1
|
Wang C, Fan Y, Liang G, Wang Q, Gao H, Duan J. Acupuncture for the treatment of painful diabetic peripheral neuropathy: A systematic review and meta-analysis. Complement Ther Clin Pract 2024; 57:101889. [PMID: 39079232 DOI: 10.1016/j.ctcp.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND PURPOSE A growing number of studies have investigated the efficacy of acupuncture in the treatment of painful diabetic peripheral neuropathy (PDPN), but the findings of these studies have generated conflicting results. This study therefore aimed to assess the efficacy of acupuncture for treating PDPN so as to offer more conclusive results. METHODS Seven databases were systematically searched for studies published up until December 1, 2023. All randomized controlled trials (RCTs) of acupuncture for PDPN with visual analog scale (VAS) for pain score were included. Study selection, data extraction, and evaluation were conducted independently by researchers. The Risk of Bias 2 (RoB2) tool was employed to assess the risk of bias. From this sample, the mean difference (MD), 95 % confidence intervals (CI), publication bias, and heterogeneity were then computed. RESULTS The manual acupuncture group exhibited a significant decrease in the VAS for pain score compared with the routine care group (p < 0.0001; MD = -1.45 [95 % CI, -1.97 to -0.93], I2 = 84 %). The real acupuncture group demonstrated a greater reduction in VAS scores than the sham acupuncture group (p = 0.004; MD = -0.97 [95 % CI, -1.63 to -0.31], I2 = 65 %). Additionally, the acupuncture group showed improvements in sensory nerve conduction velocity (SNCV, p < 0.0001; MD = 2.29 [95 % CI, 1.79 to 2.78], I2 = 14 %) as well as motor nerve conduction velocity (MNCV, p < 0.0001; MD = 2.87 [95 % CI, 2.46 to 3.27], I2 = 0). Different durations of acupuncture treatment, including 6-10 weeks and 3-4 weeks, demonstrated a significant reduction in VAS scores compared with the routine care group. CONCLUSION This meta-analysis provides preliminary evidence for the claim that acupuncture has the potential to alleviate PDPN symptoms and improve SNCV and MNCV. However, high-quality RCTs are needed to offer further evidence and thus better substantiate such a contention.
Collapse
Affiliation(s)
- Chunliang Wang
- Department of Cardiology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China.
| | - Yuzhu Fan
- Department of Endocrinology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Guiting Liang
- Department of Endocrinology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Qiang Wang
- Department of Cardiology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Hui Gao
- Department of Cardiology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Junhong Duan
- Department of Endocrinology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| |
Collapse
|
2
|
Zuidema X, de Galan B, Brouwer B, Cohen SP, Eldabe S, Argoff CE, Huygen F, Van Zundert J. 4. Painful diabetic polyneuropathy. Pain Pract 2024; 24:308-320. [PMID: 37859565 DOI: 10.1111/papr.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Pain as a symptom of diabetic polyneuropathy (DPN) significantly lowers quality of life, increases mortality and is the main reason for patients with diabetes to seek medical attention. The number of people suffering from painful diabetic polyneuropathy (PDPN) has increased significantly over the past decades. METHODS The literature on the diagnosis and treatment of diabetic polyneuropathy was retrieved and summarized. RESULTS The etiology of PDPN is complex, with primary damage to peripheral nociceptors and altered spinal and supra-spinal modulation. To achieve better patient outcomes, the mode of diagnosis and treatment of PDPN evolves toward more precise pain-phenotyping and genotyping based on patient-specific characteristics, new diagnostic tools, and prior response to pharmacological treatments. According to the Toronto Diabetic Neuropathy Expert Group, a presumptive diagnosis of "probable PDPN" is sufficient to initiate treatment. Proper control of plasma glucose levels, and prevention of risk factors are essential in the treatment of PDPN. Mechanism-based pharmacological treatment should be initiated as early as possible. If symptomatic pharmacologic treatment fails, spinal cord stimulation (SCS) should be considered. In isolated cases, where symptomatic pharmacologic treatment and SCS are unsuccessful or cannot be used, sympathetic lumbar chain neurolysis and/or radiofrequency ablation (SLCN/SLCRF), dorsal root ganglion stimulation (DRGs) or posterior tibial nerve stimulation (PTNS) may be considered. However, it is recommended that these treatments be applied only in a study setting in a center of expertise. CONCLUSIONS The diagnosis of PDPN evolves toward pheno-and genotyping and treatment should be mechanism-based.
