1
|
Dalvi S, Bhatt LK. Trace amine-associated receptor 1 (TAAR1): an emerging therapeutic target for neurodegenerative, neurodevelopmental, and neurotraumatic disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5057-5075. [PMID: 39738834 DOI: 10.1007/s00210-024-03757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Trace amines are physiologically active amines present in all organisms. They are structurally identical to traditional monoamines and are rapidly metabolized by monoamine oxidases. The mammalian neurological system generates these molecules at rates equivalent to traditional monoamines, but because of their short half-life, they are only observable in trace quantities. Their receptors are G protein-coupled receptors present in both the CNS and peripheral locations, with trace amine-associated receptor 1 (TAAR1) being the most researched. TAAR1's capacity to regulate glutamatergic and monoaminergic neurotransmission has made it a viable therapeutic target for neuropsychiatric illnesses. Although the TAAR1 role in schizophrenia and other neuropsychiatric disorders is well established, its role in the pathology of neurodegenerative and neurotraumatic disorders recently got attention. This review discusses the role of TAAR1 in neurodegenerative, neurodevelopment, and neurotraumatic disorders and explores its potential to be a novel therapeutic target in these disorders.
Collapse
Affiliation(s)
- Saher Dalvi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Gou L, Lei J, Ren H, Zhang Y, Chen X, Wang S, Dou Y. Gray matter alterations and neurotransmitter system associations in hepatitis B virus-related cirrhosis: insights into neuropathogenesis and therapeutic targets. Neuroradiology 2025:10.1007/s00234-025-03579-0. [PMID: 40085214 DOI: 10.1007/s00234-025-03579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION The associations between gray matter (GM) change and neurotransmitter systems in hepatitis B virus-related cirrhosis (HBV-RC) are still poorly understood. METHODS We recruited 60 HBV-RC patients and 60 healthy controls (HCs). Difference of GM volume between HBV-RC and HC groups was evaluated at global and voxel levels. The potential relationship between GM morphology and prognostic models of liver function was evaluated at voxel level in HBV-RC patients. The spatial correspondence between regional GM alteration and the distribution of multiple neurotransmitter systems in HBV-RC compared to healthy controls was assessed by the JuSpace toolbox covering various neurotransmitter maps. RESULTS Total GM volume in HBV-RC group was smaller than in HC group (p < 0.05), and the pattern of GM volume alterations showed significantly increased volume in bilateral thalamus and ventral diencephalon and decreased volume in bilateral basal ganglia and cerebellum (p < 0.05, FWE corrected). In HBV-RC group, the volume of left superior frontal gyrus medial segment and right middle frontal gyrus was positively correlated with serum albumin level and negatively correlated with ALBI score, and serum bilirubin level was negatively correlated with right hippocampus and caudate (p < 0.05, FWE corrected). GM alterations in HBV-RC patients relative to HCs were significantly associated with the intrinsic distribution of various neurotransmitter pathways, including GABAergic, cholinergic, serotonergic, and dopaminergic (p < 0.05). CONCLUSION The pattern of GM alteration correlated with liver function and specific neurotransmitter deficits in HBV-RC patients. These findings provide new insight into the complex neuropathogenesis of HBV-RC and the possible therapeutic targets based on neurotransmitter modulation.
Collapse
Affiliation(s)
- Lubin Gou
- Department of Radiology, Lanzhou University First Affiliated Hospital, Lanzhou University First Clinical Medical College, Lanzhou, Gansu, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, Gansu, China
| | - Junqiang Lei
- Department of Radiology, Lanzhou University First Affiliated Hospital, Lanzhou University First Clinical Medical College, Lanzhou, Gansu, China.
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, Gansu, China.
- , No.1, Donggang West Road, Chengguan District, Lanzhou, Gansu, China.
