1
|
Ferrario CR, Münzberg-Gruening H, Rinaman L, Betley JN, Borgland SL, Dus M, Fadool DA, Medler KF, Morton GJ, Sandoval DA, de La Serre CB, Stanley SA, Townsend KL, Watts AG, Maruvada P, Cummings D, Cooke BM. Obesity- and diet-induced plasticity in systems that control eating and energy balance. Obesity (Silver Spring) 2024; 32:1425-1440. [PMID: 39010249 PMCID: PMC11269035 DOI: 10.1002/oby.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 07/17/2024]
Abstract
In April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields. The overarching theme of this review addresses plasticity within the central and peripheral nervous systems that regulates and influences eating, emphasizing distinctions between healthy and disease states. This is by no means a comprehensive review because this is a broad and rapidly developing area. However, we have pointed out relevant reviews and primary articles throughout, as well as gaps in current understanding and opportunities for developments in the field.
Collapse
Grants
- P30 DK048520 NIDDK NIH HHS
- NSF1949989 National Science Foundation
- T32 DC000044 NIDCD NIH HHS
- R01 DK089056 NIDDK NIH HHS
- R01 DK124801 NIDDK NIH HHS
- R01 DK100685 NIDDK NIH HHS
- R01 DK130875 NIDDK NIH HHS
- R01 DK133464 NIDDK NIH HHS
- R01 DK125890 NIDDK NIH HHS
- Z99 DK999999 Intramural NIH HHS
- R01 DK124461 NIDDK NIH HHS
- K26 DK138368 NIDDK NIH HHS
- R01 DK121995 NIDDK NIH HHS
- R01 DK121531 NIDDK NIH HHS
- P30 DK089503 NIDDK NIH HHS
- P01 DK119130 NIDDK NIH HHS
- R01 DK118910 NIDDK NIH HHS
- R01 AT011683 NCCIH NIH HHS
- Reported research was supported by DK130246, DK092587, AT011683, MH059911, DK100685, DK119130, DK124801, DK133399, AG079877, DK133464, T32DC000044, F31DC016817, NSF1949989, DK089056, DK124238, DK138368, DK121995, DK125890, DK118910, DK121531, DK124461, DK130875; Canada Research Chair: 950-232211, CIHRFDN148473, CIHRPJT185886; USDA Predoctoral Fellowship; Endowment from the Robinson Family and Tallahassee Memorial Hospital; Department of Defense W81XWH-20-1-0345 and HT9425-23-1-0244; American Diabetes Association #1-17-ACE-31; W.M. Keck Foundation Award; National Science Foundation CAREER 1941822
- R01 DK133399 NIDDK NIH HHS
- HT9425-23-1-0244 Department of Defense
- R01 DK092587 NIDDK NIH HHS
- W81XWH-20-1-0345 Department of Defense
- 1941822 National Science Foundation
- R01 MH059911 NIMH NIH HHS
- F31 DC016817 NIDCD NIH HHS
- R01 AG079877 NIA NIH HHS
- R01 DK130246 NIDDK NIH HHS
- P30 DK017047 NIDDK NIH HHS
- R01 DK124238 NIDDK NIH HHS
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Heike Münzberg-Gruening
- Laboratory of Central Leptin Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Debra A Fadool
- Department of Biological Science, Program in Neuroscience, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Kathryn F Medler
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory J Morton
- Department of Medicine, University of Washington Medicine Diabetes Institute at South Lake Union, Seattle, Washington, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Diana Cummings
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Bradley M Cooke
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Sun C, Zheng S, Perry JSA, Norris GT, Cheng M, Kong F, Skyberg R, Cang J, Erisir A, Kipnis J, Hill DL. Maternal diet during early gestation influences postnatal taste activity-dependent pruning by microglia. J Exp Med 2023; 220:e20212476. [PMID: 37733279 PMCID: PMC10512853 DOI: 10.1084/jem.20212476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
A key process in central sensory circuit development involves activity-dependent pruning of exuberant terminals. Here, we studied gustatory terminal field maturation in the postnatal mouse nucleus of the solitary tract (NST) during normal development and in mice where their mothers were fed a low NaCl diet for a limited period soon after conception. Pruning of terminal fields of gustatory nerves in controls involved the complement system and is likely driven by NaCl-elicited taste activity. In contrast, offspring of mothers with an early dietary manipulation failed to prune gustatory terminal fields even though peripheral taste activity developed normally. The ability to prune in these mice was rescued by activating myeloid cells postnatally, and conversely, pruning was arrested in controls with the loss of myeloid cell function. The altered pruning and myeloid cell function appear to be programmed before the peripheral gustatory system is assembled and corresponds to the embryonic period when microglia progenitors derived from the yolk sac migrate to and colonize the brain.
