1
|
Boyacioğlu O, Tecimen S, Örenay Boyacioğlu S. Liposomal Ficus carica latex and ficin effects on human colon cancer cell line. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40205872 DOI: 10.1002/jsfa.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/22/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Challenges such as metabolic instability, short half-life, poor absorption, and low bioavailability are faced by natural drug candidates, particularly in complex plant-derived extracts like fig latex, which contains multiple bioactive compounds that complicate standardization and encapsulation. This research was conducted to investigate the impact of liposome encapsulation on HT-29 human colon cancer cell line, using commercially sourced ficin and latex samples from the Sari Lop and Aydin Black fig cultivars. Ficin and fig latices were encapsulated through thin-film hydration, and their characteristic properties were analyzed. The cytotoxic and apoptotic effects of the prepared liposomes were also examined on the HT-29 cells. RESULTS The polydispersity indices and zeta potentials of liposomes were consistent with those reported in the literature, although their sizes were larger than the desired range. Encapsulation efficiency percentage (EE%) values were relatively low, ranging from 15.5% to 23.0%, indicating that a significant portion of ficin and fig latices remained unencapsulated. This lower EE% may have contributed to the observed reduction in cytotoxicity in the encapsulated formulations. Unencapsulated ficin and fig latices showed dose-dependent cytotoxicity (P < 0.05), while encapsulation significantly suppressed the toxicity, likely due to limited immediate bioavailability and controlled release. Apoptosis results, normalized to the cytotoxicity data, also showed dose-dependency (P < 0.05) especially for Aydin Black fig latex. The significant differences in apoptosis between the 35 mg L-1 of encapsulated and unencapsulated Aydin Black fig latex treatments at 24 and 48 h (P = 0.000 and P = 0.012, respectively) further suggest that liposomal encapsulation modulates both cytotoxicity and apoptosis induction, potentially reducing off-target effects while maintaining bioactivity. CONCLUSION It has been determined that liposomal encapsulation significantly suppresses the cytotoxic and pro-apoptotic effects of ficin and fig latices. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Olcay Boyacioğlu
- Department of Food Engineering, Faculty of Engineering, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Seçil Tecimen
- Food Engineering Program, Graduate School of Natural and Applied Sciences, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Seda Örenay Boyacioğlu
- Department of Medical Genetics, School of Medicine, Aydın Adnan Menderes University, Aydın, Türkiye
| |
Collapse
|
2
|
El-Sayed SAM, Fouad GI, Rizk MZ, Beherei HH, Mabrouk M. Comparative Neuroprotective Potential of Nanoformulated and Free Resveratrol Against Cuprizone-Induced Demyelination in Rats. Mol Neurobiol 2025; 62:2710-2725. [PMID: 39152208 PMCID: PMC11790707 DOI: 10.1007/s12035-024-04415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Demyelination is a frequent yet crippling neurological disease associated with multiple sclerosis (MS). The cuprizone (CZ) model, which causes demyelination through oxidative stress and neuroinflammation, is a popular tool used by researchers to examine this process. The polyphenol resveratrol (RESV) has become a promising neuroprotective agent in seeking for efficient therapies. In a rat model given CZ, we created and examined iron oxide nanoparticles (IONPs) loaded with RESV (IONP-RESV) to see how effective they were as a therapeutic agent against free RESV. According to molecular mechanisms, exposure to CZ resulted in a marked downregulation of myelin proteolipid protein (PLP) expression and an overexpression of the inflammatory markers tumor necrosis factor-α (TNF-α) and S100β, which are indicators of demyelination and neuroinflammation. It is remarkable that these CZ-induced alterations could be reversed by therapy with either RESV or IONP-RESV. Interestingly, IONP-RESV showed even stronger anti-inflammatory activity, as shown by a more noticeable downregulation of TNF-α and S100β expression. These results were confirmed by histopathological examination of the cerebral cortices. Our findings support the better neuroprotective benefits of RESV-loaded IONPs over free RESV in reducing demyelination and neuroinflammation brought on by CZ. Owing to their pro-remyelinating, anti-inflammatory, and antioxidant properties, RESV-loaded IONPs show promise as a neurotherapeutic intervention in the future for neurological diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt.
| | - Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
3
|
Kasap Acungil Z, Tayhan SE, Tosun NG, Nacar T. The Interactions of Resveratrol and Sodium Valproate on Penicillin-Induced Epilepsy Model: Electrophysiological and Molecular Study. Mol Neurobiol 2025; 62:3673-3683. [PMID: 39316354 DOI: 10.1007/s12035-024-04502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
Epilepsy represents the most prevalent chronic neurological disease, characterized by spontaneous recurrent seizures. In experimental epilepsy models created by different methods, resveratrol has been demonstrated to reduce epileptiform activity and exhibit neuroprotective properties. A penicillin-induced model of epileptogenesis was used to investigate the effects of resveratrol and its combination with sodium valproate on epileptiform activity. The study design was an in vivo animal experimental study. Forty Wistar-albino rats were divided into five groups, each with eight rats. The groups are categorized as the saline group, penicillin group (only penicillin), resveratrol group, sodium valproate group, and resveratrol + sodium valproate group. ECoG recording was taken for 180 min in all groups and statistically evaluated. GABAα1, mGluR1/mGluR5, NMDAR1 receptor expressions in the hippocampus, and S100B level in serum were measured. The spike frequency decreased statistically to 60th min in the sodium valproate group and 150th min in the resveratrol group. The spike frequency decreased statistically in the 20th min and later measurements of the recording in the resveratrol + sodium valproate group. GABAα1 receptor expression was increased in all groups compared to the penicillin group. mGluR1/mGluR5, NMDAR1 receptor expression was decreased in all groups compared to the penicillin group. Serum S100B level increased in all groups compared to the penicillin group. There was no statistically significant difference in epileptiform activity when resveratrol alone was administered in the penicillin-induced epilepsy model. Resveratrol co-administered with sodium valproate significantly reduced epileptiform activity. Co-administration of the sodium valproate + resveratrol group made the receptor level's highest GABAα1receptor expression at receptors.
Collapse
Affiliation(s)
- Zeynep Kasap Acungil
- Department of Physiotherapy and Rehabilitation, Faculty of Health Science, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Secil Erden Tayhan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Nazan Goksen Tosun
- Department of Medical Services and Techniques, Vocational School of Health Services, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Tuncer Nacar
- Department of Physiology, Faculty of Medicine, Yüksek Ihtisas University, Ankara, Turkey
| |
Collapse
|
4
|
Wang L, Wang Y, Xie Q, Xu S, Yang C, Liu F, Liu Y, Wang F, Chen W, Li J, Sun L. Resveratrol liposomes reverse sorafenib resistance in renal cell carcinoma models by modulating PI3K-AKT-mTOR and VHL-HIF signaling pathways. Int J Pharm X 2024; 8:100280. [PMID: 39286037 PMCID: PMC11403058 DOI: 10.1016/j.ijpx.2024.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
RCC is a malignant tumor arising from the urothelium of renal parenchyma that remains challenging to be treated. In this study, we assessed the anti-tumor effects of Resveratrol liposomes (RES-lips) combined with sorafenib on renal cell carcinoma (RCC) and explored the potential mechanisms underlying the improvement of sorafenib resistance models. Tumor growth and survival following treatment with sorafenib alone or in combination with RES-lips was evaluated in a RCC xenograft mouse model. Flow cytometry results demonstrated that the combination of RES-lips and sorafenib significantly enhanced the G1/S phase arrest of sorafenib-resistant cells. When compared with the PBS or monotherapy groups, treatment with RES-lips combined with sorafenib exhibited significant inhibition of tumor growth in the RCC xenograft mouse model with tumor growth inhibition (TGI) rates and complete remission (CR) rates of 90.1 % and 50 %, respectively. Concersely, the maximum TGI rate was 53.6 % in the RES-lips monoherapy group and 29.2 % and in the sorafenib monotherapy group, and no animals achieved CR. Additionally, the current combination therapy promoted the proliferation of unactivated splenic lymphocytes and the proliferation of soybean protein A- and lipopolysaccharide-stimulated lymphocytes compared with PBS or monotherapy treatments. Further western blotting analysis suggested that RES-lips may enhance the resistance of RCC to sorafenib by inhibiting PI3K-AKT-mTOR and VHL-HIF signaling pathways, ultimately augmenting the tumor growth inhibition effect of the combination therapy. RES-lips may improve the sorafenib resistance in RCC, and the underlying mechanism may be related to the regulation of PI3K-AKT-mTOR and VHL-HIF signaling pathways.
