1
|
Miguel Telega L, Ashouri Vajari D, Ramanathan C, Coenen VA, Döbrössy MD. Chronic in vivo sequelae of repetitive acute mfb-DBS on accumbal dopamine and midbrain neuronal activity. J Neurochem 2025; 169:e16223. [PMID: 39308085 DOI: 10.1111/jnc.16223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 12/20/2024]
Abstract
Medial Forebrain Bundle Deep Brain Stimulation (MFB-DBS) can have rapid and long lasting antidepressant effects in Treatment Resistant Depression (TRD) patients. The mechanisms are not well understood, but one hypothesis stipulates that modulation of the dopaminergic (DAergic) fibers contribute to the therapeutic outcome. Acute DBS effects on DA release have been studied; however, longitudinal studies with acute-repetitive DBS are lacking. Long-Evans accumbal DA release and Ventral Tegmental Area (VTA) calcium tonic and phasic signaling to different mfb-DBS parameters were measured using fiber photometry over 8 weeks, following acute and repetitive stimulation in behaving and non-behaving animals. DBS-induced release was observed in both targets, with increased frequency and DBS duration. 130 Hz stimulation increased phasic and tonic DA response over time, with the latter being a potential mechanism for its long-term clinical effectiveness. VTA calcium transients decreased, while phasic activity increased with frequency. Pulse width (PW)-mediated differential peak release timing also suggests potential parallel activation of diverse fiber types. Additionally, decreased DA transients rate during Elevated Plus Maze (EPM) suggests context and stimulation duration-dependent DA release. The data confirm chronic antidromic/orthodromic DAergic responses with stimulation parameter dependent variability, providing novel insights into temporal adaptations, connectivity and fiber recruitment on mfb DBS.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, Medical Center, -University of Freiburg, Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, -University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Freiburg im Breisgau, Germany
| | - Danesh Ashouri Vajari
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg im Breisgau, Germany
| | - Chockalingam Ramanathan
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Institute for Physiology I, Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, Medical Center, -University of Freiburg, Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, -University of Freiburg, Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, Freiburg im Breisgau, Germany
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, Medical Center, -University of Freiburg, Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, -University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
3
|
Derksen M, Zuidinga B, van der Veer M, Rhemrev V, Jolink L, Reneman L, Nederveen A, Forstmann B, Feenstra M, Willuhn I, Denys D. A comparison of how deep brain stimulation in two targets with anti-compulsive efficacy modulates brain activity using fMRI in awake rats. Psychiatry Res Neuroimaging 2023; 330:111611. [PMID: 36796237 DOI: 10.1016/j.pscychresns.2023.111611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Deep brain stimulation (DBS) is an established neuromodulatory intervention against otherwise treatment-refractory obsessive-compulsive disorder (OCD). Several DBS targets, all of which are part of brain networks connecting basal ganglia and prefrontal cortex, alleviate OCD symptoms. Stimulation of these targets is thought to unfold its therapeutic effect by modulation of network activity through internal capsule (IC) connections. Research into DBS-induced network changes and the nature of IC-related effects of DBS in OCD is needed to further improve DBS. Here, we studied the effects of DBS at the ventral medial striatum (VMS) and IC on blood-oxygen level dependent (BOLD) responses in awake rats using functional magnetic resonance imaging (fMRI). BOLD-signal intensity was measured in five regions of interest (ROIs): medial and orbital prefrontal cortex, nucleus accumbens (NAc), IC area, and mediodorsal thalamus. In previous rodent studies, stimulation at both target locations resulted in a reduction of OCD-like behavior and activation of prefrontal cortical areas. Therefore, we hypothesized that stimulation at both targets would result in partially overlapping BOLD responses. Both differential and overlapping activity between VMS and IC stimulation was found. Stimulating the caudal part of the IC resulted in activation around the electrode, while stimulating the rostral part of the IC resulted in increased cross-correlations between the IC area, orbitofrontal cortex, and NAc. Stimulation of the dorsal part of the VMS resulted in increased activity in the IC area, suggesting this area is activated during both VMS and IC stimulation. This activation is also indicative of VMS-DBS impacting corticofugal fibers running through the medial caudate into the anterior IC, and both VMS and IC DBS might act on these fibers to induce OCD-reducing effects. These results show that rodent fMRI with simultaneous electrode stimulation is a promising approach to study the neural mechanisms of DBS. Comparing the effects of DBS in different target areas has the potential to improve our understanding of the neuromodulatory changes that take place across various networks and connections in the brain. Performing this research in animal disease models will lead to translational insights in the mechanisms underlying DBS, and can aid improvement and optimization of DBS in patient populations.