Collapse
Affiliation(s)
- Chengsan Sun
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Shuqiu Zheng
- Division of Nephrology, University School of Medicine, Charlottesville, VA, USA
| | - Justin S A Perry
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Geoffrey T Norris
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Fanzhen Kong
- Department of Anatomy, Binzhou Medical University, Yantai, China
| | - Rolf Skyberg
- Institute of Neuroscience, University of Oregon , Eugene, OR, USA
| | - Jianhua Cang
- Departments of Psychology and Biology, University of Virginia, Charlottesville, VA, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - David L Hill
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Riquier AJ, Sollars SI. Terminal field volume of the glossopharyngeal nerve in adult rats reverts to prepruning size following microglia depletion with PLX5622. Dev Neurobiol 2022; 82:613-624. [PMID: 36308508 PMCID: PMC9790758 DOI: 10.1002/dneu.22904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 01/30/2023]
Abstract
Programmed reduction of synapses is a hallmark of the developing brain, with sensory systems emerging as useful models with which to study this pruning. The central projections (terminal field) of the gustatory glossopharyngeal nerve (GL) of the rat are a prime example of developmental pruning, undergoing an approximate 66% reduction in volume from postnatal day 15 (P15) to P25. Later in adulthood, developmental GL pruning can be experimentally reversed, expanding to preweaning volumes, suggesting mature volumes may be actively maintained throughout the life span. Microglia are central nervous system glia cells that perform pruning and maintenance functions in other sensory systems, including other gustatory nerves. To determine their role in GL pruning, we depleted microglia from Sprague-Dawley rat brains from P1 to P40 using daily intraperitoneal injections of the colony-stimulating factor 1 receptor inhibitor PLX5622. This prevented GL developmental pruning, resulting in preweaning terminal field volumes and innervation patterns persisting through P40, 2 weeks after pruning is normally completed. These findings show microglia are necessary for developmental GL pruning. Ceasing PLX5622 treatments at P40 allowed microglia repopulation, and within 4 weeks the GL terminal field had reduced to control volumes, indicating that pruning can occur outside of the typical developmental period. Conversely, when microglia were depleted in adult rats, GL terminal fields expanded, reverting to sizes comparable to the neonatal rat. These data indicate that microglia are required for GL pruning and may continue to maintain the GL terminal field at a reduced size into adulthood.
Collapse
Affiliation(s)
- Andrew J. Riquier
- Department of PsychologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| | | |
Collapse
|
4
|
Lakshmanan HG, Miller E, White-Canale A, McCluskey LP. Immune responses in the injured olfactory and gustatory systems: a role in olfactory receptor neuron and taste bud regeneration? Chem Senses 2022; 47:bjac024. [PMID: 36152297 PMCID: PMC9508897 DOI: 10.1093/chemse/bjac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells. Here we review surgical, chemical, and inflammatory injury models and evidence that immune responses promote or deter chemosensory cell regeneration. Macrophage and neutrophil responses to chemosensory receptor injury have been the most widely studied without consensus on their net effects on regeneration. We discuss possible technical and biological reasons for the discrepancy, such as the difference between peripheral and central structures, and suggest directions for progress in understanding immune regulation of chemosensory regeneration. Our mechanistic understanding of immune-chemosensory cell interactions must be expanded before therapies can be developed for recovering the sensation of taste and smell after head injury from traumatic nerve damage and infection. Chemosensory loss leads to decreased quality of life, depression, nutritional challenges, and exposure to environmental dangers highlighting the need for further studies in this area.