Collapse
Affiliation(s)
- Ligang Wang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Health Management Center, Health Promotion Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiqi Xie
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Songcheng Xu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yang Liu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fuwei Wang
- Department of Oncology and Cancer Biotherapy Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, China
| | - Weinan Chen
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianchun Li
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
6
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
7
|
Socała K, Żmudzka E, Lustyk K, Zagaja M, Brighenti V, Costa AM, Andres-Mach M, Pytka K, Martinelli I, Mandrioli J, Pellati F, Biagini G, Wlaź P. Therapeutic potential of stilbenes in neuropsychiatric and neurological disorders: A comprehensive review of preclinical and clinical evidence. Phytother Res 2024; 38:1400-1461. [PMID: 38232725 DOI: 10.1002/ptr.8101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
8
|
Mishra K, Rana R, Tripathi S, Siddiqui S, Yadav PK, Yadav PN, Chourasia MK. Recent Advancements in Nanocarrier-assisted Brain Delivery of Phytochemicals Against Neurological Diseases. Neurochem Res 2023; 48:2936-2968. [PMID: 37278860 DOI: 10.1007/s11064-023-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Despite ongoing advancements in research, the inability of therapeutics to cross the blood-brain barrier (BBB) makes the treatment of neurological disorders (NDs) a challenging task, offering only partial symptomatic relief. Various adverse effects associated with existing approaches are another significant barrier that prompts the usage of structurally diverse phytochemicals as preventive/therapeutic lead against NDs in preclinical and clinical settings. Despite numerous beneficial properties, phytochemicals suffer from poor pharmacokinetic profile which limits their pharmacological activity and necessitates the utility of nanotechnology for efficient drug delivery. Nanocarriers have been shown to be proficient carriers that can enhance drug delivery, bioavailability, biocompatibility, and stability of phytochemicals. We, thus, conducted a meticulous literature survey using several electronic databases to gather relevant studies in order to provide a comprehensive summary about the use of nanocarriers in delivering phytochemicals as a treatment approach for NDs. Additionally, the review highlights the mechanisms of drug transport of nanocarriers across the BBB and explores their potential future applications in this emerging field.
Collapse
Affiliation(s)
- Keerti Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Rafquat Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shourya Tripathi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Prem N Yadav
- Division of Neuro Science & Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
9
|
Li Y, Sun K, Chen S, Zhao J, Lei Y, Geng L. Nano-Resveratrol Liposome: Physicochemical Stability, In Vitro Release, and Cytotoxicity. Appl Biochem Biotechnol 2023; 195:5950-5965. [PMID: 36729296 DOI: 10.1007/s12010-023-04344-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/03/2023]
Abstract
Nano-resveratrol liposome (RES-LIP) was prepared by the thin film rotary-evaporated method combined with ultrasonication and characterized by transmission electron microscopy (TEM), zeta potential, dynamic light scattering (DLS), and Fourier-transform infrared (FT-IR). The physicochemical stability, in vitro release, antioxidant activity, and cytotoxicity of RES-LIP were studied. Data showed that RES-LIP was a spherical vesicle with a diameter of less than 100 nm, the zeta potential was - 60 mV and the encapsulation efficiency was 86.78%. The physicochemical stability of RES-LIP was determined by Ea, ΔG, ΔH, and ΔS, which suggested that the process of RES-LIP degradation was spontaneous and endothermic. The in vitro release of RES-LIP was pH-dependent, belonged to the Weibull model, and was non-Fick diffusion. The antioxidant activity of RES-LIP was stronger than free resveratrol. The MTT assay and flow cytometry results suggested that resveratrol decreased cytotoxicity after being encapsulated by liposome. The prepared RES-LIP had high encapsulation efficiency, was sustained-release, had low cytotoxicity, was pH-targeted, and had potential usage in food and medicine fields.
Collapse
Affiliation(s)
- Yayong Li
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
| | - Kaiyue Sun
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shenna Chen
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Juan Zhao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuhua Lei
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Lina Geng
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
10
|
Malaník M, Čulenová M, Sychrová A, Skiba A, Skalicka-Woźniak K, Šmejkal K. Treating Epilepsy with Natural Products: Nonsense or Possibility? Pharmaceuticals (Basel) 2023; 16:1061. [PMID: 37630977 PMCID: PMC10459181 DOI: 10.3390/ph16081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Epilepsy is a neurological disease characterized by recurrent seizures that can lead to uncontrollable muscle twitching, changes in sensitivity to sensory perceptions, and disorders of consciousness. Although modern medicine has effective antiepileptic drugs, the need for accessible and cost-effective medication is urgent, and products derived from plants could offer a solution. For this review, we have focused on natural compounds that have shown anticonvulsant activity in in vivo models of epilepsy at relevant doses. In some cases, the effects have been confirmed by clinical data. The results of our search are summarized in tables according to their molecular targets. We have critically evaluated the data we present, identified the most promising therapeutic candidates, and discussed these in the text. Their perspectives are supported by both pharmacokinetic properties and potential interactions. This review is intended to serve as a basis for future research into epilepsy and related disorders.
Collapse
Affiliation(s)
- Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Marie Čulenová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| | - Adrianna Skiba
- Department of Natural Products Chemistry, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (A.S.); (K.S.-W.)
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (A.S.); (K.S.-W.)
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic; (A.S.); (K.Š.)
| |
Collapse
|
11
|
Németh Z, Csóka I, Semnani Jazani R, Sipos B, Haspel H, Kozma G, Kónya Z, Dobó DG. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics 2022; 14:1798. [PMID: 36145546 PMCID: PMC9503861 DOI: 10.3390/pharmaceutics14091798] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Liposomal formulations, as versatile nanocarrier systems suitable for targeted delivery, have a highly focused role in the therapy development of unmet clinical needs and diagnostic imaging techniques. Formulating nanomedicine with suitable zeta potential is an essential but challenging task. Formulations with a minimum ±30 mV zeta potential are considered stable. The charge of the phospholipid bilayer can be adjusted with membrane additives. The present Quality by Design-derived study aimed to optimise liposomal formulations prepared via the thin-film hydration technique by applying stearylamine (SA) or dicetyl phosphate (DCP) as charge imparting agents. This 32 fractional factorial design-based study determined phosphatidylcholine, cholesterol, and SA/DCP molar ratios for liposomes with characteristics meeting the formulation requirements. The polynomials describing the effects on the zeta potential were calculated. The optimal molar ratios of the lipids were given as 12.0:5.0:5.0 for the SA-PBS pH 5.6 (optimised sample containing stearylamine) and 8.5:4.5:6.5 for the DCP-PBS pH 5.6 (optimised sample containing dicetyl phosphate) particles hydrated with phosphate-buffered saline pH 5.6. The SA-PBS pH 5.6 liposomes had a vesicle size of 108 ± 15 nm, 0.20 ± 0.04 polydispersity index, and +30.1 ± 1.2 mV zeta potential, while these values were given as 88 ± 14 nm, 0.21 ± 0.02, and -36.7 ± 3.3 mV for the DCP-PBS pH 5.6 vesicles. The prepared liposomes acquired the requirements of the zeta potential for stable formulations.
