1
|
Chen X, Kang H, Xiao Y. The role of SGK1 in neurologic diseases: A friend or foe? IBRO Neurosci Rep 2024; 17:503-512. [PMID: 39737082 PMCID: PMC11683284 DOI: 10.1016/j.ibneur.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1), a member of the AGC family of serine/threonine protein kinases, is one of the most conserved protein kinases in eukaryotic evolution. SGK1 is expressed to varying degrees in various types of cells throughout the body, and plays an important role in hypertension, ion channels, oxidative stress, neurological disorders, and cardiovascular regulation. In recent years, a number of scholars have devoted themselves to the study of the role and function of SGK1 in neurological diseases. Therefore, this article reviews the role of SGK1 in Alzheimer's disease, Parkinson's disease, epilepsy, stroke and other neurological diseases in recent years, and puts forward some insights on the role of SGK1 in neurological diseases and its relationship with disease activities.
Collapse
Affiliation(s)
- Xiuze Chen
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Haixian Kang
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Yechen Xiao
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
- Shunde Women and Children's Hospital of Guangdong Medical University, Foshan 528300, China
| |
Collapse
|
2
|
Aryal S, Chen S, Burbach KF, Yang Y, Capano LS, Kim WK, Bragg DC, Yoo A. SAK3 confers neuroprotection in the neurodegeneration model of X-linked Dystonia-Parkinsonism. RESEARCH SQUARE 2024:rs.3.rs-4068432. [PMID: 38746402 PMCID: PMC11092809 DOI: 10.21203/rs.3.rs-4068432/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background X-linked Dystonia-Parkinsonism(XDP) is an adult-onset neurodegenerative disorder that results in the loss of striatal medium spiny neurons (MSNs). XDP is associated with disease-specific mutations in and around the TAF1 gene. This study highlights the utility of directly reprogrammed MSNs from fibroblasts of affected XDP individuals as a platform that captures cellular and epigenetic phenotypes associated with XDP-related neurodegeneration. In addition, the current study demonstrates the neuroprotective effect of SAK3 currently tested in other neurodegenerative diseases. Methods XDP fibroblasts from three independent patients as well as age- and sex-matched control fibroblasts were used to generate MSNs by direct neuronal reprogramming using miRNA-9/9*-124 and thetranscription factors CTIP2 , DLX1 -P2A- DLX2 , and MYT1L . Neuronal death, DNA damage, and mitochondrial health assays were carried out to assess the neurodegenerative state of directly reprogrammed MSNs from XDP patients (XDP-MSNs). RNA sequencing and ATAC sequencing were performed to infer changes in the transcriptomic and chromatin landscapesof XDP-MSNs compared to those of control MSNs (Ctrl-MSNs). Results Our results show that XDP patient fibroblasts can be successfully reprogrammed into MSNs and XDP-MSNs display several degenerative phenotypes, including neuronal death, DNA damage, and mitochondrial dysfunction, compared to Ctrl-MSNs reprogrammed from age- and sex-matched control individuals' fibroblasts. In addition, XDP-MSNs showed increased vulnerability to TNFα -toxicity compared to Ctrl-MSNs. To dissect the altered cellular state in XDP-MSNs, we conducted transcriptomic and chromatin accessibility analyses using RNA- and ATAC-seq. Our results indicate that pathways related to neuronal function, calcium signaling, and genes related to other neurodegenerative diseases are commonly altered in XDP-MSNs from multiple patients. Interestingly, we found that SAK3, a T-type calcium channel activator, that may have therapeutic values in other neurodegenerative disorders, protected XDP-MSNs from neuronal death. Notably, we found that SAK3-mediated alleviation of neurodegeneration in XDP-MSNs was accompanied by gene expression changes toward Ctrl-MSNs.
Collapse
|
3
|
Trojan E, Curzytek K, Cieślik P, Wierońska JM, Graff J, Lasoń W, Saito T, Saido TC, Basta-Kaim A. Prenatal stress aggravates age-dependent cognitive decline, insulin signaling dysfunction, and the pro-inflammatory response in the APP NL-F/NL-F mouse model of Alzheimer's disease. Neurobiol Dis 2023:106219. [PMID: 37422091 DOI: 10.1016/j.nbd.2023.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Accumulating evidence indicates that early adverse life experiences may be involved in the pathogenesis of Alzheimer's disease (AD). Prenatal stress (PS) can affect brain maturation and neuroimmune and metabolic interactions, leading to age-dependent cognitive deficits in offspring. However, a multi-faceted cause-and-effect impact of PS on the development of cognitive deficits in the process of physiological ageing and in the APPNL-F/NL-F mouse model of Alzheimer's disease has not yet been evaluated. We have identified age-dependent cognitive learning and memory deficits using male C57BL/6 J (wild type, WT) and the knock-in APPNL-F/NL-F (KI) aged 12, 15, and 18 months. An increase in the Aβ42/Aβ40 ratio and mouse ApoE levels in the hippocampus and frontal cortex preceded the onset of cognitive deficits in the KI mice. Moreover, dysfunction in insulin signaling, including increased IRS-1 serine phosphorylation in both brain areas and the tyrosine phosphorylation deficit in the frontal cortex, suggested age-dependent insulin/IGF-1 resistance. Resistance was reflected by disturbances in mTOR or ERK1/2 kinase phosphorylation and excessive pro-inflammatory (TNF-α, IL-6, and IL-23) status in the KI mice. Importantly, our study has provided insights into the higher vulnerability to PS-induced exacerbation of age-dependent cognitive deficits and biochemical dysfunction in KI mice than in WT animals. We anticipate our study will lead to future investigation of a multi-faceted cause-and-effect relationship between stress during neurodevelopment and the onset of AD pathology, distinguishing it from changes in the course of dementia during normal ageing.