Collapse
Affiliation(s)
- Hari G Lakshmanan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Elayna Miller
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - AnnElizabeth White-Canale
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
5
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Song P, Yi Z, Fu Y, Song D, Chen K, Zheng J, Sun Y, Diao Y. Reversing Postcardiopulmonary Bypass Associated Cognitive Dysfunction Using k-Opioid Receptor Agonists to Regulate Microglial Polarization via the NLRP3/Caspase-1 Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3048383. [PMID: 34630980 PMCID: PMC8500742 DOI: 10.1155/2021/3048383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022]
Abstract
Cardiopulmonary bypass (CPB) is mainly used during cardiac surgeries that treat ischemic, valvular, or congenital heart disease and aortic dissections. The disorders of central nervous system (CNS) that occur after cardiopulmonary bypass are attracting considerable interest. Postoperative neurocognitive disorders (PND) have been reported as the leading cause of patients' disability and death following CPB. The k-opioid receptor (KOR) agonists (U50488H) have been suggested to be vital in the treatment of surgically induced CNS neuroinflammatory responses. In this article, the transitions between the M1 and M2 microglial polarization state phenotypes were hypothesized to significantly affect the regulatory mechanisms of KOR agonists on postcardiopulmonary bypass (post-CPB) neuroinflammation. We investigated the effects of U50488H on neuroinflammation and microglia polarization in rats exposed to CPB and explored the method of the NLRP3/caspase-1 pathway. Thirty SD rats were randomly divided into three groups: sham operation group, cardiopulmonary bypass model group, and CPB+ k-opioid receptor agonist (U50488H) group, with ten rats in each group. The Morris water maze was used to evaluate the changes in the cognitive function of CPB rats. Hematoxylin and eosin (HE) staining and TUNEL were performed to assess the rats' hippocampal damage. Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect changes in brain injury markers and inflammatory factors. Furthermore, immunofluorescence was used to observe the expression of microglia polarization and NLRP3 followed by Western blots to detect the expression of the NLRP3/caspase-1 pathway and microglia polarization-related proteins. Rat microglia were cultured in vitro, with LPS stimulation, and treated with U50488H and a caspase-1 antagonist to evaluate the effects and mechanism of action of U50488H. KORs alleviated hippocampal damage caused by CPB and improved PND. CPB activated the NLRP3 inflammasome and upregulated pro-caspase-1 expression which promoted the expression of pro-IL-lβ and pro-IL-18 and resulted in increased inflammation. However, KORs also inhibited NLRP3 and transformed microglia from the M1 to the M2 state. Caspase-1 inhibitor treatment reduced the microglial polarization induced by KORs. The κ-opioid receptor agonists inhibited the inflammation mediated by microglia and improved PND through the NLRP3/caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Pei Song
- Department of Anesthesia, Postgraduate Training Base of Jinzhou Medical University in the General Hospital of Northern Theater Command, Shenyang 110016, China
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Zhuo Yi
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yiji Fu
- Department of Anesthesiology, Anshan Central Hospital, Anshan 114002, Liaoning, China
| | - Dandan Song
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang 110000, Liaoning, China
| | - Jingjing Zheng
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yingjie Sun
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yugang Diao
- Department of Anesthesia, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| |
Collapse
|
7
|
Hope KT, Hawes IA, Moca EN, Bonci A, De Biase LM. Maturation of the microglial population varies across mesolimbic nuclei. Eur J Neurosci 2020; 52:3689-3709. [PMID: 32281691 DOI: 10.1111/ejn.14740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022]
Abstract
Microglia play critical roles during CNS development and undergo dramatic changes in tissue distribution, morphology, and gene expression as they transition from embryonic to neonatal to adult microglial phenotypes. Despite the magnitude of these phenotypic shifts, little is known about the time course and dynamics of these transitions and whether they vary across brain regions. Here, we define the time course of microglial maturation in key regions of the basal ganglia in mice, where significant regional differences in microglial phenotype are present in adults. We found that microglial density peaks in the ventral tegmental area (VTA) and nucleus accumbens (NAc) during the third postnatal week, driven by a burst of microglial proliferation. Microglial abundance is then refined to adult levels through a combination of tissue expansion and microglial programmed cell death. This overproduction and refinement of microglia was significantly more pronounced in the NAc than in the VTA and was accompanied by a sharp peak in NAc microglial lysosome abundance in the third postnatal week. Collectively, these data identify a key developmental window when elevated microglial density in discrete basal ganglia nuclei may support circuit refinement and could increase susceptibility to inflammatory insults.
