1
|
Chaves WF, de Oliveira Costa S, Santos NJ, de Aguiar MS, Elias CF, Torsoni MA, Pinheiro IL, da Silva Aragão R. Maternal high-fat diet exposure impairs LKB1-TGFβ1 inflammatory pathway and increases hypothalamic 5HT receptors gene expression and somatic growth in young rats. Brain Res 2025:149706. [PMID: 40381902 DOI: 10.1016/j.brainres.2025.149706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/26/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The serotonergic system regulates various psychobiological processes, including neurodevelopment, mood, and feeding behavior. Maternal exposure to a high-fat diet (HFD) increases circulating proinflammatory cytokines, impairing the development of the serotonergic system in the offspring's brain. The effects of maternal exposure to HFD on the offspring's feeding behavior, somatic growth, and hypothalamic serotonergic system were investigated. Wistar rat offspring from HFD-fed dams displayed increased body weight, fat mass, and somatic growth but no changes in food intake or feeding behavior. They also showed elevated total cholesterol and reduced serum creatinine. At the molecular level, increased hypothalamic gene expression of Htr1a, Htr2a, and Tgfb1, along with a reduction in the phosphorylation of FoxO1Thr24, cAMP response element-binding protein (CREBSer133), and liver kinase B1 (LKB1Ser428) were observed. No differences in leptin or insulin signaling were found. These results suggest an initial disruption in energy homeostasis mediated by the serotonergic system.
Collapse
Affiliation(s)
- Wenicios Ferreira Chaves
- Graduate Program in Science of Nutrition, Sports and Metabolism, University of Campinas, UNICAMP, Limeira, SP, Brazil
| | - Suleyma de Oliveira Costa
- Laboratory of Metabolic Disease, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil
| | - Nilton J Santos
- Laboratory of Metabolic Disease, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil
| | - Melissa Santos de Aguiar
- Laboratory of Metabolic Disease, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil
| | - Carol Fuzeti Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Marcio Alberto Torsoni
- Graduate Program in Science of Nutrition, Sports and Metabolism, University of Campinas, UNICAMP, Limeira, SP, Brazil; Laboratory of Metabolic Disease, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, SP, Brazil
| | - Isabeli Lins Pinheiro
- Graduate Program in Nutrition, Federal University of Pernambuco, UFPE, Recife, PE, Brazil
| | - Raquel da Silva Aragão
- Graduate Program in Nutrition, Federal University of Pernambuco, UFPE, Recife, PE, Brazil.
| |
Collapse
|
2
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2025; 21:118-130. [PMID: 39313573 PMCID: PMC11864813 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Ross MG, Coca KP, Rocha ACL, Camargo BTS, de Castro LS, Horta BL, Desai M. Composition of Breast Milk in Women with Obesity. J Clin Med 2024; 13:6947. [PMID: 39598091 PMCID: PMC11594640 DOI: 10.3390/jcm13226947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Among US breastfeeding women, those with obesity have significantly increased breast milk fat and caloric content from foremilk to hindmilk, with a 4-fold increase in fat content from the first to last milk sample. In view of different dietary norms and nutritional standards, we sought to evaluate the relationship between maternal BMI with breast milk fat and calorie content in women from Brazil, a low-middle-income country. Methods: Women who delivered singleton-term neonates were recruited from the Ana Abrao Breastfeeding Center (AABC) and Human Milk Bank at the Federal University of Sao Paulo, Brazil. These women were then studied at 7-8 weeks postpartum. Women were grouped by BMI categories of nonobese (NonOB; BMI 18.5-29.9) and obese (OB; BMI ≥ 30). A breast pump was applied, and milk samples were obtained continuously in 10 mL aliquots from foremilk to hindmilk; samples were analyzed for macronutrients and lipids, and maternal blood was analyzed for serum lipids and glucose. Results: As compared to NonOB women, those with OB had significantly higher milk fat in the mid (4.9 ± 0.3 vs. 3.9 ± 0.2) and last hindmilk (6.6 ± 0.4 vs. 5.5 ± 0.3) samples, though not in the first foremilk sample, as compared to NonOB women. In both NonOB and OB subjects, milk caloric and fat content increased 1.5 to 2-fold from foremilk to hindmilk, with the average milk caloric value being 11% greater in OB women. Protein content was significantly increased in all three milk samples (first, middle, and last) in women with OB. Conclusions: Although the value of breastfeeding remains clear, these findings may have significant implications for infant nutrition and excessive infant weight gain in women with OB.
Collapse
Affiliation(s)
- Michael G. Ross
- The Lundquist Institute at Harbor-UCLA, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| | - Kelly P. Coca
- Paulista School of Nursing, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil;
- Breastfeeding Center Ana Abrão, Universidade Federal de São Paulo, São Paulo 04037-001, SP, Brazil; (A.C.L.R.); (B.T.S.C.); (L.S.d.C.)
| | - Ana Carolina Lavio Rocha
- Breastfeeding Center Ana Abrão, Universidade Federal de São Paulo, São Paulo 04037-001, SP, Brazil; (A.C.L.R.); (B.T.S.C.); (L.S.d.C.)
| | - Bárbara Tideman Sartório Camargo
- Breastfeeding Center Ana Abrão, Universidade Federal de São Paulo, São Paulo 04037-001, SP, Brazil; (A.C.L.R.); (B.T.S.C.); (L.S.d.C.)
| | - Luciola Sant’Anna de Castro
- Breastfeeding Center Ana Abrão, Universidade Federal de São Paulo, São Paulo 04037-001, SP, Brazil; (A.C.L.R.); (B.T.S.C.); (L.S.d.C.)
| | - Bernardo L. Horta
- School of Medicine, Universidade Federal de Pelotas (UFPel), Pelotas 96010-610, RS, Brazil;
| | - Mina Desai
- The Lundquist Institute at Harbor-UCLA, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| |
Collapse
|
4
|
Freire T, Clark X, Pulpitel T, Bell-Anderson K, Ribeiro R, Raubenheimer D, Crean AJ, Simpson SJ, Solon-Biet SM. Maternal macronutrient intake effects on offspring macronutrient targets and metabolism. Obesity (Silver Spring) 2024; 32:743-755. [PMID: 38328970 DOI: 10.1002/oby.23995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Exposure in utero to maternal diet can program offspring health and susceptibility to disease. Using C57BL6/JArc mice, we investigated how maternal dietary protein to carbohydrate balance influences male and female offspring appetite and metabolic health. METHODS Dams were placed on either a low-protein (LP) or high-protein (HP) diet. Male and female offspring were placed on a food choice experiment post weaning and were then constrained to either a standard diet or Western diet. Food intake, body weight, and composition were measured, and various metabolic tests were performed at different timepoints. RESULTS Offspring from mothers fed HP diets selected a higher protein intake and had increased body weight in early life relative to offspring from LP diet-fed dams. As predicted by protein leverage theory, higher protein intake targets led to increased food intake when offspring were placed on no-choice diets, resulting in greater body weight and fat mass. The combination of an HP maternal diet and a Western diet further exacerbated this obesity phenotype and led to long-term consequences for body composition and metabolism. CONCLUSIONS This work could help explain the association between elevated protein intake in humans during early life and increased risk of obesity in childhood and later life.
Collapse
Affiliation(s)
- Therese Freire
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ximonie Clark
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Kim Bell-Anderson
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rosilene Ribeiro
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Angela J Crean
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Huang Y, Wang A, Zhou W, Li B, Zhang L, Rudolf AM, Jin Z, Hambly C, Wang G, Speakman JR. Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice. Nat Commun 2024; 15:2382. [PMID: 38493217 PMCID: PMC10944494 DOI: 10.1038/s41467-024-46589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Maternal overnutrition during lactation predisposes offspring to develop metabolic diseases and exacerbates the relevant syndromes in males more than females in later life. The hypothalamus is a heterogenous brain region that regulates energy balance. Here we combined metabolic trait quantification of mother and offspring mice under low and high fat diet (HFD) feeding during lactation, with single nucleus transcriptomic profiling of their offspring hypothalamus at peak lacation to understand the cellular and molecular alterations in response to maternal dietary pertubation. We found significant expansion in neuronal subpopulations including histaminergic (Hdc), arginine vasopressin/retinoic acid receptor-related orphan receptor β (Avp/Rorb) and agouti-related peptide/neuropeptide Y (AgRP/Npy) in male offspring when their mothers were fed HFD, and increased Npy-astrocyte interactions in offspring responding to maternal overnutrition. Our study provides a comprehensive offspring hypothalamus map at the peak lactation and reveals how the cellular subpopulations respond to maternal dietary fat in a sex-specific manner during development.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Broad Institute of MIT and Harvard, Metabolism Program, Cambridge, MA, 02142, USA
| | - Anyongqi Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenjiang Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Linshan Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China
| | - Agata M Rudolf
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zengguang Jin
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Guanlin Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Centre for Evolutionary Biology, Fudan University, Shanghai, 200438, China.