| | - Huling Ren
- Department of Radiology, Lanzhou University First Affiliated Hospital, Lanzhou University First Clinical Medical College, Lanzhou, Gansu, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, Gansu, China
| | - Yanli Zhang
- Department of Radiology, Lanzhou University First Affiliated Hospital, Lanzhou University First Clinical Medical College, Lanzhou, Gansu, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, Gansu, China
| | - Xiaoli Chen
- Department of Radiology, Lanzhou University First Affiliated Hospital, Lanzhou University First Clinical Medical College, Lanzhou, Gansu, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, Gansu, China
| | - Shuaiwen Wang
- Department of Radiology, Lanzhou University First Affiliated Hospital, Lanzhou University First Clinical Medical College, Lanzhou, Gansu, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, Gansu, China
| | - Yu Dou
- Department of Radiology, Lanzhou University First Affiliated Hospital, Lanzhou University First Clinical Medical College, Lanzhou, Gansu, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Kong W, Sun X, Yu S, Liu P, Zheng X, Zhang J, Zhu L, Jiang T, Jin M, Gao J, Fan X, Liu X, Liu L. Bile duct ligation increased dopamine levels in the cerebral cortex of rats partly due to induction of tyrosine hydroxylase. Br J Pharmacol 2023. [PMID: 36692417 DOI: 10.1111/bph.16041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Liver failure is associated with psychiatric alterations, partly resulting from the increased brain dopamine levels. We investigated the relationship between increased dopamine levels and mental abnormalities using bile duct ligation (BDL) rats and the mechanism by which liver failure increased dopamine levels in SH-SY5Y cells. Behavioural tests were carried out on day 13 and 27 following BDL, along with measurements of dopamine and metabolites, expressions of enzymes and transporters related to dopamine metabolism, and its transport into the cortex and the hippocampus. SH-SY5Y cells were used to investigate whether NH4 Cl, bile acids and bilirubin affected expression of tyrosine hydroxylase or not. Tyrosine hydroxylase (TH) expression in SH-SY5Y cells co-incubated with bilirubin and signal pathway inhibitors was measured. KEY RESULTS Open-field test results demonstrated BDL rats showed anxiety-like behaviour, accompanied by increased dopamine levels and expression of TH protein in the cortex. Membrane bound long form (MB)-COMT, slightly but significantly decreased. SH-SY5Y cells indicated that increased bilirubin levels was a factor in inducing TH expression. Both inhibitor of NF-κB pathway BAY 11-7082 and silencing NF-κB p65 reversed bilirubin-induced upregulation of TH protein. NF-κB activator TNF-α increased expression of TH protein. Roles of bilirubin in increases of TH protein expressions and dopamine levels were measured using hyperbilirubinemia rats. Anxiety-like behaviour, was associated with increased dopamine levels and TH protein expressions in hyperbilirubinemia rats. CONCLUSION AND IMPLICATIONS BDL significantly increased dopamine levels in rat cortex partly due to bilirubin-mediated TH induction. Increased bilirubin induced TH expression via activating NF-κB signalling pathway.
Collapse
Affiliation(s)
- Weimin Kong
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China.,School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu, Anhui, China
| | - Xueying Sun
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Siyu Yu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peihua Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoke Zheng
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxin Zhang
- Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan Normal University), Changsha, China
| | - Liang Zhu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tianxin Jiang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengmeng Jin
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinghui Gao
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaomin Fan
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci 2023; 46:60-74. [PMID: 36369028 DOI: 10.1016/j.tins.2022.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Schizophrenia remains a major health burden, highlighting the need for new treatment approaches. We consider the potential for targeting the trace amine (TA) system. We first review genetic, preclinical, and clinical evidence for the role of TAs in the aetiopathology of schizophrenia. We then consider how the localisation and function of the trace amine-associated receptor 1 (TAAR1) position it to modulate key brain circuits for the disorder. Studies in rodents using Taar1 knockout (TAAR1-KO) and overexpression models show that TAAR1 agonism inhibits midbrain dopaminergic and serotonergic activity, and enhances prefrontal glutamatergic function. TAAR1 agonists also reduce hyperactivity, attenuate prepulse inhibition (PPI) deficits and social withdrawal, and improve cognitive measures in animal models. Finally, we consider findings from clinical trials of TAAR1 agonists and how this approach may address psychotic and negative symptoms, tolerability issues, and other unmet needs in the treatment of schizophrenia.
Collapse
|
5
|
Ebrahimnejad M, Azizi P, Alipour V, Zarrindast MR, Vaseghi S. Complicated Role of Exercise in Modulating Memory: A Discussion of the Mechanisms Involved. Neurochem Res 2022; 47:1477-1490. [PMID: 35195832 DOI: 10.1007/s11064-022-03552-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Evidence has shown the beneficial effects of exercise on learning and memory. However, many studies have reported controversial results, indicating that exercise can impair learning and memory. In this article, we aimed to review basic studies reporting inconsistent complicated effects of exercise on memory in rodents. Also, we discussed the mechanisms involved in the effects of exercise on memory processes. In addition, we tried to find scientific answers to justify the inconsistent results. In this article, the role of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (involved in synaptic plasticity and neurogenesis), and vascular endothelial growth factor, nerve growth factor, insulin-like growth factor 1, inflammatory markers, apoptotic factors, and antioxidant system was discussed in the modulation of exercise effects on memory. The role of intensity and duration of exercise, and type of memory task was also investigated. We also mentioned to the interaction of exercise with the function of neurotransmitter systems, which complicates the prediction of exercise effect via altering the level of BDNF. Eventually, we suggested that changes in the function of neurotransmitter systems following different types of exercise (depending on exercise intensity or age of onset) should be investigated in further studies. It seems that exercise-induced changes in the function of neurotransmitter systems may have a stronger role than age, type of memory task, or exercise intensity in modulating memory. Importantly, high levels of interactions between neurotransmitter systems and BDNF play a critical role in the modulation of exercise effects on memory performance.