Collapse
Affiliation(s)
- Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland.
| | - Katarzyna Curzytek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Psychiatric Disorders, 12 Smętna St., 31-343 Kraków, Poland
| | - Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, Laboratory of Psychiatric Disorders, 12 Smętna St., 31-343 Kraków, Poland
| | - Johannes Graff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Władysław Lasoń
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, University Graduate School of Medical Sciences, Nagoya City, Aichi 467-8601, Japan
| | - Takaomi C Saido
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland.
| |
Collapse
|
4
|
Liu M, Lian B, Lan Z, Sun H, Zhao Y, Sun T, Meng Z, Zhao C, Zhang J. Transcriptomic Profile Identifies Hippocampal Sgk1 as the Key Mediator of Ovarian Estrogenic Regulation on Spatial Learning and Memory and Aβ Accumulation. Neurochem Res 2022; 47:3369-3384. [PMID: 35915371 DOI: 10.1007/s11064-022-03690-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that ovarian estrogens are involved in the occurrence and pathology of Alzheimer's disease (AD) through regulation on hippocampal synaptic plasticity and spatial memory; however, the underlying mechanisms have not yet been elucidated at the genomic scale. In this study, we established the postmenopausal estrogen-deficient model by ovariectomy (OVX). Then, we used high-throughput Affymetrix Clariom transcriptomics and found 143 differentially expressed genes in the hippocampus of OVX mice with the absolute fold change ≥ 1.5 and P < 0.05. GO analysis showed that the highest enrichment was seen in long-term memory. Combined with the response to steroid hormone enrichment and GeneMANIA network prediction, the serum and glucocorticoid-regulated kinase 1 gene (Sgk1) was found to be the most potent candidate for ovarian estrogenic regulation. Sgk1 overexpression viral vectors (oSgk1) were then constructed and injected into the hippocampus of OVX mice. Morris water maze test revealed that the impaired spatial learning and memory induced by OVX was rescued by Sgk1 overexpression. Additionally, the altered expression of synaptic proteins and actin remodeling proteins and changes in CA1 spine density and synapse density induced by OVX were also significantly reversed by oSgk1. Moreover, the OVX-induced increase in Aβ-producing BACE1 and Aβ and the decrease in insulin degrading enzyme were significantly reversed by oSgk1. The above results show that multiple pathways and genes are involved in ovarian estrogenic regulation of the function of the hippocampus, among which Sgk1 may be a novel potent target against estrogen-sensitive hippocampal dysfunctions, such as Aβ-initiated AD.