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK.
- China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
6
|
Shang Y, Wang X, Su S, Ji F, Shao D, Duan C, Chen T, Liang C, Zhang D, Lu H. Identifying of immune-associated genes for assessing the obesity-associated risk to the offspring in maternal obesity: A bioinformatics and machine learning. CNS Neurosci Ther 2024; 30:e14700. [PMID: 38544384 PMCID: PMC10973700 DOI: 10.1111/cns.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Perinatal exposure to maternal obesity predisposes offspring to develop obesity later in life. Immune dysregulation in the hypothalamus, the brain center governing energy homeostasis, is pivotal in obesity development. This study aimed to identify key candidate genes associated with the risk of offspring obesity in maternal obesity. METHODS We obtained obesity-related datasets from the Gene Expression Omnibus (GEO) database. GSE135830 comprises gene expression data from the hypothalamus of mouse offspring in a maternal obesity model induced by a high-fat diet model (maternal high-fat diet (mHFD) group and maternal chow (mChow) group), while GSE127056 consists of hypothalamus microarray data from young adult mice with obesity (high-fat diet (HFD) and Chow groups). We identified differentially expressed genes (DEGs) and module genes using Limma and weighted gene co-expression network analysis (WGCNA), conducted functional enrichment analysis, and employed a machine learning algorithm (least absolute shrinkage and selection operator (LASSO) regression) to pinpoint candidate hub genes for diagnosing obesity-associated risk in offspring of maternal obesity. We constructed a nomogram receiver operating characteristic (ROC) curve to evaluate the diagnostic value. Additionally, we analyzed immune cell infiltration to investigate immune cell dysregulation in maternal obesity. Furthermore, we verified the expression of the candidate hub genes both in vivo and in vitro. RESULTS The GSE135830 dataset revealed 2868 DEGs between the mHFD offspring and the mChow group and 2627 WGCNA module genes related to maternal obesity. The overlap of DEGs and module genes in the offspring with maternal obesity in GSE135830 primarily enriched in neurodevelopment and immune regulation. In the GSE127056 dataset, 133 DEGs were identified in the hypothalamus of HFD-induced adult obese individuals. A total of 13 genes intersected between the GSE127056 adult obesity DEGs and the GSE135830 maternal obesity module genes that were primarily enriched in neurodevelopment and the immune response. Following machine learning, two candidate hub genes were chosen for nomogram construction. Diagnostic value evaluation by ROC analysis determined Sytl4 and Kncn2 as hub genes for maternal obesity in the offspring. A gene regulatory network with transcription factor-miRNA interactions was established. Dysregulated immune cells were observed in the hypothalamus of offspring with maternal obesity. Expression of Sytl4 and Kncn2 was validated in a mouse model of hypothalamic inflammation and a palmitic acid-stimulated microglial inflammation model. CONCLUSION Two candidate hub genes (Sytl4 and Kcnc2) were identified and a nomogram was developed to predict obesity risk in offspring with maternal obesity. These findings offer potential diagnostic candidate genes for identifying obesity-associated risks in the offspring of obese mothers.
Collapse
Affiliation(s)
- Yanxing Shang
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Xueqin Wang
- Department of Endocrinology, Affiliated Hospital 2Nantong UniversityNantongChina
| | - Sixuan Su
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
- Department of Pathogen Biology, Medical CollegeNantong UniversityNantongChina
| | - Feng Ji
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Donghai Shao
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Tianpeng Chen
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Caixia Liang
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Nantong Clinical Medical College of Kangda College of Nanjing Medical UniversityNantongChina
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease MicroenvironmentNantong First People's HospitalNantongChina
- Department of Pathogen Biology, Medical CollegeNantong UniversityNantongChina
| | - Hongjian Lu
- Medical Research Center, Affiliated Hospital 2Nantong UniversityNantongChina
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research CenterNantong First People's HospitalNantongChina
- Department of Rehabilitation Medicine, Affiliated Hospital 2Nantong UniversityNantongChina
| |
Collapse
|
7
|
Baqueiro MDN, Simino LADP, Costa JP, Panzarin C, Reginato A, Torsoni MA, Ignácio-Souza L, Milanski M, Ross MG, Coca KP, Desai M, Torsoni AS. Sex-Dependent Variations in Hypothalamic Fatty Acid Profile and Neuropeptides in Offspring Exposed to Maternal Obesity and High-Fat Diet. Nutrients 2024; 16:340. [PMID: 38337626 PMCID: PMC10857148 DOI: 10.3390/nu16030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Maternal obesity and/or high-fat diet (HF) consumption can disrupt appetite regulation in their offspring, contributing to transgenerational obesity and metabolic diseases. As fatty acids (FAs) play a role in appetite regulation, we investigated the maternal and fetal levels of FAs as potential contributors to programmed hyperphagia observed in the offspring of obese dams. Female mice were fed either a control diet (CT) or HF prior to mating, and fetal and maternal blood and tissues were collected at 19 days of gestation. Elevated levels of linoleic acid were observed in the serum of HF dams as well as in the serum of their fetuses. An increased concentration of eicosadienoic acid was also detected in the hypothalamus of female HF-O fetuses. HF-O male fetuses showed increased hypothalamic neuropeptide Y (Npy) gene expression, while HF-O female fetuses showed decreased hypothalamic pro-opiomelanocortin (POMC) protein content. Both male and female fetuses exhibited reduced hypothalamic neurogenin 3 (NGN-3) gene expression. In vitro experiments confirmed that LA contributed to the decreased gene expression of Pomc and Ngn-3 in neuronal cells. During lactation, HF female offspring consumed more milk and had a higher body weight compared to CT. In summary, this study demonstrated that exposure to HF prior to and during gestation alters the FA composition in maternal serum and fetal serum and hypothalamus, particularly increasing n-6, which may play a role in the switch from POMC to NPY neurons, leading to increased weight gain in the offspring during lactation.
Collapse
Affiliation(s)
- Mayara da Nóbrega Baqueiro
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Laís Angélica de Paula Simino
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - João Paulo Costa
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Carolina Panzarin
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Andressa Reginato
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Marcio Alberto Torsoni
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Letícia Ignácio-Souza
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Marciane Milanski
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| | - Michael G. Ross
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (M.G.R.); (M.D.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| | - Kelly Pereira Coca
- Ana Abrao Breastfeeding Center, Escola Paulista de Enfermagem, Universidade Federal São Paulo, UNIFESP, São Paulo 04037-001, São Paulo, Brazil;
| | - Mina Desai
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (M.G.R.); (M.D.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| | - Adriana Souza Torsoni
- Faculdade de Ciências Aplicadas, Universidade de Campinas, UNICAMP, Limeira 13484-350, São Paulo, Brazil; (M.d.N.B.); (L.A.d.P.S.); (J.P.C.); (C.P.); (A.R.); (M.A.T.); (L.I.-S.); (M.M.)
| |
Collapse
|
8
|
Ross MG, Kavasery MP, Cervantes MK, Han G, Horta B, Coca KP, Costa SO, Desai M. High-Fat, High-Calorie Breast Milk in Women with Overweight or Obesity and Its Association with Maternal Serum Insulin Concentration and Triglycerides Levels. CHILDREN (BASEL, SWITZERLAND) 2024; 11:141. [PMID: 38397253 PMCID: PMC10887191 DOI: 10.3390/children11020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
The childhood obesity epidemic continues to be a challenge. Maternal obesity and excessive infant weight gain are strong predictors of childhood obesity, which itself is a major risk factor for adult obesity. The primary source of nutrition during early life is breast milk, and its composition is impacted by maternal habitus and diet. We thus studied the relationship between maternal BMI, serum lipids and insulin, and breast milk fat and calorie content from foremilk to hindmilk. Women who were exclusively breastfeeding at 7-8 weeks postpartum were BMI classified as Normal (18.5-24.9, n = 9) and women with Overweight/Obese (OW/OB ≥ 25, n = 13). Maternal blood and continuous breast milk samples obtained from foremilk to hindmilk were analyzed, and infant milk intake was assessed. Women with OW/OB had significantly higher milk fat and calorie content in the first foremilk and last hindmilk sample as compared to Normal BMI women. Amongst all women, maternal serum triglycerides, insulin, and HOMA were significantly correlated with foremilk triglyceride concentration, suggesting that maternal serum triglyceride and insulin action contribute to human milk fat content. As the milk fat content of OW/OB women has caloric implications for infant growth and childhood obesity, these results suggest the potential for modulating milk fat content by a reduction in maternal serum lipids or insulin.