Collapse
Affiliation(s)
- Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Paniz Azizi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Vahide Alipour
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
6
|
Dedic N, Dworak H, Zeni C, Rutigliano G, Howes OD. Therapeutic Potential of TAAR1 Agonists in Schizophrenia: Evidence from Preclinical Models and Clinical Studies. Int J Mol Sci 2021; 22:ijms222413185. [PMID: 34947997 PMCID: PMC8704992 DOI: 10.3390/ijms222413185] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) has emerged as a promising therapeutic target for neuropsychiatric disorders due to its ability to modulate monoaminergic and glutamatergic neurotransmission. In particular, agonist compounds have generated interest as potential treatments for schizophrenia and other psychoses due to TAAR1-mediated regulation of dopaminergic tone. Here, we review unmet needs in schizophrenia, the current state of knowledge in TAAR1 circuit biology and neuropharmacology, including preclinical behavioral, imaging, and cellular evidence in glutamatergic, dopaminergic and genetic models linked to the pathophysiology of psychotic, negative and cognitive symptoms. Clinical trial data for TAAR1 drug candidates are reviewed and contrasted with antipsychotics. The identification of endogenous TAAR1 ligands and subsequent development of small-molecule agonists has revealed antipsychotic-, anxiolytic-, and antidepressant-like properties, as well as pro-cognitive and REM-sleep suppressing effects of TAAR1 activation in rodents and non-human primates. Ulotaront, the first TAAR1 agonist to progress to randomized controlled clinical trials, has demonstrated efficacy in the treatment of schizophrenia, while another, ralmitaront, is currently being evaluated in clinical trials in schizophrenia. Coupled with the preclinical findings, this provides a rationale for further investigation and development of this new pharmacological class for the treatment of schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Nina Dedic
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
- Correspondence:
| | - Heather Dworak
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Courtney Zeni
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Grazia Rutigliano
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Oliver D. Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London SE5 8AF, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
7
|
Zheng X, Yang H, Qin L, Wang S, Xie L, Yang L, Kong W, Zhu L, Liu L, Liu X. Bile Duct Ligation Upregulates Expression and Function of L-Amino Acid Transporter 1 at Blood-Brain Barrier of Rats via Activation of Aryl Hydrocarbon Receptor by Bilirubin. Biomedicines 2021; 9:biomedicines9101320. [PMID: 34680437 PMCID: PMC8533316 DOI: 10.3390/biomedicines9101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Liver failure is associated with increased levels of brain aromatic amino acids (AAAs), whose transport across the blood–brain barrier (BBB) is mainly mediated by L-amino acid transporter 1 (LAT1). We aimed to investigate whether liver failure induced by bile duct ligation (BDL) increases levels of brain AAAs by affecting the expression and function of LAT1. The LAT1 function was assessed using the brain distribution of gabapentin. It was found that BDL significantly increased levels of gabapentin, phenylalanine, and tryptophan in the cortex, hippocampus, and striatum of rats, and upregulated the expression of total LAT1 protein in hippocampus and striatum as well as cortex membrane LAT1 protein. HCMEC/D3 served as in vitro BBB model, and the data showed that both the serum of BDL rats and bilirubin induced LAT1 expression and function, while bilirubin oxidase almost abolished the upregulation of LAT1 protein by bilirubin and the serum of BDL rats. The enhanced function and expression of LAT1 were also observed in the hippocampus and striatum of hyperbilirubinemia rats. Both aryl hydrocarbon receptor (AhR) antagonist α-naphthoflavone and AhR silencing obviously attenuated the upregulation of LAT1 protein by bilirubin or omeprazole. This study provides the first evidence that BDL upregulates LAT1 at the rat BBB, attributed to the activation of AhR by the increased plasma bilirubin. The results highlight the mechanisms causing BDL-increased levels of brain AAAs and their physiological significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Liu
- Correspondence: (L.L.); (X.L.); Tel.: +86-025-8327-1006 (X.L.)
| | - Xiaodong Liu
- Correspondence: (L.L.); (X.L.); Tel.: +86-025-8327-1006 (X.L.)