Collapse
Affiliation(s)
- Mengying Liu
- The 305 Hospital of PLA, Beijing, 100017, China.,Department of Neurobiology, Army Medical University, Chongqing, 400038, China
| | - Biyao Lian
- Department of Pediatrics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.,Department of Human Anatomy and Tissue Embryology, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China
| | - Huan Sun
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China.,Center for Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yangang Zhao
- Department of Neurology, Hainan Hospital of PLA General Hospital, Sanya, 572013, China
| | - Tao Sun
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China
| | - Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China
| | - Chengjun Zhao
- Department of Human Anatomy and Tissue Embryology, Ningxia Medical University, Yinchuan, 750004, China. .,Medical Sci-Tech Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
5
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Hescheler J, Ehninger D, Haenisch B, Weiergräber M. Ca v3 T-Type Voltage-Gated Ca 2+ Channels and the Amyloidogenic Environment: Pathophysiology and Implications on Pharmacotherapy and Pharmacovigilance. Int J Mol Sci 2022; 23:3457. [PMID: 35408817 PMCID: PMC8998330 DOI: 10.3390/ijms23073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/07/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aβ levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
6
|
Zhang YL, Moran SP, Allen A, Baez-Nieto D, Xu Q, Wang LA, Martenis WE, Sacher JR, Gale JP, Weïwer M, Wagner FF, Pan JQ. Novel Fluorescence-Based High-Throughput FLIPR Assay Utilizing Membrane-Tethered Genetic Calcium Sensors to Identify T-Type Calcium Channel Modulators. ACS Pharmacol Transl Sci 2022; 5:156-168. [PMID: 35311021 PMCID: PMC8923061 DOI: 10.1021/acsptsci.1c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/28/2022]
Abstract
T-type voltage-gated Ca2+ channels have been implicated in many human disorders, and there has been increasing interest in developing highly selective and potent T-type Ca2+ channel modulators for potential clinical use. However, the unique biophysical properties of T-type Ca2+ channels are not conducive for developing high-throughput screening (HTS) assays to identify modulators, particularly potentiators. To illustrate, T-type Ca2+ channels are largely inactivated and unable to open to allow Ca2+ influx at -25 mV, the typical resting membrane potential of the cell lines commonly used in cellular screening assays. To address this issue, we developed cell lines that express Kir2.3 channels to hyperpolarize the membrane potential to -70 mV, thus allowing T-type channels to return to their resting state where they can be subsequently activated by membrane depolarization in the presence of extracellular KCl. Furthermore, to simplify the HTS assay and to reduce reagent cost, we stably expressed a membrane-tethered genetic calcium sensor, GCaMP6s-CAAX, that displays superior signal to the background compared to the untethered GCaMP6s or the synthetic Ca2+ sensor Fluo-4AM. Here, we describe a novel GCaMP6s-CAAX-based calcium assay utilizing a high-throughput fluorometric imaging plate reader (Molecular Devices, Sunnyvale, CA) format that can identify both activators and inhibitors of T-type Ca2+ channels. Lastly, we demonstrate the utility of this novel fluorescence-based assay to evaluate the activities of two distinct G-protein-coupled receptors, thus expanding the use of GCaMP6s-CAAX to a wide range of applications relevant for developing cellular assays in drug discovery.
Collapse
Affiliation(s)
- Yan-Ling Zhang
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sean P. Moran
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andrew Allen
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - David Baez-Nieto
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Qihong Xu
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Lei A. Wang
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - William E. Martenis
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Joshua R. Sacher
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jennifer P. Gale
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Michel Weïwer
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Florence F. Wagner
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jen Q. Pan
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
7
|
Ge F, Dong L, Zhu D, Lin X, Shi J, Xiao M. Comparison of Serum Triiodothyronine with Biomarkers for Alzheimer's Disease Continuum in Euthyroid Subjects. J Alzheimers Dis 2021; 85:605-614. [PMID: 34864671 DOI: 10.3233/jad-215092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accumulating studies have implicated thyroid dysfunction in the pathogenesis of Alzheimer's disease (AD). OBJECTIVE This study aimed to explore the association between thyroid hormone (TH) levels and cerebrospinal fluid (CSF) biomarkers for AD continuum among euthyroid subjects. METHODS In all, 93 clinically euthyroid subjects with a cognitive decline were included in this prospective cross-sectional study and were divided into groups with abnormal AD biomarkers (belonging to the "Alzheimer's continuum"; A+ patients) and those with "normal AD biomarkers" or "non-AD pathological changes" (A-patients), according to the ATN research framework classification for AD. A partial correlation analysis of serum thyroid-stimulating hormone (TSH) or TH levels with CSF biomarkers was conducted. The predictor for A+ patients was analyzed via binary logistic regressions. Finally, the diagnostic significance of individual biochemical predictors for A+ patients was estimated via receiver operating characteristic curve analysis. RESULTS Serum total triiodothyronine (TT3) and free triiodothyronine (FT3) levels were found to affect the levels of CSF amyloid-β (Aβ)42 and the ratios of Aβ 42/40. Further, FT3 was found to be a significant predictor for A+ via binary logistic regression modeling. Moreover, FT3 showed a high diagnostic value for A+ in euthyroid subjects. CONCLUSION Even in a clinical euthyroid state, low serum FT3 and TT3 levels appear to be differentially associated with AD-specific CSF changes. These data indicate that serum FT3 is a strong candidate for differential diagnosis between AD continuum and non-AD dementia, which benefits the early diagnosis and effective management of preclinical and clinical AD patients.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Dong
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Donglin Zhu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
T-Type Ca 2+ Enhancer SAK3 Activates CaMKII and Proteasome Activities in Lewy Body Dementia Mice Model. Int J Mol Sci 2021; 22:ijms22126185. [PMID: 34201181 PMCID: PMC8228122 DOI: 10.3390/ijms22126185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
Lewy bodies are pathological characteristics of Lewy body dementia (LBD) and are composed of α-synuclein (α-Syn), which is mostly degraded via the ubiquitin–proteasome system. More importantly, 26S proteasomal activity decreases in the brain of LBD patients. We recently introduced a T-type calcium channel enhancer SAK3 (ethyl-8-methyl-2,4-dioxo-2-(piperidin-1-yl)- 2H-spiro[cyclopentane-1,3-imidazo [1,2-a]pyridin]-2-ene-3-carboxylate) for Alzheimer’s disease therapeutics. SAK3 enhanced the proteasome activity via CaMKII activation in amyloid precursor protein knock-in mice, promoting the degradation of amyloid-β plaques to improve cognition. At this point, we addressed whether SAK3 promotes the degradation of misfolded α-Syn and the aggregates in α-Syn preformed fibril (PFF)-injected mice. The mice were injected with α-Syn PFF in the dorsal striatum, and SAK3 (0.5 or 1.0 mg/kg) was administered orally for three months, either immediately or during the last month after injection. SAK3 significantly inhibited the accumulation of fibrilized phosphorylated-α-Syn in the substantia nigra. Accordingly, SAK3 significantly recovered mesencephalic dopamine neurons from cell death. Decreased α-Syn accumulation was closely associated with increased proteasome activity. Elevated CaMKII/Rpt-6 signaling possibly mediates the enhanced proteasome activity after SAK3 administration in the cortex and hippocampus. CaMKII/Rpt-6 activation also accounted for improved memory and cognition in α-Syn PFF-injected mice. These findings indicate that CaMKII/Rpt-6-dependent proteasomal activation by SAK3 recovers from α-Syn pathology in LBD.