Collapse
Affiliation(s)
- Michael G. Ross
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA;
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
- Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Manasa P. Kavasery
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
| | - MacKenzie K. Cervantes
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
| | - Guang Han
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
| | - Bernardo Horta
- School of Medicine, Universidade Federal de Pelotas, Pelotas 96010-610, Brazil;
| | - Kelly P. Coca
- Escola Paulista de Enfermagem, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil;
| | - Suleyma O. Costa
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil;
| | - Mina Desai
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA;
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
| |
Collapse
|
9
|
de Souza Lima B, Sanches APV, Ferreira MS, de Oliveira JL, Cleal JK, Ignacio-Souza L. Maternal-placental axis and its impact on fetal outcomes, metabolism, and development. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166855. [PMID: 37633470 DOI: 10.1016/j.bbadis.2023.166855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/23/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Maternal obesity could impact offspring's health. During "critical period" such as pregnancy insults have a significant role in developing chronic diseases later in life. Literature has shown that diet can play a major role in essential metabolic and development processes on fetal outcomes. Moreover, the placenta, an essential organ developed in pregnancy, seems to have its functions impaired based on pre-gestational and gestational nutritional status. Specifically, a high-fat diet has been shown as a potential nutritional insult that also affects the maternal-placental axis, which is involved in offspring development and outcome. Moreover, some classes of nutrients are associated with pregnancy complications such as reduced intake of micronutrients and diabetes, preeclampsia, and preterm delivery. Thus, we will summarize the current literature on maternal environment factors that impacts the placental development and consequently the fetal an offspring health, or the maternal-placental axis, and this on fetal outcomes, metabolism, and development.
Collapse
Affiliation(s)
- Bruna de Souza Lima
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil.
| | - Ana Paula Varela Sanches
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil
| | - Maíra Schuchter Ferreira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil
| | - Josilene Lopes de Oliveira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil
| | - Jane K Cleal
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Letícia Ignacio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, UNICAMP, Limeira, São Paulo, Brazil.
| |
Collapse
|
10
|
Xu Y, Yang D, Wang L, Król E, Mazidi M, Li L, Huang Y, Niu C, Liu X, Lam SM, Shui G, Douglas A, Speakman JR. Maternal High Fat Diet in Lactation Impacts Hypothalamic Neurogenesis and Neurotrophic Development, Leading to Later Life Susceptibility to Obesity in Male but Not Female Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305472. [PMID: 37867217 PMCID: PMC10724448 DOI: 10.1002/advs.202305472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Early life nutrition can reprogram development and exert long-term consequences on body weight regulation. In mice, maternal high-fat diet (HFD) during lactation predisposed male but not female offspring to diet-induced obesity when adult. Molecular and cellular changes in the hypothalamus at important time points are examined in the early postnatal life in relation to maternal diet and demonstrated sex-differential hypothalamic reprogramming. Maternal HFD in lactation decreased the neurotropic development of neurons formed at the embryo stage (e12.5) and impaired early postnatal neurogenesis in the hypothalamic regions of both males and females. Males show a larger increased ratio of Neuropeptide Y (NPY) to Pro-opiomelanocortin (POMC) neurons in early postnatal neurogenesis, in response to maternal HFD, setting an obese tone for male offspring. These data provide insights into the mechanisms by which hypothalamic reprograming by early life overnutrition contributes to the sex-dependent susceptibility to obesity in adult life in mice.
Collapse
Affiliation(s)
- Yanchao Xu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationYantai UniversityYantai264005P. R. China
| | - Elżbieta Król
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Li Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesShijingshanBeijing100049P. R. China
| | - Yi Huang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Chaoqun Niu
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xue Liu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Alex Douglas
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
| | - John R. Speakman
- Shenzhen key laboratory for metabolic healthCenter for Energy Metabolism and ReproductionShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenScotlandAB24 2TZUK
- China medical universityShenyang110000P. R. China
| |
Collapse
|
11
|
Cristian A, Tarry-Adkins JL, Aiken CE. The Uterine Environment and Childhood Obesity Risk: Mechanisms and Predictions. Curr Nutr Rep 2023; 12:416-425. [PMID: 37338777 PMCID: PMC10444661 DOI: 10.1007/s13668-023-00482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Childhood obesity is a growing health problem in many populations, hence the urgent need to unravel the underlying mechanisms. Some evidence suggests that exposure to suboptimal intrauterine environments can program foetal metabolic health, with adverse consequences in later life, including susceptibility to childhood obesity. FINDINGS Factors such as high and low foetal birth weight, excessive gestational-weight-gain, maternal stress and smoking are all associated with increased risk of childhood obesity in observational studies. Animal models, where both genetic background and the postnatal environment can be carefully controlled, suggest that several different mechanisms, including epigenetic changes, dysregulation of adipose tissue development and programming of appetite, may be key drivers of developmental programming of childhood obesity. However, the influence of genetics and the post-natal environment are much more difficult to disentangle as independent effects in human studies, which are also complicated by low follow-up rates. Suboptimal intrauterine environments interact with maternal and foetal genetics and with the postnatal environment to contribute to the risk of childhood obesity. Maternal metabolic challenges, for example obesity and insulin resistance, contribute to the risk of foetal overgrowth and subsequent adiposity in childhood. To protect the long-term health of populations, research focusing on effective means of identifying and intervening in the transgenerational cycle of childhood obesity is required.
Collapse
Affiliation(s)
- Andreea Cristian
- Department of Obstetrics and Gynaecology, University of CambridgeThe Rosie HospitalandNIHR Cambridge Biomedical Research Centre, Box 223, Cambridge, CB2 0SW, UK
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Jane L Tarry-Adkins
- Department of Obstetrics and Gynaecology, University of CambridgeThe Rosie HospitalandNIHR Cambridge Biomedical Research Centre, Box 223, Cambridge, CB2 0SW, UK
| | - Catherine E Aiken
- Department of Obstetrics and Gynaecology, University of CambridgeThe Rosie HospitalandNIHR Cambridge Biomedical Research Centre, Box 223, Cambridge, CB2 0SW, UK.
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
12
|
Food intake behaviors change as a function of maternal diet and time-restricted feeding. NUTR HOSP 2023; 40:419-427. [PMID: 36880723 DOI: 10.20960/nh.04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
INTRODUCTION changes in dietary/energetic composition during the critical period of development (pregnancy/lactation) or even during meal times may contribute to changes in metabolic and behavioral parameters such as feeding behavior. OBJECTIVE the study aimed to examine the repercussions of time-restricted feeding on feeding behavior and on some parameters of glycemic and lipemic metabolism of the offspring of adult rats whose mothers were fed a westernized diet during pregnancy and lactation. METHODS initially, 43 male Wistar rats were used. At 60 days of life, the rats were divided into 4 groups: C: control group; RC: control group with time-restricted feeding; W: westernized diet during pregnancy/lactation group; RW: westernized diet group during pregnancy/lactation group with time-restricted feeding. The following parameters were evaluated: behavioral sequence of satiety (BSS), biochemical parameters, and abdominal fat. RESULTS findings highlighted a high level of abdominal fat in the groups whose mothers were submitted to a westernized diet, as well as hypertriglyceridemia, and clear differences in feed rate and meal length. This study showed that the westernized diet ingested by mothers during pregnancy and lactation induced hyperlipidemia and changes in the feeding behavior of their adult offspring. CONCLUSIONS these changes may be responsible for eating disorders and risk factors for metabolism disturbance-related diseases.