Collapse
Affiliation(s)
- Zsófia Németh
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| | - Reza Semnani Jazani
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| | - Bence Sipos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| | - Henrik Haspel
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, Institute of Chemistry, University of Szeged, 1, Rerrich Béla Sqare, H-6720 Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, Institute of Chemistry, University of Szeged, 1, Rerrich Béla Sqare, H-6720 Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, Institute of Chemistry, University of Szeged, 1, Rerrich Béla Sqare, H-6720 Szeged, Hungary
| | - Dorina Gabriella Dobó
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6, Eötvös Street, H-6720 Szeged, Hungary
| |
Collapse
|
12
|
Pedroso J, Schneider SE, Lima-Rezende CA, Aguiar GPS, Müller LG, Oliveira JV, Piato A, Siebel AM. Evaluation of Resveratrol and Piceatannol Anticonvulsant Potential in Adult Zebrafish (Danio rerio). Neurochem Res 2022; 47:3250-3260. [PMID: 35750876 DOI: 10.1007/s11064-022-03656-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023]
Abstract
Epilepsy is a common neurological disorder which affects 50 million people worldwide. Patients with epilepsy may present cognitive deficits and psychological impairment. Currently, 30% of patients fail to respond to any available antiseizure drug, and a significant number of patients do not well tolerate the offered treatments. Then, it is necessary to find out alternatives for controlling epileptic seizures. Studies have shown that despite its neuroprotective effects, resveratrol shows poor anticonvulsant properties. Resveratrol analog, piceatannol, possesses higher biological activity than resveratrol and could be an alternative to control seizure. Thus, the present study investigated the effects of resveratrol and piceatannol in pentylenetetrazole-induced seizures in adult zebrafish (Danio rerio). Only the experimental positive control (diazepam) showed anticonvulsant effect in this study. In addition, no behavioral changes were observed 24 h after seizure occurrence. Finally, the expression of genes related to neuronal activity (c-fos), neurogenesis (p70S6Ka and p70S6Kb), inflammatory response (interleukin 1β), and cell apoptosis (caspase-3) did not change by pentylenetetrazole-induced seizures. Therefore, we failed to observe any anticonvulsant and neuroprotective potential of resveratrol and piceatannol in adult zebrafish. However, resveratrol and piceatannol benefits in epilepsy are not discharged, and more studies are necessary.
Collapse
Affiliation(s)
- Jefferson Pedroso
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Sabrina Ester Schneider
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Cássia Alves Lima-Rezende
- División Ornitología, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina.,Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Gean Pablo S Aguiar
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Liz Girardi Müller
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - J Vladimir Oliveira
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.,Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Angelo Piato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anna Maria Siebel
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil. .,Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil.
| |
Collapse
|
13
|
Zamora-Bello I, Rivadeneyra-Domínguez E, Rodríguez-Landa JF. Anticonvulsant Effect of Turmeric and Resveratrol in Lithium/Pilocarpine-Induced Status Epilepticus in Wistar Rats. Molecules 2022; 27:3835. [PMID: 35744955 PMCID: PMC9231157 DOI: 10.3390/molecules27123835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that lacks a cure. The use of plant-derived antioxidant molecules such as those contained in turmeric powder and resveratrol may produce short-term anticonvulsant effects. A total of 42 three-month-old male Wistar rats were divided into six groups (n = 7 in each group): Vehicle (purified water), turmeric (150 and 300 mg/kg, respectively), and resveratrol (30 and 60 mg/kg, respectively), administered per os (p.o.) every 24 h for 35 days. Carbamazepine (300 mg/kg/5 days) was used as a pharmacological control for anticonvulsant activity. At the end of the treatment, status epilepticus was induced using the lithium-pilocarpine model [3 mEq/kg, intraperitoneally (i.p.) and 30 mg/kg subcutaneously (s.c.), respectively]. Seizures were evaluated using the Racine scale. The 300 mg/kg of turmeric and 60 mg/kg of resveratrol groups had an increased latency to the first generalized seizure. The groups treated with 150 and 300 mg/kg of turmeric and 60 mg/kg of resveratrol also had an increased latency to status epilepticus and a decreased number of generalized seizures compared to the vehicle group. The chronic administration of turmeric and resveratrol exerts anticonvulsant effects without producing kidney or liver damage. This suggests that both of these natural products of plant origin could work as adjuvants in the treatment of epilepsy.
Collapse
Affiliation(s)
- Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91000, Mexico; (I.Z.-B.); (J.F.R.-L.)
| | | | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91000, Mexico; (I.Z.-B.); (J.F.R.-L.)
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Mexico
| |
Collapse
|
14
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
15
|
Chopra H, Bibi S, Islam F, Ahmad SU, Olawale OA, Alhumaydhi FA, Marzouki R, Baig AA, Emran TB. Emerging Trends in the Delivery of Resveratrol by Nanostructures: Applications of Nanotechnology in Life Sciences. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/3083728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/27/2022] [Indexed: 09/01/2023]
Abstract
Resveratrol (RES) is a stilbene group of natural polyphenolic compounds in trees, peanuts, and grapes. RES is revealed with anticancer, antioxidant, anti‐inflammatory, and cardioprotective effects. Though it is proven with prominent therapeutic activity, low aqueous solubility, poor bioavailability, and short half‐life had hindered its use to exploit the potential. Also, the first‐pass metabolism and undergoing enterohepatic recirculation are obscure in the minds of researchers for their in vitro studies. Many approaches have been investigated and shown promising results in manipulating their physicochemical properties to break this barrier. Nanocarriers are one of them to reduce the first‐pass metabolism and to overcome other hurdles. This article reviews and highlights such encapsulation technologies. Nanoencapsulated RES improves in vitro antioxidant effect, and this review also highlights the new strategies and the concept behind how resveratrol can be handled and implemented with better therapeutic efficacy.
Collapse
|
16
|
Xu YY, Huo YF, Xu L, Zhu YZ, Wu YT, Wei XY, Zhou T. Resveratrol-loaded ovalbumin/Porphyra haitanensis polysaccharide composite nanoparticles: Fabrication, characterization and antitumor activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Vishwakarma S, Singh S, Singh TG. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol Biol Rep 2021; 49:1437-1452. [PMID: 34751915 DOI: 10.1007/s11033-021-06896-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Epileptic seizure-induced brain injuries include activation of neuroimmune response with activation of microglia, astrocytes cells releasing neurotoxic inflammatory mediators underlies the pathophysiology of epilepsy. A wide spectrum of neuroinflammatory pathways is involved in neurodegeneration along with elevated levels of inflammatory mediators indicating the neuroinflammation in the epileptic brain. Therefore, the neuroimmune response is commonly observed in the epileptic brain, indicating elevated cytokine levels, providing an understanding of the neuroinflammatory mechanism contributing to seizures recurrence. Clinical and experimental-based evidence suggested the elevated levels of cytokines responsible for neuronal excitation and blood-brain barrier (BBB) dysfunctioning causing the drug resistance in epilepsy. Therefore, the understanding of the pathogenesis of neuroinflammation in epilepsy, including migration of microglial cells releasing the inflammatory cytokines indicating the correlation of elevated levels of inflammatory mediators (interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) triggering the generation or recurrence of seizures. The current review summarized the knowledge regarding elevated inflammatory mediators as immunomodulatory response correlating multiple neuroinflammatory NF-kB, RIPK, MAPK, ERK, JNK, JAK-STAT signaling cascades in epileptogenesis. Further selective targeting of inflammatory mediators provides beneficial therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Shubham Vishwakarma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
18
|
Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021; 13:nu13093095. [PMID: 34578972 PMCID: PMC8470508 DOI: 10.3390/nu13093095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Stilbenoids are interesting natural compounds with pleiotropic in vitro and in vivo activity. Their well-documented biological properties include anti-inflammatory effects, anticancer effects, effects on longevity, and many others. Therefore, they are nowadays commonly found in foods and dietary supplements, and used as a part of treatment strategy in various types of diseases. Bioactivity of stilbenoids strongly depends on different types of factors such as dosage, food composition, and synergistic effects with other plant secondary metabolites such as polyphenols or vitamins. In this review, we summarize the existing in vitro, in vivo, and clinical data from published studies addressing the optimization of bioavailability of stilbenoids. Stilbenoids face low bioavailability due to their chemical structure. This can be improved by the use of novel drug delivery systems or enhancers, which are discussed in this review. Current in vitro and in vivo evidence suggests that both approaches are very promising and increase the absorption of the original substance by several times. However, data from more clinical trials are required.