Collapse
|
9
|
Degawa T, Kawahata I, Izumi H, Shinoda Y, Fukunaga K. T-type Ca 2+ channel enhancer SAK3 administration improves the BPSD-like behaviors in App NL-G-F/NL-G-F knock-in mice. J Pharmacol Sci 2021; 146:1-9. [PMID: 33858649 DOI: 10.1016/j.jphs.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) accounts for the majority of dementia among the elderly. In addition to cognitive impairment, behavioral and psychological symptoms (BPSD) such as depression tendency and increased aggression impose a great burden on the patient. However, there is still no rational therapeutic drug for BPSD. Recently, we developed a novel AD therapeutic candidate, SAK3, and demonstrated that it improved cognitive dysfunction in AppNL-G-F/NL-G-F knock-in (NL-G-F) mice. In this study, we investigated whether acute SAK3 administration improved BPSD in addition to cognitive improvement. Acute SAK3 administration improved BPSD, including anxiolytic and depressive-like behaviors, and ameliorated aggressive behaviors. Furthermore, continuous SAK3 administration improved anxiolytic and depressive-like behaviors. Intriguingly, the anti-anxiolytic and cognitive improvement lasted two weeks after the withdrawal of SAK3, whereas the anti-depressive action did not. Taken together, SAK3 had comprehensive beneficial effects on BPSD behavior.
Collapse
Affiliation(s)
- Tomohide Degawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
10
|
Single Administration of the T-Type Calcium Channel Enhancer SAK3 Reduces Oxidative Stress and Improves Cognition in Olfactory Bulbectomized Mice. Int J Mol Sci 2021; 22:ijms22020741. [PMID: 33451040 PMCID: PMC7828528 DOI: 10.3390/ijms22020741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD), characterized by cognitive impairments, is considered to be one of the most widespread chronic neurodegenerative diseases worldwide. We recently introduced a novel therapeutic agent for AD treatment, the T-type calcium channel enhancer ethyl-8-methyl-2,4-dioxo-2-(piperidin-1-yl)-2H-spiro[cyclopentane-1,3-imidazo[1,2-a]pyridin]-2-ene-3-carboxylate (SAK3). SAK3 enhances calcium/calmodulin-dependent protein kinase II and proteasome activity, thereby promoting amyloid beta degradation in mice with AD. However, the antioxidative effects of SAK3 remain unclear. We investigated the antioxidative effects of SAK3 in olfactory bulbectomized mice (OBX mice), compared with the effects of donepezil as a positive control. As previously reported, single oral administration of both SAK3 (0.5 mg/kg, p.o.) and donepezil (1.0 mg/kg, p.o.) significantly improved cognitive and depressive behaviors in OBX mice. Single oral SAK3 administration markedly reduced 4-hydroxy-2-nonenal and nitrotyrosine protein levels in the hippocampus of OBX mice, which persisted until 1 week after administration. These effects are similar to those observed with donepezil therapy. Increased protein levels of oxidative stress markers were observed in the microglial cells, which were significantly rescued by SAK3 and donepezil. SAK3 could ameliorate oxidative stress in OBX mice, like donepezil, suggesting that the antioxidative effects of SAK3 and donepezil are among the neuroprotective mechanisms in AD pathogenesis.
