1
|
Van Dam D, Valkenburg F, Van Kolen K, Pintelon I, Timmermans JP, De Deyn PP. Behavioral and Neuropathological Phenotyping of the Tau58/2 and Tau58/4 Transgenic Mouse Models for FTDP-17. Life (Basel) 2023; 13:2088. [PMID: 37895469 PMCID: PMC10608666 DOI: 10.3390/life13102088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The Tau58/2 and Tau58/4 mouse lines expressing 0N4R tau with a P301S mutation mimic aspects of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). In a side-by-side comparison, we report the age-dependent development of cognitive, motor, and behavioral deficits in comparison with the spatial-temporal evolution of cellular tau pathology in both models. METHODS We applied the SHIRPA primary screen and specific neuromotor, behavioral, and cognitive paradigms. The spatiotemporal development of tau pathology was investigated immunohistochemically. Levels of sarkosyl-insoluble paired helical filaments were determined via a MesoScale Discovery biomarker assay. RESULTS Neuromotor impairments developed from age 3 months in both models. On electron microscopy, spinal cord neurofibrillary pathology was visible in mice aged 3 months; however, AT8 immunoreactivity was not yet observed in Tau58/4 mice. Behavioral abnormalities and memory deficits occurred at a later stage (>9 months) when tau pathology was fully disseminated throughout the brain. Spatiotemporally, tau pathology spread from the spinal cord via the midbrain to the frontal cortex, while the hippocampus was relatively spared, thus explaining the late onset of cognitive deficits. CONCLUSIONS Our findings indicate the face and construct validity of both Tau58 models, which may provide new, valuable insights into the pathologic effects of tau species in vivo and may consequently facilitate the development of new therapeutic targets to delay or halt neurodegenerative processes occurring in tauopathies.
Collapse
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium;
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Femke Valkenburg
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium;
| | - Kristof Van Kolen
- Neuroscience Department, Janssen Research and Development, 2340 Beerse, Belgium;
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.P.); (J.-P.T.)
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (I.P.); (J.-P.T.)
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk, 2610 Antwerp, Belgium;
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
2
|
Davidowitz EJ, Lopez P, Jimenez H, Adrien L, Davies P, Moe JG. Small molecule inhibitor of tau self-association in a mouse model of tauopathy: A preventive study in P301L tau JNPL3 mice. PLoS One 2023; 18:e0286523. [PMID: 37556474 PMCID: PMC10411817 DOI: 10.1371/journal.pone.0286523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/17/2023] [Indexed: 08/11/2023] Open
Abstract
Advances in tau biology and the difficulties of amyloid-directed immunotherapeutics have heightened interest in tau as a target for small molecule drug discovery for neurodegenerative diseases. Here, we evaluated OLX-07010, a small molecule inhibitor of tau self-association, for the prevention of tau aggregation. The primary endpoint of the study was statistically significant reduction of insoluble tau aggregates in treated JNPL3 mice compared with Vehicle-control mice. Secondary endpoints were dose-dependent reduction of insoluble tau aggregates, reduction of phosphorylated tau, and reduction of soluble tau. This study was performed in JNPL3 mice, which are representative of inherited forms of 4-repeat tauopathies with the P301L tau mutation (e.g., progressive supranuclear palsy and frontotemporal dementia). The P301L mutation makes tau prone to aggregation; therefore, JNPL3 mice present a more challenging target than mouse models of human tau without mutations. JNPL3 mice were treated from 3 to 7 months of age with Vehicle, 30 mg/kg compound dose, or 40 mg/kg compound dose. Biochemical methods were used to evaluate self-associated tau, insoluble tau aggregates, total tau, and phosphorylated tau in the hindbrain, cortex, and hippocampus. The Vehicle group had higher levels of insoluble tau in the hindbrain than the Baseline group; treatment with 40 mg/kg compound dose prevented this increase. In the cortex, the levels of insoluble tau were similar in the Baseline and Vehicle groups, indicating that the pathological phenotype of these mice was beginning to emerge at the study endpoint and that there was a delay in the development of the phenotype of the model as originally characterized. No drug-related adverse effects were observed during the 4-month treatment period.