| |
Collapse
|
8
|
Lu B, Wu C, Azami NLB, Xie D, Zhao C, Xu W, Hui D, Chen X, Sun R, Song J, An Y, Li K, Wang H, Ye G, Sun M. Babao Dan improves neurocognitive function by inhibiting inflammation in clinical minimal hepatic encephalopathy. Biomed Pharmacother 2021; 135:111084. [PMID: 33383371 DOI: 10.1016/j.biopha.2020.111084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammation has been considered a precipitating event that contributes to neurocognitive dysfunction in minimal hepatic encephalopathy (MHE). Inhibition TLR-4 related inflammation can effectively improve neurocognitive dysfunction of MHE. Our previous study showed that Babao Dan (BBD) effectively inhibited inflammation and ameliorated neurocognitive function in rats with acute hepatic encephalopathy (HE) and chronic HE. The mechanism may lie in the regulation of TLR4 signaling pathway. Therefore, this study aimed to evaluate the role of BBD in the treatment of MHE patients with cirrhosis and to elucidate the underlying mechanism by which BBD regulated TLR4 pathway to alleviate inflammation. METHODS A randomized controlled trial (n = 62) was conducted to evaluate the clinical efficacy between BBD plus lactulose (n = 31) and lactulose alone (n = 31) in MHE patients by testing neurocognitive function (NCT-A and DST), blood ammonia, liver function (ALT, AST and TBIL) and blood inflammation (IL-1β, IL-6 and TNF-α). Afterward, we detected NO, inflammatory cytokines (IL-1β, IL-6 and TNF-α) and the phosphorylation of P65, JNK, ERK as well as P38 in LPS-activated rat primary bone marrow-derived macrophages (BMDMs), peritoneal macrophages (PMs), and mouse primary BMDMs/PMs/microglia/astrocytes, to investigate the underlying mechanism of BBD inhibiting inflammation through TLR4 pathway. Also, the survival rate of mice, liver function (ALT, AST), blood inflammation (IL-1β, IL-6 and TNF-α), inflammatory cytokines (IL-1β, IL-6 and TNF-α) and histopathological changes in the liver, brain and lung were measured to assess the anti-inflammatory effect of BBD on neurocognitive function in endotoxin shock/endotoxemia mice. RESULTS BBD combined with lactulose significantly ameliorated neurocognitive function by decreasing NCT-A (p<0.001) and increasing DST (p<0.001); inhibited systemic inflammation by decreasing IL-1β (p<0.001), IL-6(p<0.001) and TNF-α (p<0.001); reduced ammonia level (p = 0.005), and improved liver function by decreasing ALT(p = 0.043), AST(p = 0.003) and TBIL (p = 0.026) in MHE patients. Furthermore, BBD inhibited gene and protein expression of IL-1β, IL-6 and TNF-α as well as NO in rat primary BMDMs/PMs, and mouse primary BMDMs/PMs/microglia/astrocytes in a dose-dependent manner. BBD inhibited the activation of mouse primary BMDMs/PMs/microglia/astrocytes by regulating TLR4 pathway involving the phosphorylation of P65, JNK, ERK and P38. Also, BBD reduced the mortality of mice with endotoxin shock/endotoxemia; serum levels of ALT, AST, IL-1β, IL-6 and TNF-α; gene expression of IL-1β, IL-6 and TNF-α in the liver, brain and lung, and tissue damage in the liver and lung. CONCLUSION Our study provided for the first time clinical and experimental evidence supporting the use of BBD in MHE, and revealed that BBD could play a crucial role in targeting and regulating TLR4 inflammatory pathway to improve neurocognitive function in MHE patients.
Collapse
Affiliation(s)
- Bingjie Lu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chao Wu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Nisma Lena Bahaji Azami
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Changqing Zhao
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wan Xu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dengcheng Hui
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xi Chen
- Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200082, China.
