1
|
Chen X, Sun J, Li Y, Jiang W, Li Z, Mao J, Zhou L, Chen S, Tan G. Proteomic and metabolomic analyses illustrate the mechanisms of expression of the O 6 -methylguanine-DNA methyltransferase gene in glioblastoma. CNS Neurosci Ther 2024; 30:e14415. [PMID: 37641495 PMCID: PMC10848106 DOI: 10.1111/cns.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
AIM Glioblastoma (GBM) has been reported to be the most common high-grade primary malignant brain tumor in clinical practice and has a poor prognosis. O6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation has been related to prolonged overall survival (OS) in GBM patients after temozolomide treatment. METHODS Proteomics and metabolomics were combined to explore the dysregulated metabolites and possible protein expression alterations in white matter (control group), MGMT promoter unmethylated GBM (GBM group) or MGMT promoter methylation positive GBM (MGMT group). RESULTS In total, 2745 upregulated and 969 downregulated proteins were identified in the GBM group compared to the control group, and 131 upregulated and 299 downregulated proteins were identified in the MGMT group compared to the GBM group. Furthermore, 131 upregulated and 299 downregulated metabolites were identified in the GBM group compared to the control group, and 187 upregulated and 147 downregulated metabolites were identified in the MGMT group compared to the GBM group. The results showed that 94 upregulated and 19 downregulated proteins and 20 upregulated and 16 downregulated metabolites in the MGMT group were associated with DNA repair. KEGG pathway enrichment analysis illustrated that the dysregulated proteins and metabolites were involved in multiple metabolic pathways, including the synthesis and degradation of ketone bodies, amino sugar and nucleotide sugar metabolism. Moreover, integrated metabolomics and proteomics analysis was performed, and six key proteins were identified in the MGMT group and GBM group. Three key pathways were recognized as potential biomarkers for recognizing MGMT promoter unmethylated GBM and MGMT promoter methylation positive GBM from GBM patient samples, with areas under the curve of 0.7895, 0.7326 and 0.7026, respectively. CONCLUSION This study provides novel mechanisms to understand methylation in GBM and identifies some biomarkers for the prognosis of two different GBM types, MGMT promoter unmethylated or methylated GBM, by using metabolomics and proteomics analyses.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Jinli Sun
- Department of ReproductionThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Yukui Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Weichao Jiang
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Zhangyu Li
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Jianyao Mao
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Liwei Zhou
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Sifang Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Guowei Tan
- Department of NeurosurgeryThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| |
Collapse
|
2
|
Liu Y, Zhang M, Liu Z, Li S, Liu H, Huang R, Yi F, Zhou J. A strategy can be used to analyze intracellular interaction proteomics of cell-surface receptors. Amino Acids 2023; 55:263-273. [PMID: 36539546 DOI: 10.1007/s00726-022-03223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Comprehensive knowledge of the intracellular protein interactions of cell-surface receptors will greatly advance our comprehension of the underlying trafficking mechanisms. Hence, development of effective and high-throughput approaches is highly desired. In this work, we presented a strategy aiming to tailor toward the analysis of intracellular protein interactome of cell-surface receptors. We used α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors subunit GluA1 as an example to illustrate the methodological application. To capture intracellular proteins that interact with GluA1, after surface biotinylation of the prepared hippocampal neurons and slices, the non-biotinylated protein components as intracellular protein-enriched fraction were unconventionally applied for the following co-immunoprecipitation. The co-immuno-precipitated proteins were then analyzed through mass spectrometry-based proteomics and bioinformatics platforms. The detailed localizations indicated that intracellular proteins accounted for up to 93.7 and 90.3% of the analyzed proteins in the neurons and slices, respectively, suggesting that our protein preparation was highly effective to characterize intracellular interactome of GluA1. Further, we systematically revealed the protein functional profile of GluA1 intracellular interactome, thereby providing complete overview and better comprehension of diverse intracellular biological processes correlated with the complex GluA1 trafficking. All experimental results demonstrated that our methodology would be applicable and useful for intracellular interaction proteomics of general cell-surface receptors.