Collapse
|
19
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
20
|
Li A, Tyson J, Patel S, Patel M, Katakam S, Mao X, He W. Emerging Nanotechnology for Treatment of Alzheimer's and Parkinson's Disease. Front Bioeng Biotechnol 2021; 9:672594. [PMID: 34113606 PMCID: PMC8185219 DOI: 10.3389/fbioe.2021.672594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The prevalence of the two most common neurodegenerative diseases, Parkinson's disease (PD) and Alzheimer's Disease (AD), are expected to rise alongside the progressive aging of society. Both PD and AD are classified as proteinopathies with misfolded proteins α-synuclein, amyloid-β, and tau. Emerging evidence suggests that these misfolded aggregates are prion-like proteins that induce pathological cell-to-cell spreading, which is a major driver in pathogenesis. Additional factors that can further affect pathology spreading include oxidative stress, mitochondrial damage, inflammation, and cell death. Nanomaterials present advantages over traditional chemical or biological therapeutic approaches at targeting these specific mechanisms. They can have intrinsic properties that lead to a decrease in oxidative stress or an ability to bind and disaggregate fibrils. Additionally, nanomaterials enhance transportation across the blood-brain barrier, are easily functionalized, increase drug half-lives, protect cargo from immune detection, and provide a physical structure that can support cell growth. This review highlights emergent nanomaterials with these advantages that target oxidative stress, the fibrillization process, inflammation, and aid in regenerative medicine for both PD and AD.
Collapse
Affiliation(s)
- Amanda Li
- Washington University School of Medicine, St. Louis, MO, United States
| | - Joel Tyson
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Shivni Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meer Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sruthi Katakam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, China
| |
Collapse
|
21
|
Akkaya H. Kisspeptin-10 Administration Regulates
mTOR and AKT Activities and Oxidative Stress in Mouse Cardiac Tissue. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zhang Y, Lv C, Zhao G. Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuan Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
|
24
|
Kuo YC, Wang IH, Rajesh R. Use of leptin-conjugated phosphatidic acid liposomes with resveratrol and epigallocatechin gallate to protect dopaminergic neurons against apoptosis for Parkinson's disease therapy. Acta Biomater 2021; 119:360-374. [PMID: 33189953 DOI: 10.1016/j.actbio.2020.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Complex liposomes were assembled with 1,2-distearoyl-sn-glycero-3-phosphocholine, dihexadecyl phosphate (DHDP), cholesterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (PA) to act as drug carriers for resveratrol (RES) and epigallocatechin gallate (EGCG). The liposomes were modified with leptin (Lep) on the surface to cross the blood-brain barrier (BBB) and to rescue degenerated dopaminergic neurons. The activity of RES and EGCG against neurotoxicity was investigated using an in vitro neurodegenerative model established by SH-SY5Y cells with an insult of 1-methyl-4-phenylpyridinium (MPP+). The results indicated that increasing the mole percentage of DHDP and PA increased the particle size and absolute zeta potential value, and improved the entrapment efficiency of RES and EGCG; however, this increase reduced the release rate of RES and EGCG and the grafting efficiency of Lep. The ability of Lep/RES-EGCG-PA-liposomes to cross the BBB was found to be higher than that of non-modified liposomes. Further, the addition of PA and Lep into liposomes enhanced cell viability and target efficiency. The immunofluorescence results demonstrated that the conjugation of Lep with liposomes enabled the docking of HBMECs and SH-SY5Y cells via Lep receptor, and enhanced their ability to permeate the BBB and cellular uptake. Immunofluorescence and western blot analysis also revealed that RES and EGCG encapsulated into liposomes could be a neural defensive strategy by reducing the apoptosis promotor protein Bcl-2 associated X protein and α-synuclein, and enhancement in the apoptosis inhibitor protein B cell lymphoma 2, tyrosine hydroxylase, and the dopamine transporter. Hence, Lep-PA-liposomes can be an excellent choice of potential delivery system for PD treatment.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC.
| | - I-Hsin Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| |
Collapse
|
25
|
Peraman R, Meka G, Chilamakuru NB, Kutagulla VK, Malla S, Ashby CR, Tiwari AK, Yiragamreddy PR. Novel stilbene scaffolds efficiently target Mycobacterium tuberculosis nucleoid-associated protein, HU. NEW J CHEM 2021. [DOI: 10.1039/d0nj05947a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Novel scaffolds of stilbene were identified as inhibitors of Mycobacterium tuberculosis by targeting the nucleoid-associated protein, HU, using molecular docking.
Collapse
Affiliation(s)
- Ramalingam Peraman
- Medicinal chemistry Division
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous
- Anantapur (AP)
- India
| | - Geethavani Meka
- Medicinal chemistry Division
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous
- Anantapur (AP)
- India
| | - Naresh Babu Chilamakuru
- Medicinal chemistry Division
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous
- Anantapur (AP)
- India
| | - Vinay Kumar Kutagulla
- Medicinal chemistry Division
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous
- Anantapur (AP)
- India
| | - Saloni Malla
- Department of Pharmacology & Experimental Therapeutics
- College of Pharmacy & Pharmaceutical Sciences
- The University of Toledo
- Toledo
- USA
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences
- St. John's University
- Queens
- USA
| | - Amit K. Tiwari
- Department of Pharmacology & Experimental Therapeutics
- College of Pharmacy & Pharmaceutical Sciences
- The University of Toledo
- Toledo
- USA
| | - Padmanabha Reddy Yiragamreddy
- Medicinal chemistry Division
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER)-Autonomous
- Anantapur (AP)
- India
| |
Collapse
|
26
|
Antioxidants Targeting Mitochondrial Oxidative Stress: Promising Neuroprotectants for Epilepsy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6687185. [PMID: 33299529 PMCID: PMC7710440 DOI: 10.1155/2020/6687185] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria are major sources of reactive oxygen species (ROS) within the cell and are especially vulnerable to oxidative stress. Oxidative damage to mitochondria results in disrupted mitochondrial function and cell death signaling, finally triggering diverse pathologies such as epilepsy, a common neurological disease characterized with aberrant electrical brain activity. Antioxidants are considered as promising neuroprotective strategies for epileptic condition via combating the deleterious effects of excessive ROS production in mitochondria. In this review, we provide a brief discussion of the role of mitochondrial oxidative stress in the pathophysiology of epilepsy and evidences that support neuroprotective roles of antioxidants targeting mitochondrial oxidative stress including mitochondria-targeted antioxidants, polyphenols, vitamins, thiols, and nuclear factor E2-related factor 2 (Nrf2) activators in epilepsy. We point out these antioxidative compounds as effectively protective approaches for improving prognosis. In addition, we specially propose that these antioxidants exert neuroprotection against epileptic impairment possibly by modulating cell death interactions, notably autophagy-apoptosis, and autophagy-ferroptosis crosstalk.