Collapse
Affiliation(s)
- Maik Derksen
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Zuidinga
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Marijke van der Veer
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Valerie Rhemrev
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Linda Jolink
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Forstmann
- University of Amsterdam, Integrative Model-based Cognitive Neuroscience Research Unit, Amsterdam, The Netherlands
| | - Matthijs Feenstra
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Ingo Willuhn
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Damiaan Denys
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Psychiatry, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Campos ACP, Pople C, Silk E, Surendrakumar S, Rabelo TK, Meng Y, Gouveia FV, Lipsman N, Giacobbe P, Hamani C. Neurochemical mechanisms of deep brain stimulation for depression in animal models. Eur Neuropsychopharmacol 2023; 68:11-26. [PMID: 36640729 DOI: 10.1016/j.euroneuro.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023]
Abstract
Deep brain stimulation (DBS) has emerged as a neuromodulation therapy for treatment-resistant depression, but its actual efficacy and mechanisms of action are still unclear. Changes in neurochemical transmission are important mechanisms of antidepressant therapies. Here, we review the preclinical DBS literature reporting behavioural and neurochemical data associated with its antidepressant-like effects. The most commonly studied target in preclinical models was the ventromedial prefrontal cortex (vmPFC). In rodents, DBS delivered to this target induced serotonin (5-HT) release and increased 5-HT1B receptor expression. The antidepressant-like effects of vmPFC DBS seemed to be independent of the serotonin transporter and potentially mediated by the direct modulation of prefrontal projections to the raphe. Adenosinergic and glutamatergic transmission might have also play a role. Medial forebrain bundle (MFB) DBS increased dopamine levels and reduced D2 receptor expression, whereas nucleus accumbens (NAcc), and lateral habenula (LHb) stimulation increased catecholamine levels in different brain regions. In rodents, subthalamic nucleus (STN) DBS induced robust depression-like responses associated with a reduction in serotonergic transmission, as revealed by a decrease in serotonin release. Some of these effects seemed to be mediated by 5HT1A receptors. In conclusion, the antidepressant-like effects of DBS in preclinical models have been well documented in multiple targets. Though variable mechanisms have been proposed, DBS-induced acute and long-term changes in neurochemical substrates seem to play an important role in the antidepressant-like effects of this therapy.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Christopher Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Esther Silk
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Shanan Surendrakumar
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Thallita K Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Flavia Venetucci Gouveia
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Neuropsychiatry Program, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Division of Neurosurgery, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
5
|
Miguel Telega L, Ashouri Vajari D, Stieglitz T, Coenen VA, Döbrössy MD. New Insights into In Vivo Dopamine Physiology and Neurostimulation: A Fiber Photometry Study Highlighting the Impact of Medial Forebrain Bundle Deep Brain Stimulation on the Nucleus Accumbens. Brain Sci 2022; 12:brainsci12081105. [PMID: 36009169 PMCID: PMC9406226 DOI: 10.3390/brainsci12081105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
New technologies, such as fiber photometry, can overcome long-standing methodological limitations and promote a better understanding of neuronal mechanisms. This study, for the first time, aimed at employing the newly available dopamine indicator (GRABDA2m) in combination with this novel imaging technique. Here, we present a detailed methodological roadmap leading to longitudinal repetitive transmitter release monitoring in in vivo freely moving animals and provide proof-of-concept data. This novel approach enables a fresh look at dopamine release patterns in the nucleus accumbens, following the medial forebrain bundle (mfb) DBS in a rodent model. Our results suggest reliable readouts of dopamine levels over at least 