Collapse
Affiliation(s)
- Xander Zuidema
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Anesthesiology and Pain Management, Diakonessenhuis Utrecht/Zeist, Utrecht, The Netherlands
| | - Bastiaan de Galan
- Division of Endocrinology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Brigitte Brouwer
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Steven P Cohen
- Department of Anesthesiology, Pain Medicine Division, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sam Eldabe
- Department of Pain Medicine and Anesthesiology, Durham University, Durham, UK
| | - Charles E Argoff
- Department of Neurology, New York University School of Medicine, and Pain Management Center, North Shore University Hospital, Manhasset, New York, USA
| | - Frank Huygen
- Department of Anesthesiology and Pain Management, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Anesthesiology and Pain Management, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Van Zundert
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Belgium
| |
Collapse
|
3
|
Van Den Berg B, Berfelo T, Gefferie SR, Krabbenbos IP, Buitenweg JR. Identification of Diabetic Small-Fiber Neuropathy Based on Electrophysiological and Psychophysical Responses to Intra-Epidermal Electric Stimulation using a Naïve Bayes Classifier. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083622 DOI: 10.1109/embc40787.2023.10340455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Diagnosis and stratification of small-fiber neuropathy patients is difficult due to a lack of methods that are both sensitive and specific. Our lab recently developed a method to accurately measure psychophysical and electrophysiological responses to intra-epidermal electric stimulation, specifically targeting small nerve fibers in the skin. In this work, we study whether using one or a combination of psychophysical and electrophysiological outcome measures can be used to identify diabetic small-fiber neuropathy. It was found that classification of small-fiber neuropathy based on psychophysical and electrophysiological responses to intra-epidermal electric stimulation could match or even outperform current state-of-the-art methods for the diagnosis of small-fiber neuropathy.Clinical Relevance-Neuropathy is damage or dysfunction of nerves in the skin, often leading to the development of chronic pain. Small-fiber neuropathy is the most prevalent type of neuropathy and occurs frequently in patients with diabetes mellitus, but can also occur in other diseases or in response to chemotherapy. Early detection of neuropathy could help diabetic patients to adapt glucose management, and doctors to adjust treatment strategies to prevent nerve loss and chronic pain, but is impeded by a lack of clinical tools to monitor small nerve fiber function.
Collapse
|
4
|
Hedysarum Polysaccharide Alleviates Oxidative Stress to Protect Against Diabetic Peripheral Neuropathy via Modulation of the Keap1/Nrf2 signaling pathway. J Chem Neuroanat 2022; 126:102182. [DOI: 10.1016/j.jchemneu.2022.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
5
|
D’Egidio F, Lombardozzi G, Kacem Ben Haj M’Barek HE, Mastroiacovo G, Alfonsetti M, Cimini A. The Influence of Dietary Supplementations on Neuropathic Pain. Life (Basel) 2022; 12:1125. [PMID: 36013304 PMCID: PMC9410423 DOI: 10.3390/life12081125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain is defined as pain caused by a lesion or disease of the somatosensory nervous system and affects 7-10% of the worldwide population. Neuropathic pain can be induced by the use of drugs, including taxanes, thus triggering chemotherapy-induced neuropathic pain or as consequence of metabolic disorders such as diabetes. Neuropathic pain is most often a chronic condition, and can be associated with anxiety and depression; thus, it negatively impacts quality of life. Several pharmacologic approaches exist; however, they can lead numerous adverse effects. From this perspective, the use of nutraceuticals and diet supplements can be helpful in relieve neuropathic pain and related symptoms. In this review, we discuss how diet can radically affect peripheral neuropathy, and we focus on the potential approaches to ameliorate this condition, such as the use of numerous nutritional supplements or probiotics.
Collapse
Affiliation(s)
- Francesco D’Egidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Giorgia Lombardozzi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Housem E. Kacem Ben Haj M’Barek
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Giada Mastroiacovo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.D.); (G.L.); (H.E.K.B.H.M.); (G.M.); (M.A.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
6
|
Kender Z, Groener JB, Jende JME, Kurz FT, Fleming T, Sulaj A, Schuh-Hofer S, Treede RD, Bendszus M, Szendroedi J, Nawroth PP, Kopf S. Diabetic neuropathy is a generalized phenomenon with impact on hand functional performance and quality of life. Eur J Neurol 2022; 29:3081-3091. [PMID: 35700123 DOI: 10.1111/ene.15446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/08/2022] [Accepted: 06/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Diabetic sensorimotor peripheral neuropathy (DSPN) is usually considered to affect predominantly the lower limbs (LL-N), while the impact of upper limb neuropathy (UL-N) on hand functional performance and quality of life (QoL) has not been evaluated systematically. This study aims to investigate the prevalence and characteristics of UL-N and its functional and psychosocial consequences in type 2 diabetes. METHODS Individuals with type 2 diabetes (n=141) and an age- and sex-matched control group (n=73) underwent comprehensive assessment of neuropathy, hand functional performance and psychosocial status. RESULTS The prevalence of UL-N was 30.5% in patients with diabetes and that of LL-N 49.6%, with 25.5% exhibiting both. Patients with diabetes showed similar sensory phenotype regarding both large and small fiber functions in hands and feet. Patients with UL-N showed reduced manual dexterity, but normal hand grip force. Additionally, there was a correlation between reduced dexterity and sensory deficits. Patients with UL-N had reduced estimates of psychosocial health including health-related QoL compared to control subjects and patients without UL-N. UL-N correlated with the severity of LL-N, but not with duration of diabetes, glycaemia, age, or sex. CONCLUSIONS This study points to a substantial prevalence of UL-N in type 2 diabetes. The sensory phenotype of patients with UL-N was similar to LL-N and was characterized by loss of sensory function. Our study demonstrated an association of UL-N with impaired manual dexterity and reduced health-related QoL. Thus, upper limb sensorimotor functions should be assessed early in patients with diabetes.