Collapse
Affiliation(s)
- Keenan T Hope
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Isobel A Hawes
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Eric N Moca
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Lindsay M De Biase
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
8
|
Yuan Y, Wu C, Ling EA. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Curr Pharm Des 2020; 25:2375-2393. [PMID: 31584369 DOI: 10.2174/1381612825666190722114248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore
| |
Collapse
|
9
|
Riquier AJ, Sollars SI. Astrocytic response to neural injury is larger during development than in adulthood and is not predicated upon the presence of microglia. Brain Behav Immun Health 2020; 1:100010. [PMID: 38377419 PMCID: PMC8474582 DOI: 10.1016/j.bbih.2019.100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
While contributions of microglia and astrocytes are regularly studied in various injury models, how these contributions differ across development remains less clear. We previously demonstrated developmental differences in microglial profiles across development in an injury model of the gustatory system. Nerves of the rat gustatory system have limited capacity to regenerate if injured during neonatal ages but show robust recovery if the injury occurs in adulthood. Using this developmentally disparate model of regenerative capacity, we quantified microglia and astrocytes in the rostral nucleus of the solitary tract (rNTS) following transection of the gustatory chorda tympani nerve (CTX) of neonatal and adult rats. We found that neonatal CTX induced an attenuated microglia response but a larger astrocyte response compared to adult CTX. To elucidate the interplay between the microglia and astrocyte responses in the CTX model, we used our novel intraperitoneal injection protocol for the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia in the neonatal and adult rat brain prior to and after CTX. PLX5622 depleted microglia by 80-90% within 3 days of treatment, which increased to > 90% by 7 days. After 14 days of PLX5622 treatment, microglia were depleted by > 96% in both neonates and adults while preserving baseline astrocyte quantity. Microglia depletion eliminated the adult astrocyte response to CTX, while the neonatal astrocyte response after injury remained robust. Our results show injecting PLX5622 is a viable means to deplete microglia in neonatal and adult rats and suggest developmentally distinct mechanisms for astrogliosis following neural injury.
Collapse
Affiliation(s)
- Andrew J. Riquier
- University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Suzanne I. Sollars
- University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| |
Collapse
|
10
|
Martin LJ, Lane AH, Samson KK, Sollars SI. Regenerative Failure Following Rat Neonatal Chorda Tympani Transection is Associated with Geniculate Ganglion Cell Loss and Terminal Field Plasticity in the Nucleus of the Solitary Tract. Neuroscience 2019; 402:66-77. [PMID: 30684590 DOI: 10.1016/j.neuroscience.2019.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
Neural insult during development results in recovery outcomes that vary dependent upon the system under investigation. Nerve regeneration does not occur if the rat gustatory chorda tympani nerve is sectioned (CTX) during neonatal (≤P10) development. It is unclear how chorda tympani soma and terminal fields are affected after neonatal CTX. The current study determined the impact of neonatal CTX on chorda tympani neurons and brainstem gustatory terminal fields. To assess terminal field volume in the nucleus of the solitary tract (NTS), rats received CTX at P5 or P10 followed by chorda tympani label, or glossopharyngeal (GL) and greater superficial petrosal (GSP) label as adults. In another group of animals, terminal field volumes and numbers of chorda tympani neurons in the geniculate ganglion (GG) were determined by labeling the chorda tympani with DiI at the time of CTX in neonatal (P5) and adult (P50) rats. There was a greater loss of chorda tympani neurons following P5 CTX compared to adult denervation. Chorda tympani terminal field volume was dramatically reduced 50 days after P5 or P10 CTX. Lack of nerve regeneration after neonatal CTX is not caused by ganglion cell death alone, as approximately 30% of chorda tympani neurons survived into adulthood. Although the total field volume of intact gustatory nerves was not altered, the GSP volume and GSP-GL overlap increased in the dorsal NTS after CTX at P5, but not P10, demonstrating age-dependent plasticity. Our findings indicate that the developing gustatory system is highly plastic and simultaneously vulnerable to injury.
Collapse
Affiliation(s)
- Louis J Martin
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Amy H Lane
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Kaeli K Samson
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Suzanne I Sollars
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA.