14 days of DBS-induced photometric measurements. We show that mfb-DBS can elicit an increased dopamine response during stimulation (5 s and 20 s DBS) compared to its baseline dopamine activity state, reaching its maximum peak amplitude in about 1 s and then recovering back after stimulation. The effect of different DBS pulse widths (PWs) also suggests a potential differential effect on this neurotransmitter response, but future studies would need to verify this. Using the described approach, we aim to gain insights into the differences between pathological and healthy models and to elucidate more exhaustively the mechanisms under which DBS exerts its therapeutic action.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Danesh Ashouri Vajari
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Volker A. Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Máté D. Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
6
|
Figee M, Riva-Posse P, Choi KS, Bederson L, Mayberg HS, Kopell BH. Deep Brain Stimulation for Depression. Neurotherapeutics 2022; 19:1229-1245. [PMID: 35817944 PMCID: PMC9587188 DOI: 10.1007/s13311-022-01270-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation has been extensively studied as a therapeutic option for treatment-resistant depression (TRD). DBS across different targets is associated with on average 60% response rates in previously refractory chronically depressed patients. However, response rates vary greatly between patients and between studies and often require extensive trial-and-error optimizations of stimulation parameters. Emerging evidence from tractography imaging suggests that targeting combinations of white matter tracts, rather than specific grey matter regions, is necessary for meaningful antidepressant response to DBS. In this article, we review efficacy of various DBS targets for TRD, which networks are involved in their therapeutic effects, and how we can use this information to improve targeting and programing of DBS for individual patients. We will also highlight how to integrate these DBS network findings into developing adaptive stimulation and optimal trial designs.
Collapse
Affiliation(s)
- Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Georgia, GA, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucia Bederson
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Gardner W, Fuchs F, Durieux L, Bourgin P, Coenen VA, Döbrössy M, Lecourtier L. Slow Wave Sleep Deficits in the Flinders Sensitive Line Rodent Model of Depression: Effects of Medial Forebrain Bundle Deep-Brain Stimulation. Neuroscience 2022; 498:31-49. [PMID: 35750113 DOI: 10.1016/j.neuroscience.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Major Depressive Disorder (MDD) is an affective disorder typically accompanied by sleep disturbances. Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) is an emerging intervention for treatment-resistant depression, but its effect on sleep has not been closely examined. Here we aimed to characterise sleep deficits in the Flinders sensitive line, an established rodent model of depression, and investigate the consequences of MFB stimulation on sleep-related phenotypes. Rats were implanted with bilateral stimulation electrodes in the MFB, surface electrodes to record electrocorticography and electromyography for sleep scoring and electrodes within the prelimbic cortex, nucleus accumbens (NAc) and dorsal hippocampus. Recordings of sleep and oscillatory activity were conducted prior to and following twenty-four hours of MFB stimulation. Behavioural anti-depressant effects were monitored using the forced swim test. Previously unreported abnormalities in the Flinders sensitive line rats were observed during slow wave sleep, including decreased circadian amplitude of its rhythm, a reduction in slow wave activity and elevated gamma band oscillations. Previously established rapid eye movement sleep deficits were replicated. MFB stimulation had anti-depressant effects on behavioural phenotype, but did not significantly impact sleep architecture; it suppressed elevated gamma activity during slow wave sleep in the electrocorticogram and prelimbic cortex signals. Diverse abnormalities in Flinders sensitive line rats emphasise slow wave sleep as a state of dysfunction in affective disorders. MFB stimulation is able to affect behaviour and sleep physiology without influencing sleep architecture. Gamma modulation may represent a component of antidepressant mechanism.