Collapse
|
27
|
Cascione M, De Matteis V, Leporatti S, Rinaldi R. The New Frontiers in Neurodegenerative Diseases Treatment: Liposomal-Based Strategies. Front Bioeng Biotechnol 2020; 8:566767. [PMID: 33195128 PMCID: PMC7649361 DOI: 10.3389/fbioe.2020.566767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the onset of neurodegenerative (ND) diseases is strongly widespread due to the age increase of the world population. Despite the intensive investigations boosted by the scientific community, an efficacious therapy has not been outlined yet. The drugs commonly used are only able to relieve symptom severity; following their oral or intravenous administration routes, their effectiveness is strictly limited due to their low ability to reach the Central Nervous System (CNS) overcoming the Blood Brain Barrier (BBB). Starting from these assumptions, the engineered-nanocarriers, such as lipid-nanocarriers, are suitable agents to enhance the delivery of drugs into the CNS due to their high solubility, bioavailability, and stability. Liposomal delivery systems are considered to be the ideal carriers, not only for conventional drugs but also for neuroprotective small molecules and green-extracted compounds. In the current work, the LP-based drug delivery improvements in in vivo applications against ND disorders were carefully assessed.
Collapse
Affiliation(s)
- Mariafrancesca Cascione
- Department of Mathematics and Physics "Ennio De Giorgi," University of Salento, Lecce, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics "Ennio De Giorgi," University of Salento, Lecce, Italy
| | - Stefano Leporatti
- National Research Council Nanotec Institute of Nanotechnology, Lecce, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics "Ennio De Giorgi," University of Salento, Lecce, Italy
| |
Collapse
|
28
|
Transdermal Delivery of Small-Sized Resveratrol Nanoparticles to Epidermis Using Anionic Phospholipids. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20951443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Composite nanoparticles composed of anionic phospholipid of 1,2-dipalmitoyl- sn-glycero-3-phosphorylglycerol (DPPG) and resveratrol (Res) were successfully prepared by mixing them in water and a subsequent heating/cooling process. Small-sized DPPG-Res nanoparticles (<60 nm) could be prepared by ultrasonic fragmentation. Upon addition of size-controlled fluorescently labeled Res (FLRes) nanoparticles stabilized with DPPG (DPPG-FLRes) to rat skin tissue, FLRes molecules infiltrated into the epidermis layer permeating stratum corneum.
Collapse
|
29
|
Dai Y, Song Y, Xie J, Xiao G, Li X, Li Z, Gao F, Zhang Y, He E, Xu S, Wang Y, Zheng W, Jiang X, Qi Z, Meng D, Fan Z, Cai X. CB1-Antibody Modified Liposomes for Targeted Modulation of Epileptiform Activities Synchronously Detected by Microelectrode Arrays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41148-41156. [PMID: 32809788 DOI: 10.1021/acsami.0c13372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Temporal lobe epilepsy (TLE) is a focal, recurrent, and refractory neurological disorder. Therefore, precisely targeted treatments for TLE are greatly needed. We designed anti-CB1 liposomes that can bind to CB1 receptors in the hippocampus to deliver photocaged compounds (ruthenium bipyridine triphenylphosphine γ-aminobutyric acid, RuBi-GABA) in the TLE rats. A 16-channel silicon microelectrode array (MEA) was implanted for simultaneously monitoring electrophysiological signals of neurons. The results showed that anti-CB1 liposomes were larger in size and remained in the hippocampus longer than unmodified liposomes. Following the blue light stimulation, the neural firing rates and the local field potentials of hippocampal neurons were significantly reduced. It is indicated that RuBi-GABA was enriched near hippocampal neurons due to anti-CB1 liposome delivery and photolyzed by optical stimulation, resulting dissociation of GABA to exert inhibitory actions. Furthermore, K-means cluster analysis revealed that the firing rates of interneurons were decreased to a greater extent than those of pyramidal neurons, which may have been a result of the uneven diffusion of RuBi-GABA due to liposomes binding to CB1. In this study, we developed a novel, targeted method to regulate neural electrophysiology in the hippocampus of the TLE rat using antibody-modified nanoliposomes, implantable MEA, and photocaged compounds. This method effectively suppressed hippocampal activities during seizure ictus with high spatiotemporal resolution, which is a crucial exploration of targeted therapy for epilepsy.
Collapse
Affiliation(s)
- Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuanyu Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ziyue Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Gao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yun Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhimei Qi
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongdong Meng
- National Engineering Research Center for DPSSL, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhongwei Fan
- National Engineering Research Center for DPSSL, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
30
|
Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 2020; 589:119832. [PMID: 32877730 DOI: 10.1016/j.ijpharm.2020.119832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Neurological disorders have been growing in recent years and are highly prevalent globally. Resveratrol (RES) is a natural product from plant sources such as grape skins. This compound has shown biological activity in many diseases, in particular, those that act on the central nervous system. The mechanism of action and the key points in neurological disorders were described and show the targeted mechanism of action. Due to the insolubility of this compound; the use of nanotechnology-based systems has been proposed for the incorporation of RES and RES-loaded nanocarriers have been designed for intranasal administration, oral or parenteral routes to deliver it to the brain. In general, these nanosystems have shown to be effective in many studies, pharmacological and pharmacokinetic assays, as well as some cell studies. The outcomes show that RES has been reported in human clinical trials for some neurological diseases, although no studies were performed in humans using nanocarriers, animal and/or cellular models have been reported to show good results regarding therapeutics on neurological diseases. Thus, the use of this nutraceutical has shown true for neurological diseases and its loading into nanocarriers displaying good results on the stability, delivery and targeting to the brain.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil
| | - Marlus Chorilli
- São Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo 14801-903, Brazil.
| |
Collapse
|
31
|
Long XY, Wang S, Luo ZW, Zhang X, Xu H. Comparison of three administration modes for establishing a zebrafish seizure model induced by N-Methyl-D-aspartic acid. World J Psychiatry 2020; 10:150-161. [PMID: 32844092 PMCID: PMC7418578 DOI: 10.5498/wjp.v10.i7.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/25/2020] [Accepted: 05/26/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epilepsy is a complex neurological disorder characterized by recurrent, unprovoked seizures resulting from the sudden abnormal discharge of brain neurons. It leads to transient brain dysfunction, manifested by abnormal physical movements and consciousness. It can occur at any age, affecting approximately 65 million worldwide, one third of which are still estimated to suffer from refractory seizures. There is an urgent need for further establishment of seizure models in animals, which provides an approach to model epilepsy and could be used to identify novel anti-epileptic therapeutics in the future. AIM To compare three administration modes for establishing a seizure model caused by N-Methyl-D-aspartic acid (NMDA) in zebrafish. METHODS Three administration routes of NMDA, including immersion, intravitreal injection and intraperitoneal injection, were compared with regard to their effects on inducing seizure-like behaviors in adult zebrafish. We evaluated neurotoxicity by observing behavioral changes in zebrafish and graded those behaviors with a seizure score. In addition, the protective effects of MK-801 (Dizocilpine) and natural active constituent resveratrol against NMDA-induced alterations were studied. RESULTS The three NMDA-administration methods triggered different patterns of the epileptic process in adult zebrafish. Seizure scores were increased after increasing NMDA concentration regardless of the mode of administration. However, the curve of immersion continuously rose to a high plateau (after 50 min), while the curves of intravitreal injection and intraperitoneal injection showed a spike in the early stage (10-20 min) followed by a steady decrease in seizure scores. Furthermore, pretreatment with resveratrol and MK-801 significantly delayed seizure onset time and lowered seizure scores. CONCLUSION By comparing the three methods of administration, intravitreal injection of NMDA was the most suitable for establishing an acute epileptic model in zebrafish. Thus, intraperitoneal injection in zebrafish can be applied to simulate diseases such as epilepsy. In addition, NMDA immersion may be an appropriate method to induce persistent seizures. Moreover, MK-801 and resveratrol showed strong anti-epileptic effects; thus, both of them may be clinically valuable treatments for epilepsy.