Collapse
Affiliation(s)
- Eliot J. Davidowitz
- Oligomerix, Inc., White Plains, NY, United States of America
- Oligomerix, Inc., Bronx, NY, United States of America
| | | | - Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States of America
| | - James G. Moe
- Oligomerix, Inc., White Plains, NY, United States of America
- Oligomerix, Inc., Bronx, NY, United States of America
| |
Collapse
|
3
|
Natunen T, Martiskainen H, Marttinen M, Gabbouj S, Koivisto H, Kemppainen S, Kaipainen S, Takalo M, Svobodová H, Leppänen L, Kemiläinen B, Ryhänen S, Kuulasmaa T, Rahunen E, Juutinen S, Mäkinen P, Miettinen P, Rauramaa T, Pihlajamäki J, Haapasalo A, Leinonen V, Tanila H, Hiltunen M. Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Mol Neurodegener 2020; 15:66. [PMID: 33168021 PMCID: PMC7653710 DOI: 10.1186/s13024-020-00415-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Background Alzheimer’s disease (AD) is the most common neurodegenerative disease and type 2 diabetes (T2D) plays an important role in conferring the risk for AD. Although AD and T2D share common features, the common molecular mechanisms underlying these two diseases remain elusive. Methods Mice with different AD- and/or tauopathy-linked genetic backgrounds (APPswe/PS1dE9, Tau P301L and APPswe/PS1dE9/Tau P301L) were fed for 6 months with standard diet or typical Western diet (TWD). After behavioral and metabolic assessments of the mice, the effects of TWD on global gene expression as well as dystrophic neurite and microglia pathology were elucidated. Consequently, mechanistic aspects related to autophagy, cell survival, phagocytic uptake as well as Trem2/Dap12 signaling pathway, were assessed in microglia upon modulation of PI3K-Akt signaling. To evaluate whether the mouse model-derived results translate to human patients, the effects of diabetic phenotype on microglial pathology were assessed in cortical biopsies of idiopathic normal pressure hydrocephalus (iNPH) patients encompassing β-amyloid pathology. Results TWD led to obesity and diabetic phenotype in all mice regardless of the genetic background. TWD also exacerbated memory and learning impairment in APPswe/PS1dE9 and Tau P301L mice. Gene co-expression network analysis revealed impaired microglial responses to AD-related pathologies in APPswe/PS1dE9 and APPswe/PS1dE9/Tau P301L mice upon TWD, pointing specifically towards aberrant microglial functionality due to altered downstream signaling of Trem2 and PI3K-Akt. Accordingly, fewer microglia, which did not show morphological changes, and increased number of dystrophic neurites around β-amyloid plaques were discovered in the hippocampus of TWD mice. Mechanistic studies in mouse microglia revealed that interference of PI3K-Akt signaling significantly decreased phagocytic uptake and proinflammatory response. Moreover, increased activity of Syk-kinase upon ligand-induced activation of Trem2/Dap12 signaling was detected. Finally, characterization of microglial pathology in cortical biopsies of iNPH patients revealed a significant decrease in the number of microglia per β-amyloid plaque in obese individuals with concomitant T2D as compared to both normal weight and obese individuals without T2D. Conclusions Collectively, these results suggest that diabetic phenotype in mice and humans mechanistically associates with abnormally reduced microglial responses to β-amyloid pathology and further suggest that AD and T2D share overlapping pathomechanisms, likely involving altered immune function in the brain. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-020-00415-2.
Collapse
Affiliation(s)
- Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Henna Martiskainen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Sami Gabbouj
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Hennariikka Koivisto
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Susanna Kemppainen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Satu Kaipainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Helena Svobodová
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Luukas Leppänen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Benjam Kemiläinen
- Department of Neurosurgery, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Simo Ryhänen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Eija Rahunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Sisko Juutinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi Miettinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Pathology, University of Eastern Finland, Kuopio, Finland
| | - Jussi Pihlajamäki
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, and Institute of Clinical Medicine, Unit of Neurosurgery, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|