| | - Runfei Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingru Song
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yongtong An
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| | - Kun Li
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| | - Mingyu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Zhuge W, Zhuge Q, Wang W, Lu X, You R, Liu L, Yu H, Wang J, Wang X, Ye Y, Ding S. Hydrogen sulphide ameliorates dopamine-induced astrocytic inflammation and neurodegeneration in minimal hepatic encephalopathy. J Cell Mol Med 2020; 24:13634-13647. [PMID: 33118312 PMCID: PMC7753993 DOI: 10.1111/jcmm.15728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/19/2022] Open
Abstract
It has been demonstrated that the action of dopamine (DA) could enhance the production of tumour necrosis factor‐α (TNF‐α) by astrocytes and potentiate neuronal apoptosis in minimal hepatic encephalopathy (MHE). Recently, sodium hydrosulfide (NaHS) has been found to have neuroprotective properties. Our study addressed whether NaHS could rescue DA‐challenged inflammation and apoptosis in neurons to ameliorate memory impairment in MHE rats and in the neuron and astrocyte coculture system. We found that NaHS suppressed DA‐induced p65 acetylation, resulting in reduced TNF‐α production in astrocytes both in vitro and in vivo. Furthermore, decreased apoptosis was observed in neurons exposed to conditioned medium from DA + NaHS‐challenged astrocytes, which was similar to the results obtained in the neurons exposed to TNF‐α + NaHS, suggesting a therapeutic effect of NaHS on the suppression of neuronal apoptosis via the reduction of TNF‐α level. DA triggered the inactivation of p70 S6 ribosomal kinase (S6K1) and dephosphorylation of Bad, resulting in the disaggregation of Bclxl and Bak and the release of cytochrome c (Cyt. c), and this process could be reversed by NaHS administration. Our work demonstrated that NaHS attenuated DA‐induced astrocytic TNF‐α release and ameliorated inflammation‐induced neuronal apoptosis in MHE. Further research into this approach may uncover future potential therapeutic strategies for MHE.
Collapse
Affiliation(s)
- Weishan Zhuge
- Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qichuan Zhuge
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weikan Wang
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xiaoai Lu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruimin You
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leping Liu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - He Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuebao Wang
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiru Ye
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Han W, Zhang H, Han Y, Duan Z. Cognition-tracking-based strategies for diagnosis and treatment of minimal hepatic encephalopathy. Metab Brain Dis 2020; 35:869-881. [PMID: 32495311 PMCID: PMC7354280 DOI: 10.1007/s11011-020-00539-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
Minimal hepatic encephalopathy (MHE), which shows mild cognitive impairment, is a subtle complication of cirrhosis that has been shown to affect daily functioning and quality of life. However, until 2014, relevant guidelines do not give much attention to the diagnosis and treatment of MHE, resulting in patients being ignored and denied the benefits of treatment. In this review, we summarize recent cognition-based research about (1) alteration of nerve cells, including astrocytes, microglial cells and neurons, in mild cognitive impairment in MHE; (2) comparison of methods in detecting cognitive impairment in MHE; and (3) comparison of methods for therapy of cognitive impairment in MHE. We hope to provide information about diagnosis and treatment of cognitive impairment in patients with MHE.
Collapse
Affiliation(s)
- Weijia Han
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Huanqian Zhang
- Yidu Central Hospital of Weifang Medical College, Shandong, China
| | - Ying Han
- Department of Immunologic Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China.
| |
Collapse
|
11
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
12
|
Dhanda S, Gupta S, Halder A, Sunkaria A, Sandhir R. Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav Immun 2018. [PMID: 29518527 DOI: 10.1016/j.bbi.2018.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease per se induces neuroinflammation that contributes to cognitive deficits in hepatic encephalopathy (HE). However, the processes by which pro-inflammatory molecules result in cognitive impairment still remains unclear. In the present study, a significant increase in the activity of liver function enzymes viz. alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) was observed along with increase in plasma ammonia levels after four weeks of bile duct ligation (BDL) in rats suggesting hepatocellular damage. A significant increase was observed in mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) in brain regions and liver of BDL rats. Concomitantly, IL-6, TNF-α and MCP-1 protein levels were also increased in brain regions, liver and serum of BDL rats suggesting the involvement of blood-brain-axis in inflammatory response. However, a significant decrease was observed in glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) expression at transcriptional and translation level in brain of BDL rats. Immunohistochemical and flowcytometric analysis revealed reduced number of GFAP-immunopositive astrocytes and Iba1-immunopositive microglia in the brain regions of BDL rats. Further, a significant decline was observed in cognitive functions in BDL rats assessed using Morris water maze and novel object recognition tests. Expression of pro and mature form of brain derived neurotrophic factor (BDNF) and its upstream transcription element showed significant reduction in brain of BDL rats. Taken together, the results of the present study suggest that systemic inflammation and reduced expression of BDNF and its upstream transcription factor plays a key role in cognitive decline in HE.
Collapse
Affiliation(s)
- Saurabh Dhanda
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Smriti Gupta
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Avishek Halder
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Aditya Sunkaria
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
13
|
Lu Q, Chen X, Liu D, Wu C, Liu M, Li H, Zhang Y, Yao S. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine. Talanta 2018; 182:428-432. [PMID: 29501174 DOI: 10.1016/j.talanta.2018.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag+ into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors.
Collapse
Affiliation(s)
- Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Xiaogen Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Dan Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|