Collapse
Affiliation(s)
- Xin-Yi Long
- Queen Mary School of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Shuang Wang
- Queen Mary School of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Wen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hong Xu
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
| |
Collapse
|
32
|
Moraes DS, Moreira DC, Andrade JMO, Santos SHS. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep 2020; 9:46-51. [PMID: 33336103 PMCID: PMC7733131 DOI: 10.1016/j.ibror.2020.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Sirtuins (SIRTs) are a protein family with high preservation degree among evolutionary scale. SIRTs are histone deacetylases regulatory enzymes of genetic material deeply involved in numerous physiological tasks including metabolism, brain function and aging. Mammals sirtuins comprise seven enzymatic components (SIRT1–SIRT7). The highest studied sirtuin is SIRT1, which plays an essential position in the prevention and evolution of neuro-disorders. Resveratrol (3,5,4-trihydroxystylbene) (RSV) is a polyphenol, which belongs to a family compounds identified as stilbenes, predominantly concentrated in grapes and red wine. RSV is the must studied Sirtuin activator and is used as food supplementary compound. Resveratrol exhibits strong antioxidant activity, reducing free radicals, diminishing quinone-reductase-2 activity and exerting positive regulation of several endogenous enzymes. Resveratrol is also able to inhibit pro-inflammatory factors, reducing the stimulation of the nuclear factor kB (NF-kB) and the release of endogenous cytokines. Resveratrol treatment can modulate multiple signaling pathway effectors related to programmed cell death, cell survival, and synaptic plasticity. In this context, the present review looks over news and the role of Sirtuins activation and resveratrol effects on modulating target genes, cognition and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel Silva Moraes
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daniele Cristina Moreira
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil.,Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
33
|
Wu M, Zhong C, Deng Y, Zhang Q, Zhang X, Zhao X. Resveratrol loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles for tail vein injection II: pharmacokinetics, tissue distribution and bioavailability. Drug Deliv 2020; 27:81-90. [PMID: 31858857 PMCID: PMC6968672 DOI: 10.1080/10717544.2019.1704944] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There are many kinds of biological activities of resveratrol itself, but its clinical application is limited by its poor solubility in water and low bioavailability. Therefore, we have prepared glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles (GL-HSA-RESNPs). The purpose of this study was to investigate the bioavailability, pharmacokinetics and tissue distribution of resveratrol in rats after single-dose tail vein injection administration of GL-HSA-RESNPs. A sensitive and reliable high performance liquid chromatography (HPLC) method was established to verify the content of resveratrol in rat plasma and organs. The Cmax value after GL-HSA-RESNPs administration was significantly higher than that of resveratrol suspension (933 ± 76.64 ng/mL vs. 618 ± 42.54 ng/mL, p < .01). The Tmax value obtained after GL-HSA-RESNPs administration was significantly shorter than that after resveratrol suspension administration (0.17 ± 0.01 h vs. 0.25 ± 0.01 h, p < .001). The bioavailability of GL-HSA-RESNPs was 4.25 times higher than that of the pure resveratrol. The concentration of resveratrol in the main organs of rats treated with the GL-HSA-RESNPs was higher than that in rats treated with the pure resveratrol. Rats treated with GL-HSA-RESNPs had the highest concentration of resveratrol in their liver. It is indicated that GL-HSA-RESNPs is a promising liver-targeted delivery system that improves the in vivo bioavailability of resveratrol.
Collapse
Affiliation(s)
- Mingfang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| | - Chen Zhong
- State Key laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiping Deng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| | - Xiaoxue Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China
| |
Collapse
|
34
|
Bayat F, Hosseinpour-Moghadam R, Mehryab F, Fatahi Y, Shakeri N, Dinarvand R, Ten Hagen TLM, Haeri A. Potential application of liposomal nanodevices for non-cancer diseases: an update on design, characterization and biopharmaceutical evaluation. Adv Colloid Interface Sci 2020; 277:102121. [PMID: 32092487 DOI: 10.1016/j.cis.2020.102121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Liposomes, lipid-based vesicular systems, have attracted major interest as a means to improve drug delivery to various organs and tissues in the human body. Recent literature highlights the benefits of liposomes for use as drug delivery systems, including encapsulating of both hydrophobic and hydrophilic cargos, passive and active targeting, enhanced drug bioavailability and therapeutic effects, reduced systemic side effects, improved cargo penetration into the target tissue and triggered contents release. Pioneering work of liposomes researchers led to introduction of long-circulating, ligand-targeted and triggered release liposomes, as well as, liposomes containing nucleic acids and vesicles containing combination of cargos. Altogether, these findings have led to widespread application of liposomes in a plethora of areas from cancer to conditions such as cardiovascular, neurologic, respiratory, skin, autoimmune and eye disorders. There are numerous review articles on the application of liposomes in treatment of cancer, which seems the primary focus, whereas other diseases also benefit from liposome-mediated treatments. Therefore, this article provides an illustrated detailed overview of liposomal formulations, in vitro characterization and their applications in different disorders other than cancer. Challenges and future directions, which must be considered to obtain the most benefit from applications of liposomes in these disorders, are discussed.
Collapse
Affiliation(s)
- Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hosseinpour-Moghadam
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niayesh Shakeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC Cancer Center, Rotterdam, the Netherlands.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Dhir A. Natural polyphenols in preclinical models of epilepsy. Phytother Res 2020; 34:1268-1281. [DOI: 10.1002/ptr.6617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of MedicineUniversity of California, Davis Sacramento California
| |
Collapse
|
36
|
Ghosh S, Lalani R, Patel V, Bhowmick S, Misra A. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opin Drug Deliv 2019; 16:1287-1311. [DOI: 10.1080/17425247.2019.1676721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Rohan Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Vivek Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Subhas Bhowmick
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
37
|
Santos AC, Sequeira JA, Pereira I, Cabral C, Collado Gonzallez M, Fontes-Ribeiro C, Ribeiro AJ, Lvov YM, Veiga FJ. Sonication-assisted Layer-by-Layer self-assembly nanoparticles for resveratrol delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110022. [DOI: 10.1016/j.msec.2019.110022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/23/2019] [Accepted: 07/25/2019] [Indexed: 01/04/2023]
|
38
|
Micronized resveratrol shows promising effects in a seizure model in zebrafish and signalizes an important advance in epilepsy treatment. Epilepsy Res 2019; 159:106243. [PMID: 31786493 DOI: 10.1016/j.eplepsyres.2019.106243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023]
Abstract
Resveratrol is a natural non-flavonoid polyphenolic that has been emerging in epilepsy treatment. Despite its pharmacological properties, the poor bioavailability of resveratrol has been an important barrier that hinders its application as an anticonvulsant. The aim of this work was to improve resveratrol's anticonvulsant effects by micronizing this compound through supercritical fluid micronization technology, which promotes an increase of the particles' surface area and allows significantly reduced particle size to be obtained. We obtained commercial and micronized resveratrol and investigated the anticonvulsant effects of resveratrol as commercially found and micronized resveratrol in a pentylenetetrazole-induced seizure model in zebrafish (Danio rerio) larvae. Diazepam was used as the positive control. Also, animals had their locomotor and exploratory activity analyzed 24 h after the seizure occurrence. The occurrence of the tonic-clonic seizure stage was only prevented by diazepam and micronized resveratrol, unlike the non-processed compound. The seizure development was significantly slowed by diazepam and micronized resveratrol, while non-micronized resveratrol was not able to increase the latency of seizure stages. In addition, diazepam and micronized resveratrol prevented the deleterious effects of pentylenetetrazole-induced seizures on animals' locomotor and exploratory behaviour. Obtained data demonstrates that the micronization process potentiates the anticonvulsant effect of resveratrol. Micronized resveratrol achieved a similar effect to the classical drug diazepam, with the benefit that it may be a safe drug candidate to be used during the neurodevelopmental stage.