Collapse
|
11
|
Cummings J. New approaches to symptomatic treatments for Alzheimer's disease. Mol Neurodegener 2021; 16:2. [PMID: 33441154 PMCID: PMC7805095 DOI: 10.1186/s13024-021-00424-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/02/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Successful development of agents that improve cognition and behavior in Alzheimer's disease (AD) is critical to improving the lives of patients manifesting the symptoms of this progressive disorder. DISCUSSION There have been no recent approvals of cognitive enhancing agents for AD. There are currently 6 cognitive enhancers in Phase 2 trials and 4 in phase 3. They represent a variety of novel mechanisms. There has been progress in developing new treatments for neuropsychiatric symptoms in AD with advances in treatment of insomnia, psychosis, apathy, and agitation in AD. There are currently 4 AD-related psychotropic agents in Phase 2 trials and 7 in Phase 3 trials. Many novel mechanisms are being explored for the treatment of cognitive and behavioral targets. Progress in trial designs, outcomes measures, and population definitions are improving trial conduct for symptomatic treatment of AD. CONCLUSIONS Advances in developing new agents for cognitive and behavioral symptoms of AD combined with enhanced trial methods promise to address the unmet needs of patients with AD for improved cognition and amelioration of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
12
|
Yabuki Y. [Role of T-type Calcium Channels in Regulating Neuronal Function]. YAKUGAKU ZASSHI 2020; 140:1207-1212. [PMID: 32999199 DOI: 10.1248/yakushi.20-00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T-type calcium channels are low-threshold voltage-gated calcium channel and characterized by unique electrophysiological properties such as fast inactivation and slow deactivation kinetics. All subtypes of T-type calcium channel (Cav3.1, 3.2 and 3.3) are widely expressed in the central nerve system, and they have an important role in homeostasis of sleep, pain response, and development of epilepsy. Recently, several reports suggest that T-type calcium channels may mediate neuronal plasticity in the mouse brain. We succeeded to develop T-type calcium channel enhancer ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a]pyridine]-2-ene-3-carboxylate (SAK3) which enhances Cav3.1 and 3.3 currents in each-channel expressed neuro2A cells. SAK3 can promote acetylcholine (ACh) release in the mouse hippocampus via enhancing T-type calcium channel. In this review, we have introduced the role of T-type calcium channel, especially Cav3.1 channel in the mouse hippocampus based on our previous data using SAK3 and Cav3.1 knockout mice.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
13
|
Janakiraman U, Dhanalakshmi C, Yu J, Moutal A, Boinon L, Fukunaga K, Khanna R, Nelson MA. The investigation of the T-type calcium channel enhancer SAK3 in an animal model of TAF1 intellectual disability syndrome. Neurobiol Dis 2020; 143:105006. [PMID: 32622085 PMCID: PMC7422587 DOI: 10.1016/j.nbd.2020.105006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
T-type calcium channels, in the central nervous system, are involved in the pathogenesis of many neurodegenerative diseases, including TAF1 intellectual disability syndrome (TAF1 ID syndrome). Here, we evaluated the efficacy of a novel T-type Ca2+ channel enhancer, SAK3 (ethyl 8'-methyl-2', 4-dioxo-2-(piperidin-1-yl)-2'H-spiro [cyclopentane-1, 3'-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate) in an animal model of TAF1 ID syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21 animals were given SAK3 (0.25 mg/kg, p.o.) or vehicle up to post-natal day 35 (i.e. 14 days). Rats were subjected to behavioral, morphological, electrophysiological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued the behavior abnormalities in beam walking test and open field test caused by TAF1 gene editing. We observed an increase in calbindin-positive Purkinje cells and GFAP-positive astrocytes as well as a decrease in IBA1-positive microglia cells in SAK3-treated animals. In addition, SAK3 protected the Purkinje and granule cells from apoptosis induced by TAF-1 gene editing. SAK3 also restored the excitatory post synaptic current (sEPSCs) in TAF1 edited Purkinje cells. Finally, SAK3 normalized the BDNF/AKT signaling axis in TAF1 edited animals. Altogether, these observations suggest that SAK3 could be a novel therapeutic agent for TAF1 ID syndrome.
Collapse
Affiliation(s)
- Udaiyappan Janakiraman
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Chinnasamy Dhanalakshmi
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Jie Yu
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Lisa Boinon
- Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Rajesh Khanna
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; Department of Pharmacology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA; The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA; The BIO5 Institute, University of Arizona, USA
| | - Mark A Nelson
- Department of Pathology, University of Arizona College of Medicine, College of Pharmacy, Tucson, AZ, USA.