Collapse
Affiliation(s)
- Yanchen Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Mingming Zhang
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Zhao Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hangfei Liu
- Shenzhen Wininnovate Bio-Tech Co., Ltd,, Shenzhen, 518073, China
| | - Rongzhong Huang
- ChuangXu Institute of Life Science, Chongqing, 400016, China.,Chongqing Institute of Life Science, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China.
| | - Jian Zhou
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Yuzhong District, 1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
3
|
Ma Q, Chen X, Sun J, Wang L, Jiang W, Zhang X, Chen S. Complete Freund's adjuvant-induced protein dysregulation correlated with mirror image pain as assessed by quantitative proteomics of the mouse spinal cord. Biochem Biophys Res Commun 2022; 589:23-28. [PMID: 34883286 DOI: 10.1016/j.bbrc.2021.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/02/2022]
Abstract
Inflammation or trauma occurring on one side of the body can cause pathological pain on the contralateral noninjured side in a phenomenon called mirror-image pain (MIP). Although some potential mechanisms involved in MIP have been reported, including those involving the immune system and glial cells as well as neural mechanisms, the molecular mechanisms are not well understood. In this study, we aimed to understand the molecular mechanisms in MIP using quantitative proteomics and whole-cell patch clamp recordings. Behavioral test results showed that complete Freund's adjuvant could induce MIP in the mice. The results of isobaric tags for relative and absolute quantification (iTRAQ) quantitative proteomics showed that 108 proteins were dysregulated, and these proteins may represent potential targets. Furthermore, bioinformatics analysis was applied to explore the potential molecular mechanisms during MIP after complete Freund's adjuvant (CFA) treatment. Parallel reaction monitoring (PRM) results showed that PKCδ and seven other dysregulated proteins were related to MIP after CFA treatment. Patch clamp recording results showed that CFA treatment could increase intrinsic excitability and spontaneous firing in spinal cord neurons during MIP. In summary, we found that CFA could induce MIP. The results of proteomic research on the spinal cord after CFA treatment could provide new insight into the molecular mechanisms of MIP. Moreover, the neuronal activity of spinal cord neurons was upregulated during MIP after CFA treatment. In summary, the results of the spinal cord proteomic profile provide a potential molecular mechanism for understanding MIP.
Collapse
Affiliation(s)
- Quan Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xi Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jinli Sun
- Department of Reproduction, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Li Wang
- Office, Luohu District Centers for Disease Control and Prevention, Shenzhen, 518000, China
| | - Weichao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen People's Second Hospital, Shenzhen, 518000, China.
| | - Sifang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
4
|
Liu D, Cai X, Wang L, Yi F, Liao W, Huang R, Fang C, Chen J, Zhou J. Comparative Proteomics of Rat Olfactory Bulb Reveal Insights into Susceptibility and Resiliency to Chronic-stress-induced Depression or Anxiety. Neuroscience 2021; 473:29-43. [PMID: 34425157 DOI: 10.1016/j.neuroscience.2021.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023]
Abstract
Chronic stress causes the abnormality of olfactory bulb (OB) in both anxiety and depression, however, the unique and common neurobiological underpinnings are still poorly understood. Previously, we built the three groups by chronic mild stress (CMS), depression-susceptible (Dep-Sus): with depression-like behavior, anxiety-susceptible (Anx-Sus): with anxiety-like behavior and insusceptible (Insus): without depression- and anxiety-like behaviors. To continuously explore the protein expression changes in these three groups, comparative quantitative proteomics analysis was conducted on the rat OB as crucial part of the olfactory system. Next, bioinformatics analyses were implemented whereas protein expressions were independently analyzed by parallel reaction monitoring (PRM) or Western blot (WB). The OB-proteome analysis identified totally 133 differentially expressed proteins as a CMS response. These deregulated proteins were involved in multiple functions and significant pathways potentially correlated with phenotypes of maladaptive behavior of depression or anxiety as well as adaptive behavior, and hence might act as potential candidate protein targets. The subsequent PRM-based or WB-based analyses showed that changes in Nefl, Mtmr7 and Tk2; Prkaca, Coa3, Cox6c2, Lamc1 and Tubal3; and Pabpn1, Nme3, Sos1 and Lum were uniquely associated with Dep-Sus, Anx-Sus, and Insus groups, respectively. These phenotype-specific deregulated proteins were primarily involved in multiple metabolic and signaling pathways, suggesting that the identical CMS differently impacted the olfactory protein regulation system and biological processes. To sum up, our present data as a useful proteomics underpinning provided the common and distinct molecular insights into the biochemical understanding of OB dysfunction underlying susceptibility and resiliency to chronic-stress-induced anxiety or depression.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Cai
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Lixiang Wang
- Shenzhen Wininnovate Bio-Tech Co., Ltd, Shenzhen 410034, China
| | - Faping Yi
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Wei Liao
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Rongzhong Huang
- ChuangXu Institute of Life Science, Chongqing 400016, China; Chongqing Institute of Life Science, Chongqing 400016, China
| | - Chui Fang
- Shenzhen Wininnovate Bio-Tech Co., Ltd, Shenzhen 410034, China.