Collapse
|
39
|
Luo ZW, Wang HT, Wang N, Sheng WW, Jin M, Lu Y, Bai YJ, Zou SQ, Pang YL, Xu H, Zhang X. Establishment of an adult zebrafish model of retinal neurodegeneration induced by NMDA. Int J Ophthalmol 2019; 12:1250-1261. [PMID: 31456914 PMCID: PMC6694058 DOI: 10.18240/ijo.2019.08.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
AIM To establish a model of retinal neurodegeneration induced by N-Methyl-D-aspartic acid (NMDA) in adult zebrafish. METHODS We compared the effects of three different NMDA delivery methods on retinal neurodegeneration in adult zebrafish: immersion (I.M.), intravitreal injection (I.V.), and intraperitoneal injection (I.P.), and examined retinal pathology and degeneration by hematoxylin and eosin and TUNEL staining in the treated zebrafish. Effects of the NMDA receptor antagonist MK-801 and the natural product resveratrol on NMDA-induced retinal neurodegeneration were also assessed. RESULTS The thickened inner retina was seen in histology with 100 µmol/L NMDA by I.M. administration. Significant apoptosis in the retinal ganglion cell layer and retinal thickness reduction occurred in 0.5 mol/L NMDA I.P. administration group.Seizure-like behavioral changes, but no retinal histological alteration occurred in 16 mg/kg NMDA I.P. administration group. Resveratrol and MK-801 prevented NMDA-induced retinal neurodegeneration in the zebrafish. CONCLUSION Among the three drug administration methods, I.V. injection of NMDA is the most suitable for establishment of an acute retinal damage model in zebrafish. I.M. with NMDA is likely the best for use as a chronic retinal damage model. I.P. treatment with NMDA causes brain damage. Resveratrol and MK801 may be a clinically valuable treatment for retinal neurodegeneration.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Han-Tsing Wang
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| | - Ning Wang
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Wei-Wei Sheng
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
| | - Ye Lu
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
| | - Yi-Jiang Bai
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Queen Mary School of Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Su-Qi Zou
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| | - Yu-Lian Pang
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
| | - Hong Xu
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University; Jiangxi Research Institute of Ophthalmology & Visual Science, Nanchang 330006, Jiangxi Province, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang 330031, Jiangxi Province, China
| |
Collapse
|
40
|
Cicero AF, Ruscica M, Banach M. Resveratrol and cognitive decline: a clinician perspective. Arch Med Sci 2019; 15:936-943. [PMID: 31360188 PMCID: PMC6657254 DOI: 10.5114/aoms.2019.85463] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) belongs to a family of polyphenolic compounds known as stilbenes, particularly concentrated in grape and red wine. The aim of our review was to critically review the available evidence of resveratrol effects on brain function and its potential impact on therapy. In preclinical models of cognitive decline, resveratrol displays potent antioxidant activity by scavenging free radicals, reducing quinone reductase 2 activity and upregulating endogenous enzymes. Resveratrol also inhibits pro-inflammatory enzyme expression, reduces nuclear factor-κB activation and cytokine release. Treatment with resveratrol can affect multiple signaling pathway effectors involved in cell survival, programmed cell death and synaptic plasticity. Direct and/or indirect activation of the deacetylase sirtuins by resveratrol has also been suggested. In humans, clinical evidence derived from randomized clinical trials suggests that resveratrol is able to improve cerebral blood flow, cerebral vasodilator responsiveness to hypercapnia, some cognitive tests, perceived performances, and the Aβ40 plasma and cerebrospinal fluid level.
Collapse
Affiliation(s)
- Arrigo F.G. Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Bimolecular Sciences, University of Milan, Milan, Italy
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
41
|
Singh M, Devi S, Rana VS, Mishra BB, Kumar J, Ahluwalia V. Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities. J Microencapsul 2019; 36:215-235. [PMID: 31092084 DOI: 10.1080/02652048.2019.1617361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bio-availability is a major concern in delivery of dietary phytochemicals for better bio-efficacy. The reduced bio-availability of food bioactive compounds is evident due to degradation during human digestion process which involves liberation, absorption, distribution, metabolism and elimination. The bio-efficacy of any nutrient can be increased by increasing bio-availability. Different technologies are available for engineered efficient delivery systems; still many challenges remain with advancement of delivery systems. The ease of preparedness and adaptability of liposomes has resulted in wide-range of applicability and acceptability in scientific field, especially as delivery vehicles. In view, of properties like biocompatibility and biodegradability, liposomes have been modified with different usable methodologies for delivery of phytochemicals. The aim of this review is to abridge liposomes, methods of preparation, their application as delivery cargo in dietary phytochemicals, result of using different preparation techniques on properties.
Collapse
Affiliation(s)
- Mangat Singh
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| | - Shanti Devi
- b Chemistry Division , Forest Research Institute , Dehradun , India
| | - Virendra S Rana
- c Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Bhuwan B Mishra
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| | - Jitendra Kumar
- c Division of Agricultural Chemicals , ICAR-Indian Agricultural Research Institute , New Delhi , India
| | - Vivek Ahluwalia
- a Bioproduct Chemistry Laboratory , Center of Innovative and Applied Bioprocessing , Mohali , India
| |
Collapse
|
42
|
Ahmadi Z, Mohammadinejad R, Ashrafizadeh M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Feng Y, He Z, Mao C, Shui X, Cai L. Therapeutic Effects of Resveratrol Liposome on Muscle Injury in Rats. Med Sci Monit 2019; 25:2377-2385. [PMID: 30936416 PMCID: PMC6457134 DOI: 10.12659/msm.913409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In this study we prepared liposome microbubbles loading resveratrol (LMLR) and evaluated its therapeutic effect on injury of gastrocnemius muscle in rats. MATERIAL AND METHODS LMLR was prepared and characterized by particle size, potential, and microscopy, and a rat model of acute blunt injury of gastrocnemius muscle was established. After treatments with resveratrol or LMLR, the therapeutic effects were evaluated by hematoxylin-eosin (HE) staining. The expression of MHCIIB and vimentin in mRNA level was measured by real-time PCR. The expression of desmin and collagen I protein was assessed by immunohistochemistry. RESULTS LMLR showed regular cycle shape in a size of ~1000 nm. LMLR was negatively charged (-30 mV). The in vitro release of LMLR was close to 80% at 10 h and 90% at 48 h. Acute gastrocnemius muscle injury was established in rats and tissue recovery was observed after LMLR treatment as evidenced by HE staining, decreased expression of MHCIIB, and increased expression of vimentin. Moreover, LMLR treatment obviously facilitated desmin expression and reduced collagen I expression. CONCLUSIONS LMLR is effective in treating acute blunt injury of gastrocnemius muscle in rats.
Collapse
Affiliation(s)
- Yongzeng Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Zili He
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Cong Mao
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Xiaolong Shui
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| | - Leyi Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
44
|
Kataria R, Khatkar A. Resveratrol in Various Pockets: A Review. Curr Top Med Chem 2019; 19:116-122. [DOI: 10.2174/1568026619666190301173958] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/05/2019] [Accepted: 02/23/2019] [Indexed: 12/21/2022]
Abstract
Several phenolic compounds bind to proteins (such as enzymes) and interfere in their catalytic
mechanism. Interaction studies of natural polyphenol; Resveratrol with various targets like with
tubulin, protein kinase C alpha (PKCα), phosphodiesterase-4D, human oral cancer cell line proteins,
DNA sequences having AATT/TTAA segments, protein kinase C alpha, lysine-specific demethylase 1
have been reviewed in this article. Simulation studies indicate that resveratrol and its analogs/ derivatives
show good interaction with the target receptor through its hydroxyl groups by forming hydrogen
bonds and hydrophobic interactions with amino acid residues at the binding site. Binding geometry and
stability of complex formed by resveratrol show that it is a good inhibitor for many pathogenic targets.