| |
Collapse
|
14
|
Sos KE, Mayer MI, Takács VT, Major A, Bardóczi Z, Beres BM, Szeles T, Saito T, Saido TC, Mody I, Freund TF, Nyiri G. Amyloid β induces interneuron-specific changes in the hippocampus of APPNL-F mice. PLoS One 2020; 15:e0233700. [PMID: 32469963 PMCID: PMC7259556 DOI: 10.1371/journal.pone.0233700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and amyloid-beta (Aβ) depositions generated by the proteolysis of amyloid precursor protein (APP) in the brain. In APPNL-F mice, APP gene was humanized and contains two familial AD mutations, and APP-unlike other mouse models of AD-is driven by the endogenous mouse APP promoter. Similar to people without apparent cognitive dysfunction but with heavy Aβ plaque load, we found no significant decline in the working memory of adult APPNL-F mice, but these mice showed decline in the expression of normal anxiety. Using immunohistochemistry and 3D block-face scanning electron microscopy, we found no changes in GABAA receptor positivity and size of somatic and dendritic synapses of hippocampal interneurons. We did not find alterations in the level of expression of perineuronal nets around parvalbumin (PV) interneurons or in the density of PV- or somatostatin-positive hippocampal interneurons. However, in contrast to other investigated cell types, PV interneuron axons were occasionally mildly dystrophic around Aβ plaques, and the synapses of PV-positive axon initial segment (AIS)-targeting interneurons were significantly enlarged. Our results suggest that PV interneurons are highly resistant to amyloidosis in APPNL-F mice and amyloid-induced increase in hippocampal pyramidal cell excitability may be compensated by PV-positive AIS-targeting cells. Mechanisms that make PV neurons more resilient could therefore be exploited in the treatment of AD for mitigating Aβ-related inflammatory effects on neurons.
Collapse
Affiliation(s)
- Katalin E. Sos
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Márton I. Mayer
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Virág T. Takács
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary
| | - Abel Major
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary
| | - Zsuzsanna Bardóczi
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary
| | - Barnabas M. Beres
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary
| | - Tamás Szeles
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN, Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Aichi, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN, Center for Brain Science, Saitama, Japan
| | - István Mody
- Department of Neurology, University of California, Los Angeles, California, United States of America
| | - Tamás F. Freund
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary
| | - Gábor Nyiri
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary
| |
Collapse
|
15
|
SAK3 Administration Improves Spine Abnormalities and Cognitive Deficits in App NL-G-F/NL-G-F Knock-in Mice by Increasing Proteasome Activity through CaMKII/Rpt6 Signaling. Int J Mol Sci 2020; 21:ijms21113833. [PMID: 32481611 PMCID: PMC7312612 DOI: 10.3390/ijms21113833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by neuropathological hallmarks consisting of accumulation of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFT). Recently, we have identified a new AD therapeutic candidate, ethyl-8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo [1,2-a] pyridin]-2-ene-3-carboxylate (SAK3), which ameliorates the AD-like pathology in AppNL-F/NL-F knock-in mice. However, the detailed mechanism underlying the therapeutic effects of SAK3 remains unclear. In this study, we found that SAK3 administration improved the reduced proteasome activity through the activation of CaMKII/Rpt6 signaling in AppNL-F/NL-F knock-in (NL-G-F) mice. Moreover, spine abnormalities observed in NL-G-F mice were significantly reversed by SAK3 administration. Along with this, cognitive impairments found in NL-G-F mice were markedly ameliorated by SAK3. In summary, our data suggest that SAK3 administration increases the activity of the proteasome via activation of the CaMKII/Rpt6 signaling pathway, contributing to improvements in spine abnormalities and cognitive deficits in NL-G-F mice. Overall, our findings suggest that SAK3 might be a new attractive drug candidate, representing a new mechanism for the treatment of AD pathology.
Collapse
|
16
|
Scearce-Levie K, Sanchez PE, Lewcock JW. Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov 2020; 19:447-462. [PMID: 32612262 DOI: 10.1038/s41573-020-0065-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
A large number of mouse models have been engineered, characterized and used to advance biomedical research in Alzheimer disease (AD). Early models simply damaged the rodent brain through toxins or lesions. Later, the spread of genetic engineering technology enabled investigators to develop models of familial AD by overexpressing human genes such as those encoding amyloid precursor protein (APP) or presenilins (PSEN1 or PSEN2) carrying mutations linked to early-onset AD. Recently, more complex models have sought to explore the impact of multiple genetic risk factors in the context of different biological challenges. Although none of these models has proven to be a fully faithful reproduction of the human disease, models remain essential as tools to improve our understanding of AD biology, conduct thorough pharmacokinetic and pharmacodynamic analyses, discover translatable biomarkers and evaluate specific therapeutic approaches. To realize the full potential of animal models as new technologies and knowledge become available, it is critical to define an optimal strategy for their use. Here, we review progress and challenges in the use of AD mouse models, highlight emerging scientific innovations in model development, and introduce a conceptual framework for use of preclinical models for therapeutic development.