| | - Jin Chen
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Jian Zhou
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Gong W, Liao W, Fang C, Liu Y, Xie H, Yi F, Huang R, Wang L, Zhou J. Analysis of Chronic Mild Stress-Induced Hypothalamic Proteome: Identification of Protein Dysregulations Associated With Vulnerability and Resiliency to Depression or Anxiety. Front Mol Neurosci 2021; 14:633398. [PMID: 33737865 PMCID: PMC7960925 DOI: 10.3389/fnmol.2021.633398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic stress as a known risk factor leads to hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis in both depression and anxiety. However, the stress-induced dysfunction of the HPA axis in these disorders especially the common and unique molecular dysregulations have not been well-explored. Previously, we utilized a chronic mild stress (CMS) paradigm to segregate and gain depression-susceptible, anxiety-susceptible, and insusceptible groups. In this study, we continue to examine the possible protein expression alterations of the hypothalamus as the center of the HPA axis in these three groups by using a proteomic approach. Though isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative analysis, a total of 593 dysregulated proteins were identified. These were potentially associated with vulnerability and adaptability of CMS-caused depression or anxiety and therefore might become novel investigative protein targets. Further independent analysis using parallel reaction monitoring (PRM) indicated that 5, 7, and 21 dysregulated proteins were specifically associated with depression-susceptible, anxiety-susceptible, and insusceptible groups, respectively, suggesting that the same CMS differently affected the regulation system of the rat hypothalamic proteome. In summary, the current proteomic research on the hypothalamus provided insights into the specific and common molecular basis for the HPA dysfunction mechanisms that underlie resiliency and vulnerability to stress-induced depression or anxiety.
Collapse
Affiliation(s)
- Weibo Gong
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Wei Liao
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Chui Fang
- Shenzhen Wininnovate Bio-Tech Co., Ltd., Shenzhen, China
| | - Yanchen Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Hong Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Pharmacy, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Faping Yi
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Basic Medical College, Chongqing Medical University, Chongqing, China
| | | | - Lixiang Wang
- Shenzhen Wininnovate Bio-Tech Co., Ltd., Shenzhen, China
| | - Jian Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Basic Medical College, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Liao W, Liu Y, Wang L, Cai X, Xie H, Yi F, Huang R, Fang C, Xie P, Zhou J. Chronic mild stress-induced protein dysregulations correlated with susceptibility and resiliency to depression or anxiety revealed by quantitative proteomics of the rat prefrontal cortex. Transl Psychiatry 2021; 11:143. [PMID: 33627638 PMCID: PMC7904772 DOI: 10.1038/s41398-021-01267-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 11/09/2022] Open
Abstract
Chronic stress is a significant risk factor for depression as well as anxiety disorders. Yet, the stress-induced specific and common molecular dysregulations of these disorders have not been fully understood. Previously, we constructed a chronic mild stress (CMS) rat model to separate and obtain depression-susceptible, anxiety-susceptible, and insusceptible groups. In this study, the prefrontal cortical proteomes of the three stressed groups were comparatively profiled utilizing isobaric tags for relative and absolute quantitation (iTRAQ)-coupled tandem mass spectrometry approach. A total of 212 protein dysregulations were identified, potentially correlating to susceptibility or resilience to CMS-induced depression or anxiety, and thus might serve as potential protein targets for further investigation. In addition, independent analysis by parallel reaction monitoring identified changes in Gfap, Rhog, Gnai2, Ppp1r1b, and Uqcrh; Tubb6, Urod, Cul1, Spred1, and Gpcpd1; Acadl, Ppp1r1a, Grm2, Mtor, Lsm8, Cplx2, and Tsta3 that were distinctly correlated to depression-susceptible, anxiety-susceptible, or insusceptible groups, respectively. This suggested that identical CMS had different effects on the protein regulation system of the rat prefrontal cortex. Collectively, the present proteomics study of the prefrontal cortex established a significant molecular basis and offered new insights into the specificity and commonality of pathophysiologic mechanisms underlying susceptibility and resiliency to stress-induced depression or anxiety.