Collapse
Affiliation(s)
- Wilf Gardner
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital of Freiburg University and Medical Faculty of Freiburg University, Germany; Faculty of Biology, Albert-Ludwigs-Universität-Freiburg, Freiburg, Germany; Laboratoire de Neurosciences Cognitives et Adaptatives, University of Strasbourg, Strasbourg, France
| | - Fanny Fuchs
- Inovarion, Paris, France; Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, Strasbourg France
| | - Laura Durieux
- Laboratoire de Neurosciences Cognitives et Adaptatives, University of Strasbourg, Strasbourg, France
| | - Patrice Bourgin
- Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, Strasbourg France; Centre des troubles du sommeil - CIRCSom, Strasbourg University Hospitals, Strasbourg, France
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital of Freiburg University and Medical Faculty of Freiburg University, Germany; Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Freiburg University, Freiburg, Germany
| | - Máté Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital of Freiburg University and Medical Faculty of Freiburg University, Germany; Faculty of Biology, Albert-Ludwigs-Universität-Freiburg, Freiburg, Germany; Dept of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Germany.
| | - Lucas Lecourtier
- Laboratoire de Neurosciences Cognitives et Adaptatives, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
8
|
Yuen J, Rusheen AE, Price JB, Barath AS, Shin H, Kouzani AZ, Berk M, Blaha CD, Lee KH, Oh Y. Biomarkers for Deep Brain Stimulation in Animal Models of Depression. Neuromodulation 2022; 25:161-170. [PMID: 35125135 PMCID: PMC8655028 DOI: 10.1111/ner.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Despite recent advances in depression treatment, many patients still do not respond to serial conventional therapies and are considered "treatment resistant." Deep brain stimulation (DBS) has therapeutic potential in this context. This comprehensive review of recent studies of DBS for depression in animal models identifies potential biomarkers for improving therapeutic efficacy and predictability of conventional DBS to aid future development of closed-loop control of DBS systems. MATERIALS AND METHODS A systematic search was performed in Pubmed, EMBASE, and Cochrane Review using relevant keywords. Overall, 56 animal studies satisfied the inclusion criteria. RESULTS Outcomes were divided into biochemical/physiological, electrophysiological, and behavioral categories. Promising biomarkers include biochemical assays (in particular, microdialysis and electrochemical measurements), which provide real-time results in awake animals. Electrophysiological tests, showing changes at both the target site and downstream structures, also revealed characteristic changes at several anatomic targets (such as the medial prefrontal cortex and locus coeruleus). However, the substantial range of models and DBS targets limits the ability to draw generalizable conclusions in animal behavioral models. CONCLUSIONS Overall, DBS is a promising therapeutic modality for treatment-resistant depression. Different outcomes have been used to assess its efficacy in animal studies. From the review, electrophysiological and biochemical markers appear to offer the greatest potential as biomarkers for depression. However, to develop closed-loop DBS for depression, additional preclinical and clinical studies with a focus on identifying reliable, safe, and effective biomarkers are warranted.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
9
|
Tong Y, Pfeiffer L, Serchov T, Coenen VA, Döbrössy MD. Optogenetic stimulation of ventral tegmental area dopaminergic neurons in a female rodent model of depression: The effect of different stimulation patterns. J Neurosci Res 2022; 100:897-911. [PMID: 35088434 DOI: 10.1002/jnr.25014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/25/2021] [Accepted: 01/02/2022] [Indexed: 12/27/2022]
Abstract
Major depressive disorder is one of the most common mental disorders, and more than 300 million of people suffer from depression worldwide. Recent clinical trials indicate that deep brain stimulation of the superolateral medial forebrain bundle (mfb) can have rapid and long-term antidepressant effects in patients with treatment-resistant depression. However, the mechanisms of action are elusive. In this study, using female rats, we demonstrate the antidepressant effects of selective optogenetic stimulation of the ventral tegmental area's dopaminergic (DA) neurons passing through the mfb and compare different stimulation patterns. Chronic mild unpredictable stress (CMUS) induced depressive-like, but not anxiety-like phenotype. Short-term and long-term stimulation demonstrated antidepressant effect (OSST) and improved anxiolytic effect (EPM), while long-term stimulation during CMUS induction prevented depressive-like behavior (OSST and USV) and improved anxiolytic effect (EPM). The results highlight that long-term accumulative stimulation on DA pathways is required for antidepressant and anxiolytic effect.