Collapse
Affiliation(s)
- Zoltan Kender
- University Hospital of Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Munich-, Neuherberg, Germany
| | - Jan B Groener
- University Hospital of Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Munich-, Neuherberg, Germany.,Medicover Neuroendokrinologie, Munich, Germany
| | - Johann M E Jende
- University Hospital of Heidelberg, Department of Neuroradiology, Heidelberg, Germany
| | - Felix T Kurz
- University Hospital of Heidelberg, Department of Neuroradiology, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Thomas Fleming
- University Hospital of Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Munich-, Neuherberg, Germany
| | - Alba Sulaj
- University Hospital of Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Munich-, Neuherberg, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Bendszus
- University Hospital of Heidelberg, Department of Neuroradiology, Heidelberg, Germany
| | - Julia Szendroedi
- University Hospital of Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Munich-, Neuherberg, Germany.,Joint Heidelberg-ICD Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
| | - Peter P Nawroth
- University Hospital of Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Munich-, Neuherberg, Germany.,Joint Heidelberg-ICD Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
| | - Stefan Kopf
- University Hospital of Heidelberg, Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Munich-, Neuherberg, Germany
| |
Collapse
|
7
|
Cheng X, Zhao L, Ke T, Wang X, Cao L, Liu S, He J, Rong W. Celecoxib ameliorates diabetic neuropathy by decreasing apoptosis and oxidative stress in dorsal root ganglion neurons via the miR-155/COX-2 axis. Exp Ther Med 2021; 22:825. [PMID: 34149871 PMCID: PMC8200812 DOI: 10.3892/etm.2021.10257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Celecoxib (CXB) is the only clinical cyclooxygenase-2 (COX-2) inhibitor. Oral administration of CXB in experimental diabetic mice effectively relieved the symptoms of diabetic neuropathy (DN); however, the molecular mechanism remains unclear. The present study aimed to investigate the potential molecular mechanisms of CXB in the treatment of DN. An in vitro cellular model of DN was produced by stimulating dorsal root ganglion (DRG) neurons with high glucose. Cell viability and apoptosis were assessed by Cell Counting Kit-8 assays and flow cytometry, respectively. Reactive oxygen species (ROS) kits, ELISA kits and western blotting were used to determine oxidative cellular damage. The expression level of microRNA (miR)-155 was analyzed by reverse transcription-quantitative PCR. The starBase database and dual-luciferase assays were performed to predict and determine the interaction between miR-155 and COX-2. Protein expression of neurotrophic factors, oxidative stress-related proteins and COX-2 were analyzed by western blotting. Incubation with high glucose led to a decrease in DRG neuron cell viability, facilitated apoptosis, downregulated NGF and BDNF expression, increased ROS and MDA generation and decreased SOD activity. Treatment with CXB significantly protected DRG neurons against high glucose-evoked damage. CXB promoted the expression of miR-155 and COX-2 was revealed to be a direct target of miR-155. Inhibition of COX-2 enhanced the protective effect of CXB on DRG neurons and that treatment with an miR-155 inhibitor partially rescued this effect. The present study demonstrated the involvement of the miR-155/COX-2 axis in the protective effect of CXB against high glucose-induced DN.
Collapse
Affiliation(s)
- Xiaoliang Cheng
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ling Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xi Wang
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lijun Cao
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shuyan Liu
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jie He
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wei Rong
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
8
|
Jensen TS, Karlsson P, Gylfadottir SS, Andersen ST, Bennett DL, Tankisi H, Finnerup NB, Terkelsen AJ, Khan K, Themistocleous AC, Kristensen AG, Itani M, Sindrup SH, Andersen H, Charles M, Feldman EL, Callaghan BC. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management. Brain 2021; 144:1632-1645. [PMID: 33711103 DOI: 10.1093/brain/awab079] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathy is one of the most common complications of both type 1 and type 2 diabetes. Up to half of patients with diabetes develop neuropathy during the course of their disease, which is accompanied by neuropathic pain in 30-40% of cases. Peripheral nerve injury in diabetes can manifest as progressive distal symmetric polyneuropathy, autonomic neuropathy, radiculo-plexopathies, and mononeuropathies. The most common diabetic neuropathy is distal symmetric polyneuropathy, which we will refer to as DN, with its characteristic glove and stocking like presentation of distal sensory or motor function loss. DN or its painful counterpart, painful DN, are associated with increased mortality and morbidity; thus, early recognition and preventive measures are essential. Nevertheless, it is not easy to diagnose DN or painful DN, particularly in patients with early and mild neuropathy, and there is currently no single established diagnostic gold standard. The most common diagnostic approach in research is a hierarchical system, which combines symptoms, signs, and a series of confirmatory tests. The general lack of long-term prospective studies has limited the evaluation of the sensitivity and specificity of new morphometric and neurophysiological techniques. Thus, the best paradigm for screening DN and painful DN both in research and in clinical practice remains uncertain. Herein, we review the diagnostic challenges from both clinical and research perspectives and their implications for managing patients with DN. There is no established DN treatment, apart from improved glycaemic control, which is more effective in type 1 than in type 2 diabetes, and only symptomatic management is available for painful DN. Currently, less than one-third of patients with painful DN derive sufficient pain relief with existing pharmacotherapies. A more precise and distinct sensory profile from patients with DN and painful DN may help identify responsive patients to one treatment versus another. Detailed sensory profiles will lead to tailored treatment for patient subgroups with painful DN by matching to novel or established DN pathomechanisms and also for improved clinical trials stratification. Large randomized clinical trials are needed to identify the interventions, i.e. pharmacological, physical, cognitive, educational, etc., which lead to the best therapeutic outcomes.