Collapse
|
13
|
Ross MG, Kobayashi K, Han G, Desai M. Modulation of Milk and Lipid Synthesis and Secretion in a3-Dimensional Mouse Mammary Epithelial Cell Culture Model: Effects of Palmitate and Orlistat. Nutrients 2022; 14:4948. [PMID: 36500977 PMCID: PMC9739267 DOI: 10.3390/nu14234948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Human milk synthesis is impacted by maternal diet, serum composition, and substrate uptake and synthesis by mammary epithelial cells (MECs). The milk of obese/high-fat-diet women has an increased fat content, which promote excess infant weight gain and the risk of childhood/adult obesity. Yet, the knowledge of milk synthesis regulation is limited, and there are no established approaches to modulate human milk composition. We established a 3-dimensional mouse MEC primary culture that recreates the milk production pathway and tested the effects of the major saturated fatty acid in human milk (palmitate) and a lipoprotein lipase inhibitor (orlistat) on triglyceride production. Positive immunostaining confirmed the presence of milk protein and intracellular lipid including milk globules in the cytoplasm and extracellular space. The treatment with palmitate activated "milk" production by MECs (β-casein) and the lipid pathway (as evident by increased protein and mRNA expression). Consistent with these cellular changes, there was increased secretion of milk protein and triglyceride in MEC "milk". The treatment with orlistat suppressed milk triglyceride production. Palmitate increased milk and lipid synthesis, partly via lipoprotein lipase activation. These findings demonstrate the ability to examine MEC pathways of milk production via both protein and mRNA and to modulate select pathways regulating milk composition in MEC culture.
Collapse
Affiliation(s)
- Michael G. Ross
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Guang Han
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Mina Desai
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| |
Collapse
|
14
|
da Silva RKB, de Vasconcelos DAA, da Silva AVE, da Silva RPB, de Oliveira Neto OB, Galindo LCM. Effects of maternal high-fat diet on the hypothalamic components related to food intake and energy expenditure in mice offspring. Life Sci 2022; 307:120880. [PMID: 35963301 DOI: 10.1016/j.lfs.2022.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Maternal exposure to a high-fat diet (HFD) during pregnancy and lactation has been related to changes in the hypothalamic circuits involved in the regulation of food intake. Furthermore, maternal HFD during the critical period of development can alter the offspring's metabolic programming with long-term repercussions. This study systematically reviewed the effects of HFD consumption during pre-pregnancy, pregnancy and/or lactation. The main outcomes evaluated were food intake; body weight; cellular or molecular aspects of peptides and hypothalamic receptors involved in the regulation of energy balance in mice. Two independent authors performed a search in the electronic databases Medline/PubMed, LILACS, Web of Science, EMBASE, SCOPUS and Sigle via Open Gray. Included were experimental studies of mice exposed to HFD during pregnancy and/or lactation that evaluated body composition, food intake, energy expenditure and hypothalamic components related to energy balance. Internal validity was assessed using the SYRCLE risk of bias. The Kappa index was measured to analyze the agreement between reviewers. The PRISMA statement was used to report this systematic review. Most studies demonstrated that there was a higher body weight, body fat deposits and food intake, as well as alterations in the expression of hypothalamic neuropeptides in offspring that consumed HFD. Therefore, the maternal diet can affect the phenotype and metabolism of the offspring, in addition to harming the hypothalamic circuits and favoring the orexigenic pathways.
Collapse
Affiliation(s)
- Regina Katiuska Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Diogo Antonio Alves de Vasconcelos
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil
| | | | - Roxana Patrícia Bezerra da Silva
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | | | - Lígia Cristina Monteiro Galindo
- Post-Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Department of Anatomy, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil; Nutrition and Phenotypic Plasticity Study Unit, Department of Nutrition, Federal University of Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
15
|
TNFα-Induced Oxidative Stress and Mitochondrial Dysfunction Alter Hypothalamic Neurogenesis and Promote Appetite Versus Satiety Neuropeptide Expression in Mice. Brain Sci 2022; 12:brainsci12070900. [PMID: 35884707 PMCID: PMC9316209 DOI: 10.3390/brainsci12070900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Maternal obesity results in programmed offspring hyperphagia and obesity. The increased offspring food intake is due in part to the preferential differentiation of hypothalamic neuroprogenitor cells (NPCs) to orexigenic (AgRP) vs. anorexigenic (POMC) neurons. The altered neurogenesis may involve hypothalamic bHLH (basic helix–loop–helix) neuroregulatory factors (Hes1, Mash1, and Ngn3). Whilst the underlying mechanism remains unclear, it is known that mitochondrial function is critical for neurogenesis and is impacted by proinflammatory cytokines such as TNFα. Obesity is associated with the activation of inflammation and oxidative stress pathways. In obese pregnancies, increased levels of TNFα are seen in maternal and cord blood, indicating increased fetal exposure. As TNFα influences neurogenesis and mitochondrial function, we tested the effects of TNFα and reactive oxidative species (ROS) hydrogen peroxide (H2O2) on hypothalamic NPC cultures from newborn mice. TNFα treatment impaired NPC mitochondrial function, increased ROS production and NPC proliferation, and decreased the protein expression of proneurogenic Mash1/Ngn3. Consistent with this, AgRP protein expression was increased and POMC was decreased. Notably, treatment with H2O2 produced similar effects as TNFα and also reduced the protein expression of antioxidant SIRT1. The inhibition of STAT3/NFκB prevented the effects of TNFα, suggesting that TNFα mediates its effects on NPCs via mitochondrial-induced oxidative stress that involves both signaling pathways.
Collapse
|
16
|
A Short-Term Sucrose Diet Impacts Cell Proliferation of Neural Precursors in the Adult Hypothalamus. Nutrients 2022; 14:nu14132564. [PMID: 35807744 PMCID: PMC9268421 DOI: 10.3390/nu14132564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Radial glia-like cells in the hypothalamus and dorsal vagal complex are neural precursors (NPs) located near subventricular organs: median eminence and area postrema, respectively. Their strategic position can detect blood-borne nutrients, hormones, and mitogenic signals. Hypothalamic NPs increase their proliferation with a mechanism that involves hemichannel (HC) activity. NPs can originate new neurons in response to a short-term high-fat diet as a compensatory mechanism. The effects of high carbohydrate Western diets on adult neurogenesis are unknown. Although sugars are usually consumed as sucrose, more free fructose is now incorporated into food items. Here, we studied the proliferation of both types of NPs in Sprague Dawley rats exposed to a short-term high sucrose diet (HSD) and a control diet. In tanycyte cultures, we evaluated the effects of glucose and fructose and a mix of both hexoses on HC activity. In rats fed an HSD, we observed an increase in the proliferative state of both precursors. Glucose, either in the presence or absence of fructose, but not fructose alone, induced in vitro HC activity. These results should broaden the understanding of the nutrient monitoring capacity of NPs in reacting to changes in feeding behavior, specifically to high sugar western diets.
Collapse
|
17
|
Simino LADP, Fontana MF, de Fante T, Panzarin C, Ignacio-Souza LM, Milanski M, Torsoni MA, Desai M, Ross MG, Torsoni AS. Hepatic Epigenetic Reprogramming After Liver Resection in Offspring Alleviates the Effects of Maternal Obesity. Front Cell Dev Biol 2022; 10:830009. [PMID: 35433669 PMCID: PMC9009519 DOI: 10.3389/fcell.2022.830009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity has become a public health problem in recent decades, and during pregnancy, it can lead to an increased risk of gestational complications and permanent changes in the offspring resulting from a process known as metabolic programming. The offspring of obese dams are at increased risk of developing non-alcoholic fatty liver disease (NAFLD), even in the absence of high-fat diet consumption. NAFLD is a chronic fatty liver disease that can progress to extremely severe conditions that require surgical intervention with the removal of the injured tissue. Liver regeneration is necessary to preserve organ function. A range of pathways is activated in the liver regeneration process, including the Hippo, TGFβ, and AMPK signaling pathways that are under epigenetic control. We investigated whether microRNA modulation in the liver of the offspring of obese dams would impact gene expression of Hippo, TGFβ, and AMPK pathways and tissue regeneration after partial hepatectomy (PHx). Female Swiss mice fed a standard chow or a high-fat diet (HFD) before and during pregnancy and lactation were mated with male control mice. The offspring from control (CT-O) and obese (HF-O) dams weaned to standard chow diet until day 56 were submitted to PHx surgery. Prior to the surgery, HF-O presented alterations in miR-122, miR-370, and Let-7a expression in the liver compared to CT-O, as previously shown, as well as in its target genes involved in liver regeneration. However, after the PHx (4 h or 48 h post-surgery), differences in gene expression between CT-O and HF-O were suppressed, as well as in microRNA expression in the liver. Furthermore, both CT-O and HF-O presented a similar regenerative capacity of the liver within 48 h after PHx. Our results suggest that survival and regenerative mechanisms induced by the partial hepatectomy may overcome the epigenetic changes in the liver of offspring programmed by maternal obesity.