Collapse
Affiliation(s)
- Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Lisa Pfeiffer
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Deep brain stimulation of the "medial forebrain bundle": a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 2022; 27:574-592. [PMID: 33903731 DOI: 10.1038/s41380-021-01100-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
The medial forebrain bundle-a white matter pathway projecting from the ventral tegmental area-is a structure that has been under a lot of scrutinies recently due to its implications in the modulation of certain affective disorders such as major depression. In the following, we will discuss major depression in the context of being a disorder dependent on multiple relevant networks, the pathological performance of which is responsible for the manifestation of various symptoms of the disease which extend into emotional, motivational, physiological, and also cognitive domains of daily living. We will focus on the reward system, an evolutionarily conserved pathway whose underperformance leads to anhedonia and lack of motivation, which are key traits in depression. In the field of deep brain stimulation (DBS), different "hypothesis-driven" targets have been chosen as the subject of clinical trials on efficacy in the treatment-resistant depressed patient. The "medial forebrain bundle" is one such target for DBS, and has had remarkably rapid success in alleviating depressive symptoms, improving anhedonia and motivation. We will review what we have learned from pre-clinical animal studies on defining this white matter tract, its connectivity, and the complex molecular (i.e., neurotransmitter) mechanisms by which its modulation exerts its effects. Imaging studies in the form of tractographic depictions have elucidated its presence in the human brain. Such has led to ongoing clinical trials of DBS targeting this pathway to assess efficacy, which is promising yet still lack in sufficient numbers. Ultimately, one must confirm the mechanism of action and validate proof of antidepressant effect in order to have such treatment become mainstream, to promote widespread improvement in the quality of life of suffering patients.
Collapse
|
11
|
Cho HU, Kim S, Sim J, Yang S, An H, Nam MH, Jang DP, Lee CJ. Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Exp Mol Med 2021; 53:1148-1158. [PMID: 34244591 PMCID: PMC8333267 DOI: 10.1038/s12276-021-00646-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase (MAO) is believed to mediate the degradation of monoamine neurotransmitters, including dopamine, in the brain. Between the two types of MAO, MAO-B has been believed to be involved in dopamine degradation, which supports the idea that the therapeutic efficacy of MAO-B inhibitors in Parkinson's disease can be attributed to an increase in extracellular dopamine concentration. However, this belief has been controversial. Here, by utilizing in vivo phasic and basal electrochemical monitoring of extracellular dopamine with fast-scan cyclic voltammetry and multiple-cyclic square wave voltammetry and ex vivo fluorescence imaging of dopamine with GRABDA2m, we demonstrate that MAO-A, but not MAO-B, mainly contributes to striatal dopamine degradation. In contrast, our whole-cell patch-clamp results demonstrated that MAO-B, but not MAO-A, was responsible for astrocytic GABA-mediated tonic inhibitory currents in the rat striatum. We conclude that, in contrast to the traditional belief, MAO-A and MAO-B have profoundly different roles: MAO-A regulates dopamine levels, whereas MAO-B controls tonic GABA levels.
Collapse
Affiliation(s)
- Hyun-U Cho
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Sunpil Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Jeongeun Sim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Seulkee Yang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Heeyoung An
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Min-Ho Nam
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, Korea.
| | - Dong-Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea.
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea.
