644; p = 0.013] was independently risk factor for END. CONCLUSIONS This study illustrated that lower 25(OH)D levels might be associated with an increasing risk of END in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, HeFei, Anhui, China
| | - Dezhi Liu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Qin Li
- The Central Laboratory of Medical Research Center, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, HeFei, Anhui, China
| | - Li Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, HeFei, Anhui, China
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, HeFei, Anhui, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, HeFei, Anhui, China
| |
Collapse
|
16
|
Tanriverdi LH, Parlakpinar H, Ozhan O, Ermis N, Polat A, Vardi N, Tanbek K, Yildiz A, Acet A. Inhibition of NADPH oxidase by apocynin promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress in rats. Free Radic Res 2017; 51:772-786. [PMID: 28969461 DOI: 10.1080/10715762.2017.1375486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Preventive and/or therapeutic interventions for ischemic heart disease have gained considerable attention worldwide. We investigated the mechanism(s) underlying cardioprotection of apocynin (APO) and whether it attenuates isoproterenol (ISO)-induced myocardial damage in vivo. Thirty-two male Wistar Albino rats were randomised into four groups (n = 8 for each group): Group I (Control); Group II (ISO), ISO was given intraperitoneally (ip) (150 mg/kg/d) daily for 2 consecutive days; Group III (APO + ISO), APO was applied ip 20 mg/kg 30 min before the first ISO administration and continued for the next 2 d after the second ISO administration; Group IV (ISO + APO), after the ISO treatment on days 1 and 2, 20 mg/kg APO was given ip on days 3 and 4. Cardioprotective effects of APO were evaluated by biochemical values, histopathological observations and the antiapoptotic relative proteins. Mean blood pressure, heart rate, and electrocardiography (ECG) were also monitored. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total oxidant status (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI), caspase-3 and connexin 43 levels were determined. Major ECG changes were observed in the ISO-treated rats. MDA, TOS, OSI and creatine kinase levels decreased and SOD, CAT, GSH and TAC levels increased, indicating that APO reduced cardiac injury and oxidative stress compared with controls. APO also decreased the number of cardiomyocytes with pyknotic nuclei, inflammatory cell infiltration, intracytoplasmic vacuolisation and myofibrils. APO provides preventive and therapeutic effects on ISO-induced myocardial injury in rats by inhibiting reactive oxygen species production, blocking inflammation and enhancing antioxidant status.
Collapse
Affiliation(s)
- Lokman H Tanriverdi
- a Department of Medical Pharmacology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Hakan Parlakpinar
- a Department of Medical Pharmacology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Onural Ozhan
- a Department of Medical Pharmacology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Necip Ermis
- b Department of Cardiology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Alaadin Polat
- c Department of Physiology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Nigar Vardi
- d Department of Histology and Embryology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Kevser Tanbek
- c Department of Physiology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Azibe Yildiz
- d Department of Histology and Embryology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Ahmet Acet
- a Department of Medical Pharmacology , Faculty of Medicine, Inonu University , Malatya , Turkey
| |
Collapse
|
17
|
Bhatt NP, Park JY, Lee HJ, Kim SS, Kwon YS, Chun W. Apocynin protects mesangial cells from lipopolysaccharide-induced inflammation by exerting heme oxygenase 1-mediated monocyte chemoattractant protein-1 suppression. Int J Mol Med 2017; 40:1294-1301. [DOI: 10.3892/ijmm.2017.3090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
|