Collapse
Affiliation(s)
- Wei Liao
- grid.203458.80000 0000 8653 0555Institute of Neuroscience, Chongqing Medical University, 400016 Chongqing, China ,grid.203458.80000 0000 8653 0555Basic Medical College, Chongqing Medical University, 400016 Chongqing, China
| | - Yanchen Liu
- grid.203458.80000 0000 8653 0555Institute of Neuroscience, Chongqing Medical University, 400016 Chongqing, China ,grid.203458.80000 0000 8653 0555Basic Medical College, Chongqing Medical University, 400016 Chongqing, China
| | - Lixiang Wang
- Shenzhen Wininnovate Bio-Tech Co., Ltd, 410034 Shenzhen, China
| | - Xiao Cai
- grid.203458.80000 0000 8653 0555Institute of Neuroscience, Chongqing Medical University, 400016 Chongqing, China ,grid.203458.80000 0000 8653 0555Basic Medical College, Chongqing Medical University, 400016 Chongqing, China
| | - Hong Xie
- grid.203458.80000 0000 8653 0555Institute of Neuroscience, Chongqing Medical University, 400016 Chongqing, China ,grid.410726.60000 0004 1797 8419Department of Pharmacy, Chongqing Renji Hospital, University of Chinese Academy of Sciences, 400062 Chongqing, China
| | - Faping Yi
- grid.203458.80000 0000 8653 0555Institute of Neuroscience, Chongqing Medical University, 400016 Chongqing, China ,grid.203458.80000 0000 8653 0555Basic Medical College, Chongqing Medical University, 400016 Chongqing, China
| | | | - Chui Fang
- Shenzhen Wininnovate Bio-Tech Co., Ltd, 410034, Shenzhen, China.
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, China. .,Basic Medical College, Chongqing Medical University, 400016, Chongqing, China.
| | - Jian Zhou
- Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, China. .,Basic Medical College, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
7
|
Qin Z, Gu M, Zhou J, Zhang W, Zhao N, Lü Y, Yu W. Triggering receptor expressed on myeloid cells 2 activation downregulates toll-like receptor 4 expression and ameliorates cognitive impairment in the Aβ 1-42 -induced Alzheimer's disease mouse model. Synapse 2020; 74:e22161. [PMID: 32412103 DOI: 10.1002/syn.22161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 01/15/2023]
Abstract
Increasing evidence suggests that changes in the triggering receptor expressed on myeloid cells 2 (TREM2) is closely correlated with the pathological development of Alzheimer's disease (AD). However, the biological function and related role of this change remain poorly understood. Higher TREM2 expression has been reported in the brain of AD patients than in normal controls. Here, levels of TREM2 gene and protein levels were observed to be higher in both cortex and hippocampus of the Aβ1-42 -induced AD mice than in those of the wild type mice. Together with in vitro experimental data, we found that the anti-inflammatory role of TREM2 was, to some extent, limited and potentially counteracted by the hyperactive toll-like receptor 4 (TLR4) in the AD mice. In this context, Interleukin 4 (IL-4), as an agonist of TREM2, was administered to the AD mice to persistently activate TREM2. Interestingly, TREM2 activation in IL-4-treated AD mice led to an elevation in lysosomes and microtubule-associated protein 1 light chain 3 (LC3) II/I expression, demonstrating that the level of microglia autophagy was increased. Increased autophagy significantly downregulated the expression levels of caspase recruitment domain-containing protein 9 (CARD9) and TLR4, potentially weakening the CARD9-TLR4 pathway and suppressing the TLR4-mediated pro-inflammatory effect in IL-4-treated AD mice. Furthermore, data acquired from Morris water maze testing indicated that IL-4 administration could ameliorate cognitive impairment in the AD mice. In conclusion, the findings from in vitro and in vivo experiments suggest that TREM2 might represent a potential drug target to treat neuroinflammation in AD.