Collapse
Affiliation(s)
- Troels S Jensen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Pall Karlsson
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Sandra S Gylfadottir
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Signe T Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Department of Public Health, Aarhus University, Aarhus, Denmark
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Hatice Tankisi
- Department of Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Astrid J Terkelsen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - Karolina Khan
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mustapha Itani
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Søren H Sindrup
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Charles
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
9
|
Jende JME, Kender Z, Mooshage C, Groener JB, Alvarez-Ramos L, Kollmer J, Juerchott A, Hahn A, Heiland S, Nawroth P, Bendszus M, Kopf S, Kurz FT. Diffusion Tensor Imaging of the Sciatic Nerve as a Surrogate Marker for Nerve Functionality of the Upper and Lower Limb in Patients With Diabetes and Prediabetes. Front Neurosci 2021; 15:642589. [PMID: 33746707 PMCID: PMC7966816 DOI: 10.3389/fnins.2021.642589] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background Nerve damage in diabetic neuropathy (DN) is assumed to begin in the distal legs with a subsequent progression to hands and arms at later stages. In contrast, recent studies have found that lower limb nerve lesions in DN predominate at the proximal sciatic nerve and that, in the upper limb, nerve functions can be impaired at early stages of DN. Materials and Methods In this prospective, single-center cross-sectional study, participants underwent diffusion-weighted 3 Tesla magnetic resonance neurography in order to calculate the sciatic nerve’s fractional anisotropy (FA), a surrogate parameter for structural nerve integrity. Results were correlated with clinical and electrophysiological assessments of the lower limb and an examination of hand function derived from the Purdue Pegboard Test. Results Overall, 71 patients with diabetes, 11 patients with prediabetes and 25 age-matched control subjects took part in this study. In patients with diabetes, the sciatic nerve’s FA showed positive correlations with tibial and peroneal nerve conduction velocities (r = 0.62; p < 0.001 and r = 0.56; p < 0.001, respectively), and tibial and peroneal nerve compound motor action potentials (r = 0.62; p < 0.001 and r = 0.63; p < 0.001, respectively). Moreover, the sciatic nerve’s FA was correlated with the Pegboard Test results in patients with diabetes (r = 0.52; p < 0.001), prediabetes (r = 0.76; p < 0.001) and in controls (r = 0.79; p = 0.007). Conclusion This study is the first to show that the sciatic nerve’s FA is a surrogate marker for functional and electrophysiological parameters of both upper and lower limbs in patients with diabetes and prediabetes, suggesting that nerve damage in these patients is not restricted to the level of the symptomatic limbs but rather affects the entire peripheral nervous system.
Collapse
Affiliation(s)
- Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Mooshage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan B Groener
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany.,Medicover Neuroendocrinology, Munich, Germany.,German Center of Diabetes Research (DZD), Associated Partner in the DZD, München-Neuherberg, Germany
| | - Lucia Alvarez-Ramos
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Juerchott
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg, Germany
| | - Peter Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research (DZD), Associated Partner in the DZD, München-Neuherberg, Germany.,Joint Institute for Diabetes and Cancer at Helmholtz-Zentrum Munich and Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research (DZD), Associated Partner in the DZD, München-Neuherberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
Deshpande D, Agarwal N, Fleming T, Gaveriaux-Ruff C, Klose CSN, Tappe-Theodor A, Kuner R, Nawroth P. Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nat Commun 2021; 12:426. [PMID: 33462216 PMCID: PMC7814083 DOI: 10.1038/s41467-020-20677-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Painful neuropathy is a frequent complication in diabetes. Proopiomelanocortin (POMC) is an endogenous opioid precursor peptide, which plays a protective role against pain. Here, we report dysfunctional POMC-mediated antinociception in sensory neurons in diabetes. In streptozotocin-induced diabetic mice the Pomc promoter is repressed due to increased binding of NF-kB p50 subunit, leading to a loss in basal POMC level in peripheral nerves. Decreased POMC levels are also observed in peripheral nervous system tissue from diabetic patients. The antinociceptive pathway mediated by POMC is further impaired due to lysosomal degradation of μ-opioid receptor (MOR). Importantly, the neuropathic phenotype of the diabetic mice is rescued upon viral overexpression of POMC and MOR in the sensory ganglia. This study identifies an antinociceptive mechanism in the sensory ganglia that paves a way for a potential therapy for diabetic neuropathic pain.
