1
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
2
|
Qi M, Fadool DA, Storace DA. An anatomically distinct subpopulation of orexin neurons project from the lateral hypothalamus to the olfactory bulb. J Comp Neurol 2023; 531:1510-1524. [PMID: 37434469 PMCID: PMC10758201 DOI: 10.1002/cne.25518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Olfactory cues play a key role in natural behaviors such as finding food, finding mates, and avoiding predators. In principle, the ability of the olfactory system to carry out these perceptual functions would be facilitated by signaling related to an organism's physiological state. One candidate pathway includes a direct projection from the hypothalamus to the main olfactory bulb, the first stage of olfactory sensory processing. The pathway from the hypothalamus to the main olfactory bulb is thought to include neurons that express the neuropeptide orexin, although the proportion that is orexinergic remains unknown. A current model proposes that the orexin population is heterogeneous, yet it remains unknown whether the proportion that innervates the main olfactory bulb reflects a distinct subpopulation of the orexin population. Herein, we carried out combined retrograde tract tracing with immunohistochemistry for orexin-A in the mouse to define the proportion of hypothalamic input to the main olfactory bulb that is orexinergic and to determine what fraction of the orexin-A population innervates the bulb. The numbers and spatial positions of all retrogradely labeled neurons and all the orexin-A-expressing neurons were quantified in sequential sections through the hypothalamus. Retrogradely labeled neurons were found in the ipsilateral hypothalamus, of which 22% expressed orexin-A. The retrogradely labeled neurons that did and did not express orexin-A could be anatomically distinguished based on their spatial position and cell body area. Remarkably, only 7% of all the orexin-A neurons were retrogradely labeled, suggesting that only a small fraction of the orexin-A population directly innervate the main olfactory bulb. These neurons spatially overlapped with the orexin-A neurons that did not innervate the bulb, although the two cell populations were differentiated based on cell body area. Overall, these results support a model in which olfactory sensory processing is influenced by orexinergic feedback at the first synapse in the olfactory processing pathway.
Collapse
Affiliation(s)
- Meizhu Qi
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Debra Ann Fadool
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| |
Collapse
|
3
|
Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021; 133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
In this review study, we aimed to introduce the orexinergic system as an important signaling pathway involved in a variety of cognitive functions such as memory, motivation, and reward-related behaviors. This study focused on the role of orexinergic system in modulating reward-related behavior, with or without the presence of stressors. Cross-talk between the reward system and orexinergic signaling was also investigated, especially orexinergic signaling in the ventral tegmental area (VTA), the nucleus accumbens (NAc), and the hippocampus. Furthermore, we discussed the role of the orexinergic system in modulating mood states and mental illnesses such as depression, anxiety, panic, and posttraumatic stress disorder (PTSD). Here, we narrowed down our focus on the orexinergic signaling in three brain regions: the VTA, NAc, and the hippocampus (CA1 region and dentate gyrus) for their prominent role in reward-related behaviors and memory. It was concluded that the orexinergic system is critically involved in reward-related behavior and significantly alters stress responses and stress-related psychiatric and mood disorders.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shahram Zarrabian
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
4
|
Forte N, Boccella S, Tunisi L, Fernández-Rilo AC, Imperatore R, Iannotti FA, De Risi M, Iannotta M, Piscitelli F, Capasso R, De Girolamo P, De Leonibus E, Maione S, Di Marzo V, Cristino L. Orexin-A and endocannabinoids are involved in obesity-associated alteration of hippocampal neurogenesis, plasticity, and episodic memory in mice. Nat Commun 2021; 12:6137. [PMID: 34675233 PMCID: PMC8531398 DOI: 10.1038/s41467-021-26388-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/30/2021] [Indexed: 11/20/2022] Open
Abstract
The mammalian brain stores and distinguishes among episodic memories, i.e. memories formed during the personal experience, through a mechanism of pattern separation computed in the hippocampal dentate gyrus. Decision-making for food-related behaviors, such as the choice and intake of food, might be affected in obese subjects by alterations in the retrieval of episodic memories. Adult neurogenesis in the dentate gyrus regulates the pattern separation. Several molecular factors affect adult neurogenesis and exert a critical role in the development and plasticity of newborn neurons. Orexin-A/hypocretin-1 and downstream endocannabinoid 2-arachidonoylglycerol signaling are altered in obese mice. Here, we show that excessive orexin-A/2-arachidonoylglycerol/cannabinoid receptor type-1 signaling leads to the dysfunction of adult hippocampal neurogenesis and the subsequent inhibition of plasticity and impairment of pattern separation. By inhibiting orexin-A action at orexin-1 receptors we rescued both plasticity and pattern separation impairment in obese mice, thus providing a molecular and functional mechanism to explain alterations in episodic memory in obesity. The authors show that adult hippocampal neurogenesis is altered in the dentate gyrus of obese mice with subsequent inhibition of long-term potentiation and impairment of pattern separation. Inhibition of orexin-A action at orexin-1 receptors rescued both impairments in obese mice.