| |
Collapse
|
11
|
Baldy C, Fournier S, Boisjoly-Villeneuve S, Tremblay MÈ, Kinkead R. The influence of sex and neonatal stress on medullary microglia in rat pups. Exp Physiol 2018; 103:1192-1199. [PMID: 29920821 DOI: 10.1113/ep087088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of the study? Does neonatal stress, in the form of neonatal maternal separation, influence the maturation of microglial density, morphology and neuronal signalling in medullary regions regulating cardiorespiratory function in rat pups? What is the main finding and its importance? Using Iba-1 immunohistochemistry, we show that neonatal maternal separation augments microglial density and the proportion of cells with an amoeboid morphology in the medulla. Although the current understanding of the effect of early life stress on medullary development is relatively limited, these data show that within this area, microglia are affected by neonatal stress. Microglia could therefore be important effectors in cardiorespiratory disorders resulting from maternal separation. ABSTRACT Neonatal stress has wide-ranging consequences for the developing brain, including the medullary cardiorespiratory network. In rat pups, the reflexive cardiorespiratory inhibition triggered by the presence of liquids near the larynx is augmented by neonatal maternal separation (NMS), especially in males. Sex-specific enhancement of synaptic connectivity by NMS might explain this cardiorespiratory dysfunction. Microglia influence the formation, maturation, activity and elimination of developing synapses, but their role in the wiring of medullary networks is unknown. Owing to their sensitivity to sex hormones and stress hormones, microglial dysfunction could contribute to the abnormal cardiorespiratory phenotype observed in NMS pups. Here, we first used ionized calcium-binding adapter molecule-1 (Iba-1) immunolabelling to compare the density and morphology of microglia in the medulla of male versus female rat pups (14-15 days old) that were either undisturbed or subjected to NMS (3 h day-1 ; postnatal days 3-12). Neonatal maternal separation augmented the density of Iba-1+ cells (caudal region of the NTS), increased the size of the soma and reduced the arborization area (especially in the dorsal motor nucleus of the vagus). Sex-based differences were not observed. Given that the actions of microglia are regulated by neuronal fractalkine (CX3 CL1 ), we then used western blot analysis to compare the expression of CX3 CL1 and its microglial receptor (CX3 CR1 ) in medullary homogenates from control and NMS pups. Although CX3 CR1 expression was 59% greater in males versus females, NMS had no effect on CX3 CL1 /CX3 CR1 signalling. Given that an amoeboid morphology reflects an immature phenotype in developing microglia, NMS could interfere with synaptic pruning via a different mechanism.
Collapse
Affiliation(s)
- Cécile Baldy
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Stéphanie Fournier
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Samuel Boisjoly-Villeneuve
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Département de Médecine Moléculaire, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
12
|
Litvin DG, Dick TE, Smith CB, Jacono FJ. Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats. Brain Behav Immun 2018; 70:398-422. [PMID: 29601943 PMCID: PMC6075724 DOI: 10.1016/j.bbi.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Transition periods (TPs) are brief stages in CNS development where neural circuits can exhibit heightened vulnerability to pathologic conditions such as injury or infection. This susceptibility is due in part to specialized mechanisms of synaptic plasticity, which may become activated by inflammatory mediators released under pathologic conditions. Thus, we hypothesized that the immune response to lung injury (LI) mediated synaptic changes through plasticity-like mechanisms that depended on whether LI occurred just before or after a TP. We studied the impact of LI on brainstem 2nd-order viscerosensory neurons located in the nucleus tractus solitarii (nTS) during a TP for respiratory control spanning (postnatal day (P) 11-15). We injured the lungs of Sprague-Dawley rats by intratracheal instillation of Bleomycin (or saline) just before (P9-11) or after (P17-19) the TP. A week later, we prepared horizontal slices of the medulla and recorded spontaneous and evoked excitatory postsynaptic currents (sEPSCs/eEPSCs) in vitro from neurons in the nTS that received monosynaptic glutamatergic input from the tractus solitarii (TS). In rats injured before the TP (pre-TP), neurons exhibited blunted sEPSCs and TS-eEPSCs compared to controls. The decreased TS-eEPSCs were mediated by differences in postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid receptors (AMPAR). Specifically, compared to controls, LI rats had more Ca2+-impermeable AMPARs (CI-AMPARs) as indicated by: 1) the absence of current-rectification, 2) decreased sensitivity to polyamine, 1-Naphthyl-acetyl-spermine-trihydrochloride (NASPM) and 3) augmented immunoreactive staining for the CI-AMPAR GluA2. Thus, pre-TP-LI acts postsynaptically to blunt glutamatergic transmission. The neuroimmune response to pre-TP-LI included microglia hyper-ramification throughout the nTS. Daily intraperitoneal administration of minocycline, an inhibitor of microglial/macrophage function prevented hyper-ramification and abolished the pre-TP-LI evoked synaptic changes. In contrast, rat-pups injured after the TP (post-TP) exhibited microglia hypo-ramification in the nTS and had increased sEPSC amplitudes/frequencies, and decreased TS-eEPSC amplitudes compared to controls. These synaptic changes were not associated with changes in CI-AMPARs, and instead involved greater TS-evoked use-dependent depression (reduced paired pulse ratio), which is a hallmark of presynaptic plasticity. Thus we conclude that LI regulates the efficacy of TS → nTS synapses through discrete plasticity-like mechanisms that are immune-mediated and depend on whether the injury occurs before or after the TP for respiratory control.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
13
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|