Further studies in this direction is, however, the need of the hour to develop many more ligands based on
resveratrol skeleton which can further serve in the treatment of ailments.
Collapse
Affiliation(s)
- Ritu Kataria
- International Institute of Pharmaceutical Sciences, Sonepat, Haryana, India
| | - Anurag Khatkar
- Laboratory of Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
45
|
Leite Góes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: Potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev 2019; 98:122-134. [PMID: 30629979 PMCID: PMC7023906 DOI: 10.1016/j.neubiorev.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Mesial Temporal Lobe Epilepsy (mTLE) characterized by progressive development of complex partial seizures originating from the hippocampus is the most prevalent and refractory type of epilepsy. One of the remarkable features of mTLE is the rhythmic pattern of occurrence of spontaneous seizures, implying a dependence on the endogenous clock system for seizure threshold. Conversely, circadian rhythms are affected by epilepsy too. Comprehending how the circadian system and seizures interact with each other is essential for understanding the pathophysiology of epilepsy as well as for developing innovative therapies that are efficacious for better seizure control. In this review, we confer how the temporal dysregulation of the circadian clock in the hippocampus combined with multiple uncoupled oscillators could lead to periodic seizure occurrences and comorbidities. Unraveling these associations with additional research would help in developing chronotherapy for mTLE, based on the chronobiology of spontaneous seizures. Notably, differential dosing of antiepileptic drugs over the circadian period and/or strategies that resynchronize biological rhythms may substantially improve the management of seizures in mTLE patients.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | | | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.
| |
Collapse
|
46
|
|
47
|
Santos AC, Veiga FJ, Sequeira JAD, Fortuna A, Falcão A, Pereira I, Pattekari P, Fontes-Ribeiro C, Ribeiro AJ. First-time oral administration of resveratrol-loaded layer-by-layer nanoparticles to rats – a pharmacokinetics study. Analyst 2019; 144:2062-2079. [DOI: 10.1039/c8an01998c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
trans-Resveratrol (RSV) is a plant-derived polyphenol endowed with a broad spectrum of promising therapeutic activities.
Collapse
Affiliation(s)
- Ana Cláudia Santos
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Francisco J. Veiga
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Joana A. D. Sequeira
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Ana Fortuna
- Department of Pharmacology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Amílcar Falcão
- Department of Pharmacology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Irina Pereira
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Pravin Pattekari
- Institute for Micromanufacturing
- Louisiana Tech University
- Ruston 71272
- USA
- Children's GMP LLC
| | - Carlos Fontes-Ribeiro
- Department of Pharmacology and Experimental Therapeutics
- Faculty of Medicine
- 3000-548 Coimbra
- Portugal
| | - António J. Ribeiro
- Department of Pharmaceutical Technology
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
| |
Collapse
|
48
|
Andrade S, Ramalho MJ, Pereira MDC, Loureiro JA. Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment. Front Pharmacol 2018; 9:1261. [PMID: 30524273 PMCID: PMC6262174 DOI: 10.3389/fphar.2018.01261] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Resveratrol (RES) is a natural polyphenolic non-flavonoid compound present in grapes, mulberries, peanuts, rhubarb and in several other plants. Numerous health effects have been related with its intake, such as anti-carcinogenic, anti-inflammatory and brain protective effects. The neuroprotective effects of RES in neurological diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, are related to the protection of neurons against oxidative damage and toxicity, and to the prevention of apoptotic neuronal death. In brain cancer, RES induces cell apoptotic death and inhibits angiogenesis and tumor invasion. Despite its great potential as therapeutic agent for the treatment of several diseases, RES exhibits some limitations. It has poor water solubility and it is chemically instable, being degraded by isomerization once exposed to high temperatures, pH changes, UV light, or certain types of enzymes. Thus, RES has low bioavailability, limiting its biological and pharmacological benefits. To overcome these limitations, RES can be delivered by nanocarriers. This field of nanomedicine studies how the drug administration, pharmacokinetics, and pharmacodynamics are affected by the use of nanosized materials. The role of nanotechnology, in the prevention and treatment of neurological diseases, arises from the necessity to mask the physicochemical properties of therapeutic drugs to prolong the half-life and to be able to cross the blood-brain barrier (BBB). This can be achieved by encapsulating the drug in a nanoparticle (NP), which can be made of different kinds of materials. An increasing trend to encapsulate and direct RES to the brain has been observed. RES has been encapsulated in many different types of nanosystems, as liposomes, lipid and polymeric NPs. Furthermore, some of these nanocarriers have been modified with targeting molecules able to recognize the brain areas. Then, this article aims to overview the RES benefits and limitations in the treatment of neurological diseases, as the different nanotechnology strategies to overcome these limitations.
Collapse
Affiliation(s)
| | | | | | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| |
Collapse
|
49
|
Ethemoglu MS, Kutlu S, Seker FB, Erdogan CS, Bingol CA, Yilmaz B. Effects of agomelatine on electrocorticogram activity on penicillin-induced seizure model of rats. Neurosci Lett 2018; 690:120-125. [PMID: 30213622 DOI: 10.1016/j.neulet.2018.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
Abstract
Agomelatine is a new antidepressant drug acting as an antagonist of 5-hydroxytryptamine receptor 2C (5-HTR2C) and agonist of melatonergic receptors 1 and 2 (MT1 and MT2). Because of this dual action, it is an atypical antidepressant. The aim of this study was to investigate chronic anticonvulsant effects of agomelatine on penicillin-induced epilepsy model. Adult male Sprague-Dawley rats divided into four groups and were administered with tap water (vehicle), and agomelatine doses of 10 mg/kg, 50 mg/kg and 100 mg/kg for 14 days via oral gavage. After the last doses were given, epileptic seizures were induced by intracortical penicillin (500 IU/2.5 μl) application in rats under urethane (1.25 g/kg intraperitoneal) anesthesia. Electrocorticogram (ECoG) recordings were obtained from the somatomotor cortex through 90 min, and spike frequencies and amplitudes were analyzed. The spike frequency analyses revealed that only 50 mg/kg agomelatine administration decreased the spike frequencies of hypersynchronous discharge of neurons caused by penicillin (p < 0.05). No significant differences in amplitudes between experimental groups were observed. In addition, mRNA expressions of vesicular glutamate transporter 1 (VGLUT1) and vesicular gamma-aminobutyric acid transporter (VGAT) in response to the agomelatine active dose, 50 mg/kg, showed no significant effect of agomelatine on the mRNA expression. Our results indicate that chronic treatment with agomelatine may have potential anticonvulsant effects. Agomelatine may be a promising drug for epilepsy patients having depression due to its antiepileptic and antidepressant effects.
Collapse
Affiliation(s)
- M S Ethemoglu
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey
| | - S Kutlu
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Physiology, Meram, Konya, Turkey
| | - F B Seker
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey
| | - C S Erdogan
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey
| | - C A Bingol
- Yeditepe University, Medical School, Department of Neurology, Ataşehir, İstanbul, Turkey
| | - B Yilmaz
- Yeditepe University, Medical School, Department of Physiology, Ataşehir, İstanbul, Turkey.
| |
Collapse
|
50
|
Resveratrol Modulates and Reverses the Age-Related Effect on Adenosine-Mediated Signalling in SAMP8 Mice. Mol Neurobiol 2018; 56:2881-2895. [DOI: 10.1007/s12035-018-1281-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
|