Collapse
Affiliation(s)
- Lais A. de Paula Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Marina Figueiredo Fontana
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Carolina Panzarin
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | | | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Mina Desai
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael G. Ross
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
- *Correspondence: Adriana Souza Torsoni,
| |
Collapse
|
18
|
Maternal exercise and high-fat diet affect hypothalamic neural projections in rat offspring in a sex-specific manner. J Nutr Biochem 2022; 103:108958. [DOI: 10.1016/j.jnutbio.2022.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022]
|
19
|
Furigo IC, Dearden L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front Endocrinol (Lausanne) 2022; 13:1078955. [PMID: 36619540 PMCID: PMC9813846 DOI: 10.3389/fendo.2022.1078955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As obesity rates have risen around the world, so to have pregnancies complicated by maternal obesity. Obesity during pregnancy is not only associated with negative health outcomes for the mother and the baby during pregnancy and birth, there is also strong evidence that exposure to maternal obesity causes an increased risk to develop obesity, diabetes and cardiovascular disease later in life. Animal models have demonstrated that increased weight gain in offspring exposed to maternal obesity is usually preceded by increased food intake, implicating altered neuronal control of food intake as a likely area of change. The hypothalamus is the primary site in the brain for maintaining energy homeostasis, which it coordinates by sensing whole body nutrient status and appropriately adjusting parameters including food intake. The development of the hypothalamus is plastic and regulated by metabolic hormones such as leptin, ghrelin and insulin, making it vulnerable to disruption in an obese in utero environment. This review will summarise how the hypothalamus develops, how maternal obesity impacts on structure and function of the hypothalamus in the offspring, and the factors that are altered in an obese in utero environment that may mediate the permanent changes to hypothalamic function in exposed individuals.
Collapse
Affiliation(s)
- Isadora C. Furigo
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Laura Dearden
- Metabolic Research Laboratories, Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Laura Dearden,
| |
Collapse
|
20
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|
21
|
César H, Sertorio MN, de Souza EA, Jamar G, Santamarina A, Jucá A, Casagrande BP, Pisani LP. Parental high-fat high-sugar diet programming and hypothalamus adipose tissue axis in male Wistar rats. Eur J Nutr 2021; 61:523-537. [PMID: 34657184 DOI: 10.1007/s00394-021-02690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/28/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE Maternal nutrition during early development and paternal nutrition pre-conception can programme offspring health status. Hypothalamus adipose axis is a target of developmental programming, and paternal and maternal high-fat, high-sugar diet (HFS) may be an important factor that predisposes offspring to develop obesity later in life. This study aims to investigate Wistar rats' maternal and paternal HFS differential contribution on the development, adiposity, and hypothalamic inflammation in male offspring from weaning until adulthood. METHODS Male progenitors were fed a control diet (CD) or HFS for 10 weeks before mating. After mating, dams were fed CD or HFS only during pregnancy and lactation. Forming the following male offspring groups: CD-maternal and paternal CD; MH-maternal HFS and paternal CD; PH-maternal CD and paternal HFS; PMH-maternal and paternal HFS. After weaning, male offspring were fed CD until adulthood. RESULTS Maternal HFS diet increased weight, visceral adiposity, and serum total cholesterol levels, and decreased hypothalamic weight in weanling male rats. In adult male offspring, maternal HFS increased weight, glucose levels, and hypothalamic NFκBp65. Paternal HFS diet lowered hypothalamic insulin receptor levels in weanling offspring and glucose and insulin levels in adult offspring. The combined effects of maternal and paternal HFS diets increased triacylglycerol, leptin levels, and hypothalamic inflammation in weanling rats, and increased visceral adiposity in adulthood. CONCLUSION Male offspring intake of CD diet after weaning reversed part of the effects of parental HFS diet during the perinatal period. However, maternal and paternal HFS diet affected adiposity and hypothalamic inflammation, which remained until adulthood.
Collapse
Affiliation(s)
- Helena César
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo-UNIFESP, Santos, SP, Brazil
| | | | - Esther Alves de Souza
- Programa de Pós-Graduação em Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Giovana Jamar
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Aline Santamarina
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Andrea Jucá
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Breno Picin Casagrande
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil.
| |
Collapse
|
22
|
Han L, Du M, Ren F, Mao X. Milk Polar Lipids Supplementation to Obese Rats During Pregnancy and Lactation Benefited Skeletal Outcomes of Male Offspring. Mol Nutr Food Res 2021; 65:e2001208. [PMID: 34008920 DOI: 10.1002/mnfr.202001208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/17/2021] [Indexed: 01/14/2023]
Abstract
SCOPE Dietary intervention to obese dams during pregnancy and lactation period provides avenues for improving metabolic profiles of the offspring. In the current study, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to obese dams during pregnancy and lactation on the skeletal outcomes of male offspring are investigated. METHODS AND RESULTS MFGM-PL is supplemented to obese rats induced by high-fat diet during pregnancy and lactation at a dose of 400 mg kg-1 body weight. Results show that maternal MFGM-PL supplementation significantly ameliorates the stunted skeletal growth of male offspring at weaning. In adulthood offspring, maternal MFGM-PL supplementation protects against high-fat diet (HFD)-induced bone microstructure degeneration and bone marrow adipocyte accumulation. Further investigation shows that maternal supplementation of MFGM-PL significantly ameliorates insulin resistance and increases the mRNA expression of growth hormone releasing hormone (GHRH) in the hypothalamus of HFD offspring. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is subsequently enhanced in MFGM-PL + HFD offspring, contributing to the beneficial skeletal outcomes. CONCLUSION The findings suggest that maternal MFGM-PL supplementation of HFD dam during pregnancy and lactation shows desirable effects on fetal skeletal development, with lasting beneficial programming impacts on skeletal outcomes of offspring.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Fazheng Ren
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xueying Mao
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
23
|
Huang Y, Lin X, Lin S. Neuropeptide Y and Metabolism Syndrome: An Update on Perspectives of Clinical Therapeutic Intervention Strategies. Front Cell Dev Biol 2021; 9:695623. [PMID: 34307371 PMCID: PMC8299562 DOI: 10.3389/fcell.2021.695623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Through the past decade of research, the pathogenic mechanisms underlying metabolic syndrome have been suggested to involve not only the peripheral tissues, but also central metabolic regulation imbalances. The hypothalamus, and the arcuate nucleus in particular, is the control center for metabolic homeostasis and energy balance. Neuropeptide Y neurons are particularly abundantly expressed in the arcuate of the hypothalamus, where the blood-brain barrier is weak, such as to critically integrate peripheral metabolic signals with the brain center. Herein, focusing on metabolic syndrome, this manuscript aims to provide an overview of the regulatory effects of Neuropeptide Y on metabolic syndrome and discuss clinical intervention strategy perspectives for neurometabolic disease.
Collapse
Affiliation(s)
- Yinqiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiahong Lin
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
24
|
Mortaji N, Krzeczkowski JE, Boylan K, Booij L, Perreault M, Van Lieshout RJ. Maternal pregnancy diet, postnatal home environment and executive function and behavior in 3- to 4-y-olds. Am J Clin Nutr 2021; 114:1418-1427. [PMID: 34159358 PMCID: PMC8491573 DOI: 10.1093/ajcn/nqab202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Optimal maternal nutrition during pregnancy has been linked to better cognitive and behavioral development in children. However, its influence on the effects of suboptimal postnatal exposures like reduced stimulation and support in the home is not known. OBJECTIVES To examine the effect of maternal pregnancy diet on executive function and/or behavioral development in children raised in suboptimal home environments. METHODS Data were provided by 808 mother-infant dyads from the Canadian Maternal-Infant Research on Environmental Chemicals-Child Development study. Maternal pregnancy diet was self-reported using the Healthy Eating Index 2010 questionnaire. Stimulation and support in the home was assessed using the Home Observation for Measurement of the Environment (HOME) when children were 3-4 y old. Child executive function was reported by mothers at this age using the Behavior Rating Inventory of Executive Functioning-Preschool Edition, and child behavior was assessed using the Behavior Assessment System for Children-2nd Edition. We examined the interaction of maternal pregnancy diet and postnatal HOME scores on child executive function and behavior using linear regression adjusted for maternal education, postpartum depression, prepregnancy BMI, and smoking. RESULTS Maternal pregnancy diet was associated with an increasingly positive association with child working memory (β: 0.21; 95% CI: 0.82, 3.41; P = 0.001), planning (β: 0.17; 95% CI: 0.38, 2.84; P = 0.007), and adaptability (β: -0.13; 95% CI: -1.72, -0.08; P = 0.032) as levels of postnatal stimulation decreased. CONCLUSIONS The positive association of maternal pregnancy diet quality and executive function and adaptability in 3- to 4-y-olds appeared to increase with decreasing levels of postnatal stimulation and support. These results suggest that overall maternal pregnancy diet could be linked to better child neurodevelopment in families experiencing barriers to providing stimulation and support to children in their home.