Collapse
Affiliation(s)
- Divija Deshpande
- grid.5253.10000 0001 0328 4908Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany ,grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité -Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nitin Agarwal
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany
| | - Thomas Fleming
- grid.5253.10000 0001 0328 4908Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany ,grid.452622.5German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Claire Gaveriaux-Ruff
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique, UMR7104 Illkirch, France ,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France ,grid.418692.00000 0004 0610 0264Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Christoph S. N. Klose
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité -Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anke Tappe-Theodor
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany
| | - Rohini Kuner
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany
| | - Peter Nawroth
- grid.5253.10000 0001 0328 4908Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany ,grid.452622.5German Center for Diabetes Research (DZD), Neuherberg, Germany ,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Zentrum, 85764 Neuherberg, Germany
| |
Collapse
|
11
|
Vágvölgyi A, Maróti Á, Szűcs M, Póczik C, Urbán-Pap D, Baczkó I, Nemes A, Csajbók É, Sepp K, Kempler P, Orosz A, Várkonyi T, Lengyel C. Peripheral and Autonomic Neuropathy Status of Young Patients With Type 1 Diabetes Mellitus at the Time of Transition From Pediatric Care to Adult-Oriented Diabetes Care. Front Endocrinol (Lausanne) 2021; 12:719953. [PMID: 34512550 PMCID: PMC8430208 DOI: 10.3389/fendo.2021.719953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The prevalence of neuropathic lesions in young patients with type 1 diabetes mellitus (T1DM) at the time of transition from pediatric care to adult-oriented diabetes care is poorly studied. A comparative study with healthy volunteers to assess the possible neuropathic condition of this special population and to identify the potential early screening needs has not been performed yet. The results may provide important feedback to pediatric diabetes care and a remarkable baseline reference point for further follow up in adult diabetes care. PATIENTS AND METHODS Twenty-nine young patients with T1DM [age: 22.4 ± 2.9 years; HbA1c: 8.5 ± 2.1%, diabetes duration: 12.2 ± 5.8 years; (mean ± SD)] and 30 healthy volunteers (age: 21.5 ± 1.6 years; HbA1c: 5.3 ± 0.3%) were involved in the study. Autonomic function was assessed by standard cardiovascular reflex tests. Complex peripheral neuropathic testing was performed by Neurometer®, Neuropad®-test, Tiptherm®, Monofilament®, and Rydel-Seiffer tuning fork tests. RESULTS T1DM patients had significantly higher diastolic blood pressure than controls (80 ± 9 vs. 74 ± 8 mmHg, p < 0.01), but there was no significant difference in systolic blood pressure (127 ± 26 vs. 121 ± 13 mmHg). Cardiovascular reflex tests had not revealed any significant differences between the T1DM patients and controls. No significant differences with Neurometer®, Neuropad®-test, and Monofilament® were detected between the two groups. The vibrational sensing on the radius on both sides was significantly impaired in the T1DM group compared to the controls with Rydel-Seiffer tuning fork test (right: 7.5 ± 1.0 vs. 7.9 ± 0.3; left: 7.5 ± 0.9 vs. 7.9 ± 0.3, p < 0.05). The Tiptherm®-test also identified a significant impairment in T1DM patients (11 sensing failures vs. 1, p < 0.001). In addition, the neuropathic complaints were significantly more frequently present in the T1DM patient group than in the controls (9 vs. 0, p < 0.01). CONCLUSION In this young T1DM population, cardiovascular autonomic neuropathy and cardiac morphological alterations could not be found. However, Rydel-Seiffer tuning fork and Tiptherm®-tests revealed peripheral sensory neurological impairments in young T1DM patients at the time of their transition to adult diabetes care.