| |
Collapse
|
12
|
Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2020; 53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Cui D, Mesaros A, Burdeos G, Voigt I, Giavalisco P, Hinze Y, Purrio M, Neumaier B, Drzezga A, Obata Y, Endepols H, Xu X. Dnmt3a2/Dnmt3L Overexpression in the Dopaminergic System of Mice Increases Exercise Behavior through Signaling Changes in the Hypothalamus. Int J Mol Sci 2020; 21:ijms21176297. [PMID: 32878077 PMCID: PMC7504350 DOI: 10.3390/ijms21176297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
Dnmt3a2, a de novo DNA methyltransferase, is induced by neuronal activity and participates in long-term memory formation with the increased expression of synaptic plasticity genes. We wanted to determine if Dnmt3a2 with its partner Dnmt3L may influence motor behavior via the dopaminergic system. To this end, we generated a mouse line, Dnmt3a2/3LDat/wt, with dopamine transporter (DAT) promotor driven Dnmt3a2/3L overexpression. The mice were studied with behavioral paradigms (e.g., cylinder test, open field, and treadmill), brain slice patch clamp recordings, ex vivo metabolite analysis, and in vivo positron emission tomography (PET) using the dopaminergic tracer 6-[18F]FMT. The results showed that spontaneous activity and exercise performance were enhanced in Dnmt3a2/3LDat/wt mice compared to Dnmt3a2/3Lwt/wt controls. Dopaminergic substantia nigra pars compacta neurons of Dnmt3a2/3LDat/wt animals displayed a higher fire frequency and excitability. However, dopamine concentration was not increased in the striatum, and dopamine metabolite concentration was even significantly decreased. Striatal 6-[18F]FMT uptake, reflecting aromatic L-amino acid decarboxylase activity, was the same in Dnmt3a2/3LDat/wt mice and controls. [18F]FDG PET showed that hypothalamic metabolic activity was tightly linked to motor behavior in Dnmt3a2/3LDat/wt mice. Furthermore, dopamine biosynthesis and motor-related metabolic activity were correlated in the hypothalamus. Our findings suggest that Dnmt3a2/3L, when overexpressed in dopaminergic neurons, modulates motor performance via activation of the nigrostriatal pathway. This does not involve increased dopamine synthesis.
Collapse
Affiliation(s)
- Di Cui
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
- Correspondence: (D.C.); (X.X.)
| | - Andrea Mesaros
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Gregor Burdeos
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Hermann-Rodewald Street, 9, 24118 Kiel, Germany
| | - Ingo Voigt
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Yvonne Hinze
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Martin Purrio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
| | - Bernd Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; (B.N.); (H.E.)
- Institute for Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Köln, Germany;
| | - Yayoi Obata
- Department of Bioscience, Tokyo University of Agriculture, Faculty of Life Sciences, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
| | - Heike Endepols
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; (B.N.); (H.E.)
- Institute for Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52425 Jülich, Germany
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Köln, Germany;
| | - Xiangru Xu
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany; (A.M.); (G.B.); (I.V.); (P.G.); (Y.H.); (M.P.)
- Department of Anesthesiology, Yale University School of Medicine, 10 Amistad Street, New Haven, CT 06519, USA
- Correspondence: (D.C.); (X.X.)
| |
Collapse
|
14
|
Ashouri Vajari D, Ramanathan C, Tong Y, Stieglitz T, Coenen VA, Döbrössy MD. Medial forebrain bundle DBS differentially modulates dopamine release in the nucleus accumbens in a rodent model of depression. Exp Neurol 2020; 327:113224. [PMID: 32035070 DOI: 10.1016/j.expneurol.2020.113224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Medial forebrain bundle (MFB) deep brain stimulation (DBS) has anti-depressant effects clinically and in depression models. Currently, therapeutic mechanisms of MFB DBS or how stimulation parameters acutely impact neurotransmitter release, particularly dopamine, are unknown. Experimentally, MFB DBS has been shown to evoke dopamine response in healthy controls, but not yet in a rodent model of depression. OBJECTIVE The study investigated the impact of clinically used stimulation parameters on the dopamine induced response in a validated rodent depression model and in healthy controls. METHOD The stimulation-induced dopamine response in Flinders Sensitive Line (FSL, n = 6) rat model of depression was compared with Sprague Dawley (SD, n = 6) rats following MFB DSB, using Fast Scan Cyclic Voltammetry to assess the induced response in the nucleus accumbens. Stimulation parameters were 130 Hz ("clinically" relevant) with pulse widths between 100 and 350 μs. RESULTS Linear mixed model analysis showed significant impact in both models following MFB DBS both at 130 and 60 Hz with 100 μs pulse width in inducing dopamine response. Furthermore, at 130 Hz the evoked dopamine responses were different across the groups at the different pulse widths. CONCLUSION The differential impact of MFB DBS on the induced dopamine response, including different response patterns at given pulse widths, is suggestive of physiological and anatomical divergence in the MFB in the pathological and healthy state. Studying how varying stimulation parameters affect the physiological outcome will promote a better understanding of the biological substrate of the disease and the possible anti-depressant mechanisms at play in clinical MFB DBS.