Collapse
Affiliation(s)
| | - John E Krzeczkowski
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Khrista Boylan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Linda Booij
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Maude Perreault
- Department of Family Relations & Applied Nutrition, University of Guelph, Guelph, Ontario, Canada
| | - Ryan J Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Desai M, Ross MG. Maternal-infant nutrition and development programming of offspring appetite and obesity. Nutr Rev 2021; 78:25-31. [PMID: 33196091 PMCID: PMC7667467 DOI: 10.1093/nutrit/nuaa121] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the United States and Mexico, the obesity epidemic represents a significant public health problem. Although obesity is often attributed to a Western-style, high-fat diet and decreased activity, there is now compelling evidence that this, in part, occurs because of the developmental programming effects resulting from exposure to maternal overnutrition. Human and animal studies demonstrate that maternal obesity and high-fat diet result in an increased risk for childhood and adult obesity. The potential programming effects of obesity have been partly attributed to hyperphagia, which occurs as a result of increased appetite with reduced satiety neuropeptides or neurons. However, depending on maternal nutritional status during the nursing period, the programmed hyperphagia and obesity can be exacerbated or prevented in offspring born to obese mothers. The underlying mechanism of this phenomenon likely involves the plasticity of the appetite regulatory center and thus presents an opportunity to modulate feeding and satiety regulation and break the obesity cycle.
Collapse
Affiliation(s)
- Mina Desai
- Department of Obstetrics and Gynecology, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA; and David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Michael G Ross
- Department of Obstetrics and Gynecology, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA; and David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
26
|
Simino LAP, Panzarin C, Fontana MF, de Fante T, Geraldo MV, Ignácio-Souza LM, Milanski M, Torsoni MA, Ross MG, Desai M, Torsoni AS. MicroRNA Let-7 targets AMPK and impairs hepatic lipid metabolism in offspring of maternal obese pregnancies. Sci Rep 2021; 11:8980. [PMID: 33903707 PMCID: PMC8076304 DOI: 10.1038/s41598-021-88518-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Nutritional status during gestation may lead to a phenomenon known as metabolic programming, which can be triggered by epigenetic mechanisms. The Let-7 family of microRNAs were one of the first to be discovered, and are closely related to metabolic processes. Bioinformatic analysis revealed that Prkaa2, the gene that encodes AMPK α2, is a predicted target of Let-7. Here we aimed to investigate whether Let-7 has a role in AMPKα2 levels in the NAFLD development in the offspring programmed by maternal obesity. Let-7 levels were upregulated in the liver of newborn mice from obese dams, while the levels of Prkaa2 were downregulated. Let-7 levels strongly correlated with serum glucose, insulin and NEFA, and in vitro treatment of AML12 with glucose and NEFA lead to higher Let-7 expression. Transfection of Let-7a mimic lead to downregulation of AMPKα2 levels, while the transfection with Let-7a inhibitor impaired both NEFA-mediated reduction of Prkaa2 levels and the fat accumulation driven by NEFA. The transfection of Let-7a inhibitor in ex-vivo liver slices from the offspring of obese dams restored phospho-AMPKα2 levels. In summary, Let-7a appears to regulate hepatic AMPKα2 protein levels and lead to the early hepatic metabolic disturbances in the offspring of obese dams.
Collapse
Affiliation(s)
- Laís A P Simino
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil.
| | - Carolina Panzarin
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Marina F Fontana
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Murilo V Geraldo
- Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Letícia M Ignácio-Souza
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Marcio A Torsoni
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| | - Michael G Ross
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, CA, USA
| | - Mina Desai
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, CA, USA
| | - Adriana S Torsoni
- Laboratory of Metabolic Disorders (Labdime) - Faculty of Applied Sciences (FCA), University of Campinas (UNICAMP), 1300, Pedro Zaccaria St, Limeira, SP, 13484-350, Brazil
| |
Collapse
|
27
|
Samodien E, Chellan N. Hypothalamic neurogenesis and its implications for obesity-induced anxiety disorders. Front Neuroendocrinol 2021; 60:100871. [PMID: 32976907 DOI: 10.1016/j.yfrne.2020.100871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/14/2023]
Abstract
Obesity and anxiety are public health problems that have no effective cure. Obesity-induced anxiety is also the most common behavioural trait exhibited amongst obese patients, with the mechanisms linking these disorders being poorly understood. The hypothalamus and hippocampus are reciprocally connected, important neurogenic brain regions that could be vital to understanding these disorders. Dietary, physical activity and lifestyle interventions have been shown to be able to enhance neurogenesis within the hippocampus, while the effects thereof within the hypothalamus is yet to be ascertained. This review describes hypothalamic neurogenesis, its impairment in obesity as well as the effect of interventional therapies. Obesity is characterized by a neurogenic shift towards neuropeptide Y neurons, promoting appetite and weight gain. While, nutraceuticals and exercise promote proopiomelanocortin neuron proliferation, causing diminished appetite and reduced weight gain. Through the furthered development of multimodal approaches targeting both these brain regions could hold an even greater therapeutic potential.
Collapse
Affiliation(s)
- Ebrahim Samodien
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa.
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, South Africa; Department of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| |
Collapse
|
28
|
Li C, Xu JJ, Hu HT, Shi CY, Yu CJ, Sheng JZ, Wu YT, Huang HF. Amylin receptor insensitivity impairs hypothalamic POMC neuron differentiation in the male offspring of maternal high-fat diet-fed mice. Mol Metab 2020; 44:101135. [PMID: 33279727 PMCID: PMC7773963 DOI: 10.1016/j.molmet.2020.101135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 11/26/2022] Open
Abstract
Objective Amylin was found to regulate glucose and lipid metabolism by acting on the arcuate nucleus of the hypothalamus (ARC). Maternal high-fat diet (HFD) induces sex-specific metabolic diseases mediated by the ARC in offspring. This study was performed to explore 1) the effect of maternal HFD-induced alterations in amylin on the differentiation of hypothalamic neurons and metabolic disorders in male offspring and 2) the specific molecular mechanism underlying the regulation of amylin and its receptor in response to maternal HFD. Methods Maternal HFD and gestational hyper-amylin mice models were established to explore the role of hypothalamic amylin and receptor activity-modifying protein 3 (Ramp3) in regulating offspring metabolism. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and RNA decay assays were performed to investigate the mechanism underlying the influence of maternal HFD on Ramp3 deficiency in the fetal hypothalamus. Results Male offspring with maternal HFD grew heavier and developed metabolic disorders, whereas female offspring with maternal HFD showed a slight increase in body weight and did not develop metabolic disorders compared to those exposed to maternal normal chow diet (NCD). Male offspring exposed to a maternal HFD had hyperamylinemia from birth until adulthood, which was inconsistent with offspring exposed to maternal NCD. Hyperamylinemia in the maternal HFD-exposed male offspring might be attributed to amylin accumulation following Ramp3 deficiency in the fetal hypothalamus. After Ramp3 knockdown in hypothalamic neural stem cells (htNSCs), amylin was found to fail to promote the differentiation of anorexigenic alpha-melanocyte-stimulating hormone-proopiomelanocortin (α-MSH-POMC) neurons but not orexigenic agouti-related protein-neuropeptide Y (AgRP-Npy) neurons. An investigation of the mechanism involved showed that IGF2BP1 could specifically bind to Ramp3 in htNSCs and maintain its mRNA stability. Downregulation of IGF2BP1 in htNSCs in the HFD group could decrease Ramp3 expression and lead to an impairment of α-MSH-POMC neuron differentiation. Conclusions These findings suggest that gestational exposure to HFD decreases the expression of IGF2BP1 in the hypothalami of male offspring and destabilizes Ramp3 mRNA, which leads to amylin resistance. The subsequent impairment of POMC neuron differentiation induces sex-specific metabolic disorders in adulthood. Maternal HFD leads to Ramp3 deficiency in fetal hypothalami of male offspring. IGF2BP1 binds to Ramp3 in htNSCs specifically and maintains its mRNA stability. Maternal HFD decreases Ramp3 in htNSCs via downregulating IGF2BP1. Ramp3 deficiency induced by maternal HFD results in amylin resistance in htNSCs. Amylin resistance induced by Ramp3 deficiency impairs POMC neuron differentiation.