Collapse
Affiliation(s)
- Anna Vágvölgyi
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Ágnes Maróti
- Department of Pediatrics and Pediatric Health Center, University of Szeged, Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Csongor Póczik
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Dóra Urbán-Pap
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Attila Nemes
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Éva Csajbók
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Krisztián Sepp
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Kempler
- Department of Oncology and Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Orosz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
- *Correspondence: Andrea Orosz,
| | - Tamás Várkonyi
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Csaba Lengyel
- Department of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Wang LQ, Wang F, Wang XH. Effectiveness of warm needling acupuncture for pain relief in patients with diabetic peripheral neuropathy: A protocol of systematic review. Medicine (Baltimore) 2020; 99:e23077. [PMID: 33157973 PMCID: PMC7647546 DOI: 10.1097/md.0000000000023077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Warm needling acupuncture (WNA) has been widely utilized for pain management in patients with diabetic peripheral neuropathy (DPN). However, its results are still inconsistent, and no systematic review has specifically addressed this issue. Thus, this systematic review will comprehensively and systematically investigate the effectiveness and safety of WNA for pain relief in DPN. METHODS A comprehensive literature search of MEDLINE, EMBASE, Cochrane Library, Web of Science, Scopus, Allied and Complementary Medicine Database, CBM database, and China National Knowledge Infrastructure will be performed for randomized controlled trials that report WNA for pain relief in patients with DPN. All electronic databases will be searched from initial to the present without limitations of language and publication status. Two investigators will independently screen papers, collect data, and assess study quality. Cochrane risk of bias tool will be used for study quality assessment, and evidence quality will be evaluated using Grading of Recommendations Assessment, Development and Evaluations approach. RevMan 5.3 software will be applied for running statistical analysis. RESULTS This study will summarize the evidence for the effectiveness and safety of WNA for the management of pain in patients with DPN. CONCLUSIONS The findings of this study may provide helpful evidence to judge whether WNA for pain relief in DPN is effective or not.
Collapse
Affiliation(s)
| | - Fei Wang
- Department of First Clinical Medicine
| | - Xue-hui Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Jende JME, Kender Z, Rother C, Alvarez-Ramos L, Groener JB, Pham M, Morgenstern J, Oikonomou D, Hahn A, Juerchott A, Kollmer J, Heiland S, Kopf S, Nawroth PP, Bendszus M, Kurz FT. Diabetic Polyneuropathy Is Associated With Pathomorphological Changes in Human Dorsal Root Ganglia: A Study Using 3T MR Neurography. Front Neurosci 2020; 14:570744. [PMID: 33100960 PMCID: PMC7546893 DOI: 10.3389/fnins.2020.570744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic neuropathy (DPN) is one of the most severe and yet most poorly understood complications of diabetes mellitus. In vivo imaging of dorsal root ganglia (DRG), a key structure for the understanding of DPN, has been restricted to animal studies. These have shown a correlation of decreased DRG volume with neuropathic symptom severity. Our objective was to investigate correlations of DRG morphology and signal characteristics at 3 Tesla (3T) magnetic resonance neurography (MRN) with clinical and serological data in diabetic patients with and without DPN. In this cross-sectional study, participants underwent 3T MRN of both L5 DRG using an isotropic 3D T2-weighted, fat-suppressed sequence with subsequent segmentation of DRG volume and analysis of normalized signal properties. Overall, 55 diabetes patients (66 ± 9 years; 32 men; 30 with DPN) took part in this study. DRG volume was smaller in patients with severe DPN when compared to patients with mild or moderate DPN (134.7 ± 21.86 vs 170.1 ± 49.22; p = 0.040). In DPN patients, DRG volume was negatively correlated with the neuropathy disability score (r = −0.43; 95%CI = −0.66 to −0.14; p = 0.02), a measure of neuropathy severity. DRG volume showed negative correlations with triglycerides (r = −0.40; 95%CI = −0.57 to −0.19; p = 0.006), and LDL cholesterol (r = −0.33; 95%CI = −0.51 to −0.11; p = 0.04). There was a strong positive correlation of normalized MR signal intensity (SI) with the neuropathy symptom score in the subgroup of patients with painful DPN (r = 0.80; 95%CI = 0.46 to 0.93; p = 0.005). DRG SI was positively correlated with HbA1c levels (r = 0.30; 95%CI = 0.09 to 0.50; p = 0.03) and the triglyceride/HDL ratio (r = 0.40; 95%CI = 0.19 to 0.57; p = 0.007). In this first in vivo study, we found DRG morphological degeneration and signal increase in correlation with neuropathy severity. This elucidates the potential importance of MR-based DRG assessments in studying structural and functional changes in DPN.