Collapse
Affiliation(s)
- Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Kohler-Allee 102, 79110 Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Kohler-Allee 80, 79110 Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory for Stereotaxy and Interventional Neurosciences (SIN), Freiburg University, Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Breisacher Strasse, 64 79106 Freiburg i.Br, Germany
| | - Yixin Tong
- Laboratory for Stereotaxy and Interventional Neurosciences (SIN), Freiburg University, Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Breisacher Strasse, 64 79106 Freiburg i.Br, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Kohler-Allee 102, 79110 Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Kohler-Allee 80, 79110 Freiburg, Germany; Bernstein Center Freiburg, Hansastrasse 9a, 79104 Freiburg, Germany
| | - Volker A Coenen
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Kohler-Allee 80, 79110 Freiburg, Germany; Laboratory for Stereotaxy and Interventional Neurosciences (SIN), Freiburg University, Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Breisacher Strasse, 64 79106 Freiburg i.Br, Germany; Medical Faculty, University of Freiburg, Germany; Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Máté D Döbrössy
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Kohler-Allee 80, 79110 Freiburg, Germany; Laboratory for Stereotaxy and Interventional Neurosciences (SIN), Freiburg University, Department of Stereotactic and Functional Neurosurgery, University Medical Center Freiburg, Breisacher Strasse, 64 79106 Freiburg i.Br, Germany; Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.
| |
Collapse
|
15
|
Thiele S, Sörensen A, Weis J, Braun F, Meyer PT, Coenen VA, Döbrössy MD. Deep Brain Stimulation of the Medial Forebrain Bundle in a Rodent Model of Depression: Exploring Dopaminergic Mechanisms with Raclopride and Micro-PET. Stereotact Funct Neurosurg 2020; 98:8-20. [PMID: 31982883 DOI: 10.1159/000504860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) can reverse depressive-like symptoms clinically and in experimental models of depression, but the mechanisms of action are unknown. OBJECTIVES This study investigated the role of dopaminergic mechanisms in MFB stimulation-mediated behavior changes, in conjunction with raclopride administration and micropositron emission tomography (micro-PET). METHODS Flinders Sensitive Line (FSL) rats were allocated into 4 groups: FSL (no treatment), FSL+ (DBS), FSL.R (FSL with raclopride), and FSL.R+ (FSL with raclopride and DBS). Animals were implanted with bilateral electrodes targeting the MFB and given 11 days access to raclopride in the drinking water with or without concurrent continuous bilateral DBS over the last 10 days. Behavioral testing was conducted after stimulation. A PET scan using [18F]desmethoxyfallypride was performed to determine D2 receptor availability before and after raclopride treatment. Changes in gene expression in the nucleus accumbens and the hippocampus were assessed using quantitative polymerase chain reaction. RESULTS Micro-PET imaging showed that raclopride administration blocked 36% of the D2 receptor in the striatum, but the relative level of blockade was reduced/modulated by stimulation. Raclopride treatment enhanced depressive-like symptoms in several tasks, and the MFB DBS partially reversed the depressive-like phenotype. The raclopride-treated MFB DBS animals had increased levels of mRNA coding for dopamine receptor D1 and D2 suggestive of a stimulation-mediated increase in dopamine receptors. CONCLUSION Data suggest that chronic and continuous MFB DBS could act via the modulation of the midbrain dopaminergic transmission, including impacting on the postsynaptic dopamine receptor profile.
Collapse
Affiliation(s)
- Stephanie Thiele
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Arnd Sörensen
- Department of Nuclear Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Jasmin Weis
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany
| | - Friederike Braun
- Department of Nuclear Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, University of Freiburg Medical Center, Freiburg, Germany,
| |
Collapse
|
16
|
Thiele S, Furlanetti L, Pfeiffer LM, Coenen VA, Döbrössy MD. The effects of bilateral, continuous, and chronic Deep Brain Stimulation of the medial forebrain bundle in a rodent model of depression. Exp Neurol 2018; 303:153-161. [DOI: 10.1016/j.expneurol.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/14/2018] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
|