Collapse
Affiliation(s)
- Nicola Forte
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Pozzuoli, NA, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Lea Tunisi
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Pozzuoli, NA, Italy
| | | | - Roberta Imperatore
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Pozzuoli, NA, Italy
| | - Maria De Risi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Monterotondo Scalo, Rome, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Pozzuoli, NA, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy
| | - Paolo De Girolamo
- Department of Veterinary Medicine and Animal Productions, University Federico II, Napoli, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Monterotondo Scalo, Rome, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Luigi Vanvitelli, Napoli, Italy.,I.R.C.S.S., Neuromed, 86077, Pozzilli, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Pozzuoli, NA, Italy. .,Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada. .,Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada. .,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, 61V0AG, Canada.
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), Pozzuoli, NA, Italy.
| |
Collapse
|
5
|
O'Harte FPM, Parthsarathy V, Flatt PR. Chronic apelin analogue administration is more effective than established incretin therapies for alleviating metabolic dysfunction in diabetic db/db mice. Mol Cell Endocrinol 2020; 504:110695. [PMID: 31904406 DOI: 10.1016/j.mce.2019.110695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/27/2019] [Indexed: 01/24/2023]
Abstract
Stable apelin-13 peptide analogues have shown promising acute antidiabetic effects in mice with diet-induced obesity diabetes. Here the efficacy of (pGlu)apelin-13 amide (apelin amide) and the acylated analogue (pGlu)(Lys8GluPAL)apelin-13 amide (apelin FA), were examined following chronic administration in db/db mice, a genetic model of degenerative diabetes. Groups of 9-week old male db/db mice (n = 8) received twice daily injections (09:00 and 17:00 h; i.p.) or saline vehicle, apelin amide, apelin FA, or the established incretin therapies, exendin-4(1-39) or liraglutide, all at 25 nmol/kg body weight for 21 days. Control C57BL/6J mice were given saline twice daily. No changes in body weight or food intake were observed with either apelin or liraglutide treatments, but exendin-4 showed a reduction in cumulative food intake (p < 0.01) compared with saline-treated db/db mice. Apelin analogues and incretin mimetics induced sustained improvements of glycaemia (p < 0.05 to p < 0.001, from day 9-21), lowered HbA1c at 21 days (p < 0.05) and raised plasma insulin concentrations. The treatments also improved OGTT and ipGTT with enhanced insulin responses compared with saline-treated control db/db mice (p < 0.05 to p < 0.001). Apelin amide was superior to incretin mimetics in lowering plasma triglycerides by 34% (p < 0.05). Apelin analogues unlike both incretin mimetics reduced pancreatic α-cell area (p < 0.05 to p < 0.01) and all peptide treatments enhanced pancreatic insulin content (p < 0.05 to p < 0.01). In conclusion, longer-term administration of apelin-13 analogues, induced similar and in some respects more effective metabolic improvements than incretin mimetics in db/db mice, providing a viable alternative approach for counteracting metabolic dysfunction for mild and more degenerative forms of the disease.
Collapse
Affiliation(s)
- Finbarr P M O'Harte
- The SAAD Centre for Pharmacy & Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Vadivel Parthsarathy
- The SAAD Centre for Pharmacy & Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Peter R Flatt
- The SAAD Centre for Pharmacy & Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|