Collapse
Affiliation(s)
- Johann M E Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Rother
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucia Alvarez-Ramos
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Jan B Groener
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research, München-Neuherberg, Germany.,Medicover Neuroendokrinologie, Munich, Germany
| | - Mirko Pham
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Neuroradiology, Würzburg University Hospital, Würzburg, Germany
| | - Jakob Morgenstern
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Dimitrios Oikonomou
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Juerchott
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research, München-Neuherberg, Germany
| | - Peter P Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany.,German Center of Diabetes Research, München-Neuherberg, Germany.,Joint Institute for Diabetes and Cancer at Helmholtz-Zentrum Munich and Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
SUMOylation of Enzymes and Ion Channels in Sensory Neurons Protects against Metabolic Dysfunction, Neuropathy, and Sensory Loss in Diabetes. Neuron 2020; 107:1141-1159.e7. [PMID: 32735781 DOI: 10.1016/j.neuron.2020.06.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/20/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a highly frequent and debilitating clinical complication of diabetes that lacks therapies. Cellular oxidative stress regulates post-translational modifications, including SUMOylation. Here, using unbiased screens, we identified key enzymes in metabolic pathways and ion channels as novel molecular targets of SUMOylation that critically regulated their activity. Sensory neurons of diabetic patients and diabetic mice demonstrated changes in the SUMOylation status of metabolic enzymes and ion channels. In support of this, profound metabolic dysfunction, accelerated neuropathology, and sensory loss were observed in diabetic gene-targeted mice selectively lacking the ability to SUMOylate proteins in peripheral sensory neurons. TRPV1 function was impaired by diabetes-induced de-SUMOylation as well as by metabolic imbalance elicited by de-SUMOylation of metabolic enzymes, facilitating diabetic sensory loss. Our results unexpectedly uncover an endogenous post-translational mechanism regulating diabetic neuropathy in patients and mouse models that protects against metabolic dysfunction, nerve damage, and altered sensory perception.
Collapse
|
15
|
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm (Vienna) 2020; 127:589-624. [PMID: 32036431 PMCID: PMC7148276 DOI: 10.1007/s00702-020-02145-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms.
Collapse
Affiliation(s)
- Daniela C Rosenberger
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Vivian Blechschmidt
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hans Timmerman
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - André Wolff
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
16
|
Groener JB, Jende JME, Kurz FT, Kender Z, Treede RD, Schuh-Hofer S, Nawroth PP, Bendszus M, Kopf S. Understanding Diabetic Neuropathy-From Subclinical Nerve Lesions to Severe Nerve Fiber Deficits: A Cross-Sectional Study in Patients With Type 2 Diabetes and Healthy Control Subjects. Diabetes 2020; 69:436-447. [PMID: 31826867 DOI: 10.2337/db19-0197] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022]
Abstract
Studies on magnetic resonance neurography (MRN) in diabetic polyneuropathy (DPN) have found proximal sciatic nerve lesions. The aim of this study was to evaluate the functional relevance of sciatic nerve lesions in DPN, with the expectation of correlations with the impairment of large-fiber function. Sixty-one patients with type 2 diabetes (48 with and 13 without DPN) and 12 control subjects were enrolled and underwent MRN, quantitative sensory testing, and electrophysiological examinations. There were differences in mechanical detection (Aβ fibers) and mechanical pain (Aδ fibers) but not in thermal pain and thermal detection clusters (C fibers) among the groups. Lesion load correlated with lower Aα-, Aβ-, and Aδ-fiber but not with C-fiber function in all participants. Patients with lower function showed a higher load of nerve lesions than patients with elevated function or no measurable deficit despite apparent DPN. Longer diabetes duration was associated with higher lesion load in patients with DPN, suggesting that nerve lesions in DPN may accumulate over time and become clinically relevant once a critical amount of nerve fascicles is affected. Moreover, MRN is an objective method for determining lower function mainly in medium and large fibers in DPN.
Collapse
Affiliation(s)
- Jan B Groener
- Endocrinology and Clinical Chemistry, Internal Medicine Department I, University Hospital Heidelberg, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD) e.V., München-Neuherberg, Germany
- Medicover Neuroendokrinologie, Munich, Germany
| | - Johann M E Jende
- Neuroradiology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix T Kurz
- Neuroradiology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zoltan Kender
- Endocrinology and Clinical Chemistry, Internal Medicine Department I, University Hospital Heidelberg, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD) e.V., München-Neuherberg, Germany
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter P Nawroth
- Endocrinology and Clinical Chemistry, Internal Medicine Department I, University Hospital Heidelberg, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD) e.V., München-Neuherberg, Germany
- Joint Heidelberg-ICD Translational Diabetes Program, Helmoltz-Zentrum, Munich, Germany
| | - Martin Bendszus
- Neuroradiology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Endocrinology and Clinical Chemistry, Internal Medicine Department I, University Hospital Heidelberg, Heidelberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD) e.V., München-Neuherberg, Germany
| |
Collapse
|
17
|