Collapse
|
17
|
Oral glutathione administration inhibits the oxidative stress and the inflammatory responses in App NL-G-F/NL-G-F knock-in mice. Neuropharmacology 2020; 168:108026. [PMID: 32130977 DOI: 10.1016/j.neuropharm.2020.108026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by the presence of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles. Reduced antioxidants and increased oxidative stress and inflammation are responsible for the pathological features characteristic of an AD brain. We observed decreased levels of the reduced form of glutathione (GSH), the most abundant brain antioxidant, and decreased GSH/glutathione disulfide (GSSG) ratios in AppNL-G-F/NL-G-F knock-in (NL-G-F) mouse brains. Repeated oral GSH administration for 3 weeks dose-dependently increased GSH levels and restored the GSH/GSSH ratio. Consistent with the restoration of GSH levels, the levels of 4-hydroxy-2-nonenal (4-HNE), a marker of oxidative stress, were significantly decreased in the hippocampus of NL-G-F mice. Additionally, inflammatory responses, such as microgliosis and increased mRNA expression of inflammatory cytokines, were also inhibited. Moreover, behavioral deficits including cognitive decline, depressive-like behaviors, and anxiety-related behaviors observed in NL-G-F mice were significantly improved by oral and chronic GSH administration. Taken together, our data suggest that oral GSH administration is an attractive therapeutic strategy to reduce the excessive oxidative stress and inflammatory responses in the AD brain.
Collapse
|
18
|
Suthprasertporn N, Mingchinda N, Fukunaga K, Thangnipon W. Neuroprotection of SAK3 on scopolamine-induced cholinergic dysfunction in human neuroblastoma SH-SY5Y cells. Cytotechnology 2020; 72:155-164. [PMID: 31933104 PMCID: PMC7002707 DOI: 10.1007/s10616-019-00366-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of senile dementia. A number of factors have been proposed regarding pathology of AD, such as presence of β-amyloid, and cholinergic and oxidative stress. SAK3 (ethyl 8'-methyl-2',5-dioxo-2-piperidin-1-ylspiro[cyclopentene-3,3'-imidazo[1,2-a]pyridine]-1-carboxylate) reduces β-amyloid deposition and improves cognitive functions in amyloid precursor protein knock-in mice. Scopolamine is used to induce in cell lines a cholinergic deficit that mimics AD. In order to evaluate the possible neuroprotective properties of SAK3, human neuroblastoma SH-SY5Y cells were pretreated with the compound (25-100 nM) and further incubated in the presence of scopolamine (2 mM). SAK3 inhibited scopolamine-induced cellular apoptosis (morphologically and by determination of pro- and anti-apoptotic factor levels), increase in ROS levels, decrease in choline acetyltransferase level, phosphorylation of NF-κB, activation of Akt, JNK and p38 intracellular signaling pathways, and elevation of proinflammatory cytokines IL-1β and IL-6, but not enhanced level of β-site amyloid precursor protein cleaving enzyme 1 (BACE1). These results indicate SAK3 possessed protective properties against cholinergic deficit associated with anti-oxidant, anti-apoptotic and anti-inflammatory activities, suggesting that SAK3 might be a potential agent in the development of AD drug therapeutics.
Collapse
Affiliation(s)
- Nopparat Suthprasertporn
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand
| | - Nopparada Mingchinda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand.
| |
Collapse
|
19
|
Lian B, Liu M, Lan Z, Sun T, Meng Z, Chang Q, Liu Z, Zhang J, Zhao C. Hippocampal overexpression of SGK1 ameliorates spatial memory, rescues Aβ pathology and actin cytoskeleton polymerization in middle-aged APP/PS1 mice. Behav Brain Res 2020; 383:112503. [PMID: 31981651 DOI: 10.1016/j.bbr.2020.112503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
The increasing occurrence and ineffective treatment of Alzheimer's disease (AD) has become one of the major challenges of the world. Limited studies have shown that serum- and glucocorticoid-inducible kinase 1 (SGK1) is involved in spatial memory formation and consolidation, but its role in AD-like spatial memory impairment and the related mechanisms are not clear. In this study, we first examined the age-related changes of SGK1 in the hippocampus of female APP/PS1 (AD) mice. Based on the finding and our previous finding that significant spatial memory impairment was detected in 8-month old AD mice, SGK1-overexpressing AAV (oSGK1) was constructed and injected into the hippocampus of 9-month old AD mice. One month later, the behavior alterations, Aβ production and deposit as well as changes of CA1 spine density and selected actin polymerization remodeling proteins were examined. The results showed that significant decrease of SGK1 was detected in 10-month old AD mice. The spatial memory impairment, the production and deposit of Aβ were reversed by oSGK1. Levels of hippocampal ADAM10 (α-secretase) and IDE (Aβ degradase), actin remodeling related proteins Rictor, Rac1, Cdc42 and Profilin-1 were significantly increased after oSGK1 treatment while hippocampal BACE1 (γ-secretase) and Cofilin remained unchanged. Taken together, our findings demonstrated a pivotal role of SGK1 in the treatment of AD-related memory impairment through upregulation of non- amyloidogenic processing of APP and degradation of Aβ, increase in spine plasticity related proteins, indicating increase in hippocampal SGK1 may be a potent therapeutic target against AD.