Collapse
Affiliation(s)
- Zhangjin Qin
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Gu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wenbo Zhang
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Zhao
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weihua Yu
- Department of Human Anatomy, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Hippocampal proteomic changes of susceptibility and resilience to depression or anxiety in a rat model of chronic mild stress. Transl Psychiatry 2019; 9:260. [PMID: 31624233 PMCID: PMC6797788 DOI: 10.1038/s41398-019-0605-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 01/21/2023] Open
Abstract
Chronic stressful occurrences are documented as a vital cause of both depression and anxiety disorders. However, the stress-induced molecular mechanisms underlying the common and distinct pathophysiology of these disorders remains largely unclear. We utilized a chronic mild stress (CMS) rat model to differentiate and subgroup depression-susceptible, anxiety-susceptible, and insusceptible rats. The hippocampus was analyzed for differential proteomes by combining mass spectrometry and the isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique. Out of 2593 quantified proteins, 367 were aberrantly expressed. These hippocampal protein candidates might be associated with susceptibility to stress-induced depression or anxiety and stress resilience. They provide the potential protein systems involved in various metabolic pathways as novel investigative protein targets. Further, independent immunoblot analysis identified changes in Por, Idh2 and Esd; Glo1, G6pdx, Aldh2, and Dld; Dlat, Ogdhl, Anxal, Tpp2, and Sdha that were specifically associated to depression-susceptible, anxiety-susceptible, or insusceptible groups respectively, suggesting that identical CMS differently impacted the mitochondrial and metabolic processes in the hippocampus. Collectively, the observed alterations to protein abundance profiles of the hippocampus provided significant and novel insights into the stress regulation mechanism in a CMS rat model. This might serve as the molecular basis for further studies that would contributed to a better understanding of the similarities and differences in pathophysiologic mechanisms underlying stress-induced depression or anxiety, and stress resiliency.
Collapse
|
9
|
Joost S, Mikkat S, Wille M, Schümann A, Schmitt O. Membrane Protein Identification in Rodent Brain Tissue Samples and Acute Brain Slices. Cells 2019; 8:cells8050423. [PMID: 31072038 PMCID: PMC6562397 DOI: 10.3390/cells8050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Acute brain slices are a sample format for electrophysiology, disease modeling, and organotypic cultures. Proteome analyses based on mass spectrometric measurements are seldom used on acute slices, although they offer high-content protein analyses and explorative approaches. In neuroscience, membrane proteins are of special interest for proteome-based analysis as they are necessary for metabolic, electrical, and signaling functions, including myelin maintenance and regeneration. A previously published protocol for the enrichment of plasma membrane proteins based on aqueous two-phase polymer systems followed by mass spectrometric protein identification was adjusted to the small sample size of single acute murine slices from newborn animals and the reproducibility of the results was analyzed. For this, plasma membrane proteins of 12 acute slice samples from six animals were enriched and analyzed by liquid chromatography-mass spectrometry. A total of 1161 proteins were identified, of which 369 were assigned to membranes. Protein abundances showed high reproducibility between samples. The plasma membrane protein separation protocol can be applied to single acute slices despite the low sample size and offers a high yield of identifiable proteins. This is not only the prerequisite for proteome analysis of organotypic slice cultures but also allows for the analysis of small-sized isolated brain regions at the proteome level.
Collapse
Affiliation(s)
- Sarah Joost
- Institute of Anatomy, University Medical Center Rostock, 18057 Rostock, Germany.
| | - Stefan Mikkat
- Core Facility Proteome Analysis, University Medical Center Rostock, 18057 Rostock, Germany.
| | - Michael Wille
- Institute of Anatomy, University Medical Center Rostock, 18057 Rostock, Germany.
| | - Antje Schümann
- Institute of Anatomy, University Medical Center Rostock, 18057 Rostock, Germany.
| | - Oliver Schmitt
- Institute of Anatomy, University Medical Center Rostock, 18057 Rostock, Germany.