Massardo T, Araya AV, Prat H, Alarcón L, Berrocal I, Pino A, Cordero F, Jaimovich R, Fernández R, Herrera E, Carmona J, Castro A. Factors associated with silent myocardial ischemia, autonomic or peripheral neuropathies, and survival in diabetes mellitus type 2 patients without cardiovascular symptoms. Int J Diabetes Dev Ctries 2019. [DOI: 10.1007/s13410-019-00758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
18
|
Agarwal N, Helmstädter J, Rojas DR, Bali KK, Gangadharan V, Kuner R. Evoked hypoalgesia is accompanied by tonic pain and immune cell infiltration in the dorsal root ganglia at late stages of diabetic neuropathy in mice. Mol Pain 2018; 14:1744806918817975. [PMID: 30453826 PMCID: PMC6311571 DOI: 10.1177/1744806918817975] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diabetic peripheral neuropathy is a major debilitating late complication of diabetes, which significantly reduces the quality of life in patients. Diabetic peripheral neuropathy is associated with a wide spectrum of sensory abnormalities, where in loss of sensation or hypoalgesia to applied external stimuli is paradoxically accompanied by debilitating tonic spontaneous pain. In numerous studies on animal models of diabetic peripheral neuropathy, behavioural measurements have been largely confined to analysis of evoked withdrawal to mechanical and thermal stimuli applied to dermatomes, whereas spontaneous, on-going pain has not been widely studied. In the Streptozotocin model of type 1 diabetes, we employed the Conditioned Place Preference test to assess tonic pain. Our results indicate that both phases, that is, early evoked hypersensitivity (i.e. 5–7 weeks post-Streptozotocin) as well as late stage hypoalgesia (i.e. 17–20 weeks post-Streptozotocin) are accompanied by significant tonic pain in mice with diabetic peripheral neuropathy. We also report on the temporal relation between on-going pain and neuropathological changes in the dorsal root ganglia of mice with diabetic peripheral neuropathy up to 6 months post-Streptozotocin. Neither early hypersensitivity nor late hypoalgesia were associated with markers of cellular stress in the dorsal root ganglia. Whereas significant neutrophil infiltration was observed in the dorsal root ganglia over both early and late stages post-Streptozotocin, T-cell infiltration in the dorsal root ganglia was prominent at late stages post-Streptozotocin. Thus, longitudinal analyses reveal that similar to patients with chronic diabetic peripheral neuropathy, mice show tonic pain despite sensory loss after several months in the Streptozotocin model, which is accompanied by neuroimmune interactions in the dorsal root ganglia.
Collapse
Affiliation(s)
- Nitin Agarwal
- Institute of Pharmacology, Heidelberg University, Germany
| | | | - Daniel R Rojas
- Institute of Pharmacology, Heidelberg University, Germany
| | - Kiran K Bali
- Institute of Pharmacology, Heidelberg University, Germany
| | | | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Germany
| |
Collapse
|
19
|
|
20
|
De Jaeger M, Goudman L, Van Schuerbeek P, De Mey J, Keymeulen B, Brouns R, Moens M. Cerebral Biochemical Effect of Pregabalin in Patients with Painful Diabetic Neuropathy: A Randomized Controlled Trial. Diabetes Ther 2018; 9:1591-1604. [PMID: 29951977 PMCID: PMC6064591 DOI: 10.1007/s13300-018-0460-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION With the development of new neuroimaging tools it has become possible to assess neurochemical alterations in patients experiencing chronic pain and to determine how these factors change during pharmacological treatment. The goal of this study was to examine the exact neurochemical mechanism underlying pregabalin treatment, utilizing magnetic resonance spectroscopy (1H-MRS), in a population of patients with painful diabetic polyneuropathy (PDN), with the overall aim to ultimately objectify the clinical effect of pregabalin. METHODS A double blind, randomized, placebo-controlled study was conducted. A total of 27 patients with PDN were enrolled in the study, of whom 13 received placebo treatment (control group) and 14 received pregabalin (intervention group). Pregabalin treatment consisted of stepwise dose escalation over the study period from 75 mg daily ultimately to 600 mg daily. 1H-MRS was performed at 3T on four regions of interest in the brain: the rostral anterior cingulate cortex (rACC), left and right thalamus and prefrontal cortex. The absolute concentrations of N-acetyl aspartate, glutamate, glutamine, gamma-amino-butyric-acid (GABA), glucose (Glc) and myo-inositol (mINS) were determined using LCModel. RESULTS The concentration of most neurometabolites in the placebo and pregabalin group did not significantly differ over time, with only a small significant difference in Glc level in the left thalamus (p = 0.049). Comparison of the effects of the different doses revealed significant differences for mINS in the rACC (baseline 2.42 ± 1.21 vs. 450 mg 1.58 ± 0.94; p = 0.022) and dorsolateral prefrontal cortex (75 mg 2.38 ± 0.89 vs. 450 mg 1.59 ± 0.85; p = 0.042) and also for GABA in the rACC (75 mg 0.53 ± 0.51 vs. 225 mg 0.28 ± 0.19; p = 0.014). CONCLUSION No differences were found in metabolite concentrations between the placebo (control) and intervention groups, but some differences, although small, were found between the different doses. TRIAL REGISTRATION This study is registered at ClinicalTrials.gov (NCT01180608). FUNDING Lyrica Independent Investigator Research Award (LIIRA) 2010 (Pfizer) funded the study.
Collapse
Affiliation(s)
- Mats De Jaeger
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Pain in Motion International Research Group, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Johan De Mey
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bart Keymeulen
- Department of Diabetology, Universitait Ziekenhuis Brussel, Brussels, Belgium
| | - Raf Brouns
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology, ZorgSaam Hospital, Terneuzen, The Netherlands
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium.
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium.
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|