Collapse
Affiliation(s)
- Cheng Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Jing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Tao Hu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Yi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Jin Yu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Zhong Sheng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan-Ting Wu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Maternal resistance to diet-induced obesity partially protects newborn and post-weaning male mice offspring from metabolic disturbances. J Dev Orig Health Dis 2020; 12:660-670. [PMID: 33023711 DOI: 10.1017/s204017442000094x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rising rate of childhood overweight follows the increase in maternal obesity, since perinatal events impact offspring in a diversity of metabolic disorders. Despite many studies that have linked dietary consumption, overnutrition, or maternal obesity as the mediators of fetal metabolic programming, there are gaps regarding the knowledge about the contribution of different maternal phenotypes to the development of metabolic disturbances in offspring. This study aimed to investigate whether maternal high-fat diet (HFD) consumption without the development of the obese phenotype would protect offspring from metabolic disturbances. Female mice were fed standard chow diet or a HFD for 4 weeks before mating. HFD females were classified into obesity-resistant (OR) or obesity-prone (OP), according to weight gain. OP females presented with higher adiposity, fasting serum glucose and insulin, cholesterol and non-esterified fatty acid (NEFA). Newborn offspring from OP dams showed higher serum glucose and insulin and alteration in hepatic gene expression that may have contributed to the rise in hepatic fat content and decline of glycogen levels in the liver. Despite offspring from OR and OP females having showed similar growth after the day of delivery, offspring from OP females had higher caloric intake, fasting glucose, serum triglycerides and altered hepatic gene expression, as well as glucose and pyruvate intolerance and lower insulin sensitivity at d28 compared with offspring from OR females. Maternal pre-pregnancy serum glucose, insulin, and NEFA positively correlated with serum glucose and fat liver content and negatively correlated with hepatic glycogen in offspring. In conclusion, our results show that maternal resistance to diet-induced obesity partially protects offspring from early metabolic disturbances.
Collapse
|
30
|
Dearden L, Buller S, Furigo IC, Fernandez-Twinn DS, Ozanne SE. Maternal obesity causes fetal hypothalamic insulin resistance and disrupts development of hypothalamic feeding pathways. Mol Metab 2020; 42:101079. [PMID: 32919096 PMCID: PMC7549144 DOI: 10.1016/j.molmet.2020.101079] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Perinatal exposure to maternal obesity results in predisposition of offspring to develop obesity later in life. Increased weight gain in offspring exposed to maternal obesity is usually associated with hyperphagia, implicating altered central regulation of food intake as a cause. We aimed to define how maternal obesity impacts early development of the hypothalamus to program lasting dysfunction in feeding regulatory pathways. Methods Mice offspring of diet-induced obese mothers were compared to the offspring of lean control mothers. We analysed gene expression in the fetal hypothalamus, alongside neurosphere assays to investigate the effects of maternal obesity on neural progenitor cell proliferation in vitro. Western blotting was used to investigate the insulin signalling pathway in the fetal hypothalamus. Characterisation of cell type and neuropeptide profile in adulthood was linked with analyses of feeding behaviour. Results There was a reduction in the expression of proliferative genes in the fetal hypothalamus of offspring exposed to maternal obesity. This reduction in proliferation was maintained in vitro when hypothalamic neural progenitor cells were grown as neurospheres. Hypothalamic fetal gene expression and neurosphere growth correlated with maternal body weight and insulin levels. Foetuses of obese mothers showed hypothalamic insulin resistance, which may be causative of reduced proliferation. Furthermore, maternal obesity activated the Notch signalling pathway in neonatal offspring hypothalamus, resulting in decreased neurogenesis. Adult offspring of obese mothers displayed an altered ratio of anorexigenic and orexigenic signals in the arcuate nucleus, associated with an inability to maintain energy homeostasis when metabolically challenged. Conclusions These findings show that maternal obesity alters the molecular signature in the developing hypothalamus, which is associated with disrupted growth and development of hypothalamic precursor cells and defective feeding regulation in adulthood. This is the first report of fetal hypothalamic insulin resistance in an obese pregnancy and suggests a mechanism by which maternal obesity causes permanent changes to hypothalamic structure and function. Exposure to maternal obesity reduces hypothalamic neural progenitor cell growth. Maternal obesity activates hypothalamic Notch signalling and reduces neurogenesis. Maternal obesity causes fetal hypothalamic insulin resistance. Maternal obesity alters the ratio of anorexigenic/orexigenic signals in ARC. Changes in food intake precede increased adiposity in offspring of obese dams.
Collapse
Affiliation(s)
- L Dearden
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom.
| | - S Buller
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - I C Furigo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - D S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| | - S E Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB20QQ, United Kingdom
| |
Collapse
|
31
|
Chaves WF, Pinheiro IL, da Silva LO, Lima-Oliveira DP, Muniz GDS, Barreto ÁDN, da Silva BJ, Manhães-de-Castro R, da Silva Aragão R. Neonatal administration of kaempferol does not alter satiety but increases somatic growth and reduces adiposity in offspring of high-fat diet dams. Life Sci 2020; 259:118224. [PMID: 32768574 DOI: 10.1016/j.lfs.2020.118224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to evaluate the effects of maternal exposure to a high-fat diet associated with neonatal administration of kaempferol on somatic growth, biochemical profile and feeding behavior in offspring. MATERIALS AND METHODS Wistar rats were distributed according to diet during pregnancy and lactation into Control (C; 3.4 kcal/g; 12% kcal/lipids) or High-fat (HFD; 4.6 kcal/g; 51% kcal/lipids) groups. In the offspring, vehicle (V) or kaempferol (K, 1 mg/kg) were administered from the 8th until the 21st postnatal day (PND). Maternal body weight (BW), caloric intake and adiposity were measured. In the offspring, somatic growth parameters were evaluated on the 7th, 14th, 21st, 25th and 30th PND, except for BW, which was measured from the 8th to the 21st and from the 25th to the 30th PND. Feeding behavior was assessed by food intake and behavioral satiety sequence (BSS) on the 30th PND. The biochemical profile and relative weight of adipose tissue of offspring were also measured. KEY FINDINGS Dams exposed to HFD showed no difference in body weight and caloric intake but exhibited increased adiposity. Neonatal administration of kaempferol increased body weight after weaning and somatic growth in the offspring of HFD dams. Neonatal kaempferol also reduced adiposity and serum creatinine levels in offspring. Neither maternal diet nor kaempferol altered offspring feeding behavior. SIGNIFICANCE Neonatal administration of kaempferol promotes increased somatic growth post-weaning, reduces adiposity, and does not alter feeding behavior in offspring from high-fat dams.
Collapse
Affiliation(s)
| | - Isabeli Lins Pinheiro
- Physical Education and Sport Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Phenotypic Plasticity and Nutrition Studies Unit, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Luana Olegário da Silva
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Débora Priscila Lima-Oliveira
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Gisélia de Santana Muniz
- Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Phenotypic Plasticity and Nutrition Studies Unit, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Departament of Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | | | - Breno José da Silva
- Departament of Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Raul Manhães-de-Castro
- Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Phenotypic Plasticity and Nutrition Studies Unit, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Raquel da Silva Aragão
- Graduate Program in Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Physical Education and Sport Sciences Unit, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil; Phenotypic Plasticity and Nutrition Studies Unit, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
32
|
Kislal S, Shook LL, Edlow AG. Perinatal exposure to maternal obesity: Lasting cardiometabolic impact on offspring. Prenat Diagn 2020; 40:1109-1125. [PMID: 32643194 DOI: 10.1002/pd.5784] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Evidence from epidemiological, clinical, and animal model studies clearly demonstrates that prenatal and lactational maternal obesity and high-fat diet consumption are associated with cardiometabolic morbidity in offspring. Fetal and offspring sex may be an important effect modifier. Adverse offspring cardiometabolic outcomes observed in the setting of maternal obesity include an increased risk for obesity, features of metabolic syndrome (hypertension, hyperglycemia and insulin resistance, hyperlipidemia, increased adiposity), and non-alcoholic fatty liver disease. This review article synthesizes human and animal data linking maternal obesity and high-fat diet consumption in pregnancy and lactation to adverse cardiometabolic outcomes in offspring. We review key mechanisms underlying skeletal muscle, adipose tissue, pancreatic, liver, and central brain reward programming in obesity-exposed offspring, and how such malprogramming contributes to offspring cardiometabolic morbidity.