| |
Collapse
|
10
|
Imbalance of Microglial TLR4/TREM2 in LPS-Treated APP/PS1 Transgenic Mice: A Potential Link Between Alzheimer's Disease and Systemic Inflammation. Neurochem Res 2019; 44:1138-1151. [PMID: 30756214 DOI: 10.1007/s11064-019-02748-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Clinically, superimposed systemic inflammation generally has significant deleterious effects on the Alzheimer's disease (AD) progression. However, the related molecular mechanisms remain poorly understood. Microglial toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2) are two key regulators of inflammation that may play an essential role in this complex pathophysiological process. In this study, intraperitoneal injection of lipopolysaccharide (LPS) into APP/PS1 transgenic AD model was used to mimic systemic inflammation in the development of AD. Initial results from the cortex showed that compared with wild-type mice, APP/PS1 mice exhibited elevated gene and protein expression levels of both TLR4 and TREM2 with different degree. Interestingly, after LPS treatment, TLR4 expression was persistently up-regulated, while TREM2 expression was significantly down-regulated in APP/PS1 mice, suggesting that the negative regulatory effect of TREM2 on inflammation might be suppressed by LPS-induced hyperactive TLR4. This imbalance of TLR4/TREM2 contributed to microglial over-activation, followed by increased neuronal apoptosis in the cortex of APP/PS1 mice; these changes did not alter the expression level of Aβ1-42. Similar alterations were observed in our in vitro experiment with β-amyloid1-42 (Aβ1-42)-treated N9 microglia. Further, Morris water maze (MWM) testing data indicated that LPS administration acutely aggravated cognitive impairment in APP/PS1 mice, suggesting that the addition of systemic inflammation can potentially accelerate the progression of AD. Collectively, we conclude that an imbalance of TLR4/TREM2 may be a potential link between AD and systemic inflammation. TREM2 can serve as a potential therapeutic target for treating systemic inflammation in AD progression.
Collapse
|
11
|
Zhou M, Tang M, Li S, Peng L, Huang H, Fang Q, Liu Z, Xie P, Li G, Zhou J. Effective lock-in strategy for proteomic analysis of corona complexes bound to amino-free ligands of gold nanoparticles. NANOSCALE 2018; 10:12413-12423. [PMID: 29926046 DOI: 10.1039/c8nr01077c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For specific applications, gold nanoparticles (GNPs) are commonly functionalized with various biological ligands, including amino-free ligands such as amino acids, peptides, proteins, and nucleic acids. Upon entering a biological fluid, the protein corona that forms around GNPs can conceal the targeting ligands and sterically hinder the functional properties. The protein corona is routinely prepared by standard centrifugation or sucrose cushion centrifugation. However, such methodologies are not applicable to the exclusive analysis of a ligand-binding protein corona. In this study, we first proposed a lock-in strategy based on a combination of rapid crosslinking and stringent washing. Cysteine was used as a model of amino-free ligands and attached to GNPs. After corona formation in the human plasma, GNP cysteine and corona proteins were quickly fixed by 5 s of crosslinking with 7.5% formaldehyde. After stringent washing using SDS buffer with sonication, the cysteine-bound proteins were effectively separated from unbound proteins. Qualitative and quantitative analyses using a mass spectrometry-based proteomics approach indicated that the protein composition of the cysteine-binding corona from the new method was significantly different from the composition of the whole corona from the two conventional methods. Furthermore, network and formaldehyde-linked site analyses of cysteine-binding proteins provided useful information toward a better knowledge of the behavior of protein-ligand and protein-protein interactions. Collectively, our new strategy has the capability to particularly characterize the protein composition of a cysteine-binding corona. The presented methodology in principal provides a generic way to analyze a nanoparticle corona bound to amino-free ligands and has the potential to decipher corona-masked ligand functions.
Collapse
Affiliation(s)
- Mi Zhou
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Quantitative Proteomic Analysis Reveals Synaptic Dysfunction in the Amygdala of Rats Susceptible to Chronic Mild Stress. Neuroscience 2018; 376:24-39. [DOI: 10.1016/j.neuroscience.2018.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
|
13
|
Comparative characterization of rat hippocampal plasma membrane and mitochondrial membrane proteomes based on a sequential digestion-centered combinative strategy. Anal Bioanal Chem 2018; 410:3119-3131. [DOI: 10.1007/s00216-018-0995-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 03/05/2018] [Indexed: 12/27/2022]
|