Collapse
Affiliation(s)
- Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Gawlińska K, Gawliński D, Filip M, Przegaliński E. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutr Rev 2020; 79:709-725. [PMID: 32447401 DOI: 10.1093/nutrit/nuaa020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A balanced maternal diet is essential for proper fetal development, and the consumption of a nutritionally inadequate diet during intrauterine development and early childhood is associated with a significantly increased risk of metabolic and brain disorders in offspring. The current literature indicates that maternal exposure to a high-fat diet exerts an irreversible influence on the general health of the offspring. This review of preclinical research examines the relationship between a maternal high-fat diet during pregnancy or lactation and metabolic changes, molecular alterations in the brain, and behavioral disorders in offspring. Animal models indicate that offspring exposed to a maternal high-fat diet during pregnancy and lactation manifest increased depressive-like and aggressive behaviors, reduced cognitive development, and symptoms of metabolic syndrome. Recently, epigenetic and molecular studies have shown that maternal nutrition during pregnancy and the suckling period modifies the development of neurotransmitter circuits and many other factors important to central nervous system development. This finding confirms the importance of a balanced maternal diet for the health of offspring.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
34
|
Repercussions of maternal exposure to high-fat diet on offspring feeding behavior and body composition: a systematic review. J Dev Orig Health Dis 2020; 12:220-228. [DOI: 10.1017/s2040174420000318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractMaternal nutrition is an environmental determinant for offspring growth and development, especially in critical periods. Nutritional imbalances during these phases can promote dysregulations in food intake and feeding preference in offspring, affecting body composition. The aim of this review is to summarize and discuss the effects of maternal high-fat diet (HFD) on offspring feeding behavior and body composition. A search was performed in the PUBMED, SCOPUS, Web of Science, and LILACS databases. Inclusion criteria were studies in rodents whose mothers were submitted to HFD that assessed outcomes of food or caloric intake on offspring and food preference associated or not with body weight or body composition analysis. At the end of the search, 17 articles with the proposed characteristics were included. In these studies, 15 articles manipulated diet during pregnancy and lactation, 1 during pregnancy only, and 1 during lactation only. Maternal exposure to a HFD leads to increased food intake, increased preference for HFDs, and earlier food independence in offspring. The offspring from HFD mothers present low birthweight but become heavier into adulthood. In addition, these animals also exhibited greater fat deposition on white adipose tissue pads. In conclusion, maternal exposure to HFD may compromise parameters in feeding behavior and body composition of offspring, impairing the health from conception until adulthood.
Collapse
|
35
|
Krzeczkowski JE, Boylan K, Arbuckle TE, Muckle G, Poliakova N, Séguin JR, Favotto LA, Savoy C, Amani B, Mortaji N, Van Lieshout RJ. Maternal Pregnancy Diet Quality Is Directly Associated with Autonomic Nervous System Function in 6-Month-Old Offspring. J Nutr 2020; 150:267-275. [PMID: 31573610 DOI: 10.1093/jn/nxz228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Many pregnant women are consuming diets of poor overall quality. Although many studies have linked poor prenatal diet quality to an increased risk of specific diseases in offspring, it is not known if exposure to poor prenatal diet affects core neurophysiological regulatory systems in offspring known to lie upstream of multiple diseases. OBJECTIVE We aimed to examine the association between prenatal diet quality and autonomic nervous system (ANS) function in infants at 6 mo of age. METHODS Data from 400 women (aged >18 y, with uncomplicated pregnancies) and their infants participating in the Maternal-Infant Research on Environmental Chemicals-Infant Development cohort were used to investigate links between prenatal diet quality and infant ANS function at 6 mo of age. Prenatal diet quality was assessed using the Healthy Eating Index (2010), calculated from a validated FFQ completed by women during the first trimester. Infant ANS function was measured using 2 assessments of heart rate variability (HRV) including root mean square of successive differences (RMSSD) and SD of N-N intervals (SDNN). Associations were analyzed before and after adjustment for socioeconomic status, maternal depression symptoms, maternal cardiometabolic dysfunction, breastfeeding, and prenatal smoking. RESULTS Poorer prenatal diet quality was associated with lower infant HRV assessed using RMSSD (B: 0.07; 95% CI: 0.01, 0.13; R2 = 0.013) and SDNN (B: 0.18; 95% CI: 0.02, 0.35; R2 = 0.011). These associations remained significant after adjustment for confounding variables [RMSSD: B: 0.09; 95% CI: 0.003, 0.18; squared semipartial correlation (sp2) = 0.14 and SDNN B: 0.24; 95% CI: 0.0, 0.49; sp2 = 0.13]. CONCLUSIONS In a large cohort study, poorer prenatal diet quality was associated with lower offspring HRV, a marker of decreased capacity of the ANS to respond adaptively to challenge. Therefore, poor prenatal diet may play a significant role in the programming of multiple organ systems and could increase general susceptibility to disease in offspring.
Collapse
Affiliation(s)
- John E Krzeczkowski
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Khrista Boylan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Tye E Arbuckle
- Population Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Quebec City, Quebec, Canada.,Research Centre of CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Natalia Poliakova
- Population Health and Optimal Health Practices Research Branch, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - Jean R Séguin
- Department of Psychiatry and Addiction, CHU Ste-Justine Research Centre, Montreal, Quebec, Canada
| | - Lindsay A Favotto
- Department of Health Research Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Calan Savoy
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Bahar Amani
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Neda Mortaji
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Ryan J Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Department of Health Research Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Maternal overnutrition programs epigenetic changes in the regulatory regions of hypothalamic Pomc in the offspring of rats. Int J Obes (Lond) 2018; 42:1431-1444. [PMID: 29777232 PMCID: PMC6113193 DOI: 10.1038/s41366-018-0094-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/27/2018] [Accepted: 03/16/2018] [Indexed: 02/02/2023]
Abstract
Background and objective Maternal overnutrition has been implicated in affecting the offspring by programming metabolic disorders such as obesity and diabetes, by mechanisms that are not clearly understood. This study aimed to determine the long-term impact of maternal high-fat (HF) diet feeding on epigenetic changes in the offspring’s hypothalamic Pomc gene, coding a key factor in the control of energy balance. Further, it aimed to study the additional effects of postnatal overnutrition on epigenetic programming by maternal nutrition. Methods Eight-week-old female Sprague–Dawley rats were fed HF diet or low-fat (LF) diet for 6 weeks before mating, and throughout gestation and lactation. At postnatal day 21, samples were collected from a third offspring and the remainder were weaned onto LF diet for 5 weeks, after which they were either fed LF or HF diet for 12 weeks, resulting in four groups of offspring differing by their maternal and postweaning diet. Results With maternal HF diet, offspring at weaning had rapid early weight gain, increased adiposity, and hyperleptinemia. The programmed adult offspring, subsequently fed LF diet, retained the increased body weight. Maternal HF diet combined with offspring HF diet caused more pronounced hyperphagia, fat mass, and insulin resistance. The ARC Pomc gene from programmed offspring at weaning showed hypermethylation in the enhancer (nPE1 and nPE2) regions and in the promoter sequence mediating leptin effects. Interestingly, hypermethylation at the Pomc promoter but not at the enhancer region persisted long term into adulthood in the programmed offspring. However, there were no additive effects on methylation levels in the regulatory regions of Pomc in programmed offspring fed a HF diet. Conclusion Maternal overnutrition programs long-term epigenetic alterations in the offspring’s hypothalamic Pomc promoter. This predisposes the offspring to metabolic disorders later in life.
Collapse
|