Collapse
Affiliation(s)
- Biyao Lian
- Department of Histology and Embryology, Ningxia Medical University, Yinchuan, 750004, China
| | - Mengying Liu
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China; The 305 Hospital of PLA, 100017, Beijing, China
| | - Zhen Lan
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Sun
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Zhaoyou Meng
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Qing Chang
- Department of Histology and Embryology, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhi Liu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Jiqiang Zhang
- Department of Neurobiology, Third Military Medical University, Chongqing, 400038, China.
| | - Chengjun Zhao
- Department of Histology and Embryology, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
20
|
Wei Y. Comparative transcriptome analysis of the hippocampus from sleep-deprived and Alzheimer's disease mice. Genet Mol Biol 2020; 43:e20190052. [PMID: 32338274 PMCID: PMC7249779 DOI: 10.1590/1678-4685-gmb-2019-0052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
We did a comparative analysis of the gene expression profiles of the hippocampus from sleep deprivation and Alzheimer’s disease (AD) mice. Differentially expressed genes (DEGs) were identified by comparing the transcriptome profiles of the hippocampus of sleep deprivation or AD mouse models to matched controls. The common DEGs between sleep deprivation and AD were identified by the overlapping analysis, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that a total of 16 common DEGs showed similar change patterns in both sleep deprivation mice and AD mice. Sgk1, Ly6a, Atp6v0e, Hspb8, Htra1, Pdk4, Pfkfb3, Golm1, and Plin3 were up-regulated in the two disorders, whereas, Marcksl1, Fgd1, Scarb1, Mvd, Klhl13, Elovl2, and Vps29 were down-regulated. Acetyl-CoA metabolic process and lipid biosynthetic process were significantly enriched by those DEGs. The highly expressed DEGs and the two GO terms were associated with neuropathological changes according to the previous studies. As expected, sleep deprivation may contribute the AD development through these common DEGs.
Collapse
Affiliation(s)
- Yi Wei
- Nanjing Forest Police College, Nanjing 210023, China
| |
Collapse
|
21
|
Sakakibara Y, Sekiya M, Saito T, Saido TC, Iijima KM. Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease. BMC Neurosci 2019; 20:13. [PMID: 30894120 PMCID: PMC6425634 DOI: 10.1186/s12868-019-0496-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/15/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Knock-in (KI) mouse models of Alzheimer's disease (AD) that endogenously overproduce Aβ without non-physiological overexpression of amyloid precursor protein (APP) provide important insights into the pathogenic mechanisms of AD. Previously, we reported that AppNL-G-F mice, which harbor three familial AD mutations (Swedish, Beyreuther/Iberian, and Arctic) exhibited emotional alterations before the onset of definitive cognitive deficits. To determine whether these mice exhibit deficits in learning and memory at more advanced ages, we compared the Morris water maze performance of AppNL-G-F and AppNL mice, which harbor only the Swedish mutation, with that of wild-type (WT) C57BL/6J mice at the age of 24 months. To correlate cognitive deficits and neuroinflammation, we also examined Aβ plaque formation and reactive gliosis in these mice. RESULTS In the Morris water maze, a spatial task, 24-month-old AppNL-G-F/NL-G-F mice exhibited significantly poorer spatial learning than WT mice during the hidden training sessions, but similarly to WT mice during the visible training sessions. Not surprisingly, AppNL-G-F/NL-G-F mice also exhibited spatial memory deficits both 1 and 7 days after the last training session. By contrast, 24-month-old AppNL/NL mice had intact spatial learning and memory relative to WT mice. Immunohistochemical analyses revealed that 24-month-old AppNL-G-F/NL-G-F mice developed massive Aβ plaques and reactive gliosis (microgliosis and astrocytosis) throughout the brain, including the cortex and hippocampus. By contrast, we observed no detectable brain pathology in AppNL/NL mice despite overproduction of human Aβ40 and Aβ42 in their brains. CONCLUSIONS Aβ plaque formation, followed by sustained neuroinflammation, is necessary for the induction of definitive cognitive deficits in App-KI mouse models of AD. Our data also indicate that introduction of the Swedish mutation alone in endogenous APP is not sufficient to produce either AD-related brain pathology or cognitive deficits in mice.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 Japan
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603 Japan
| |
Collapse
|
22
|
Fukunaga K, Izumi H, Yabuki Y, Shinoda Y, Shioda N, Han F. Alzheimer's disease therapeutic candidate SAK3 is an enhancer of T-type calcium channels. J Pharmacol Sci 2019; 139:51-58. [DOI: 10.1016/j.jphs.2018.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022] Open
|
23
|
Zhang X, Su J, Gao C, Ni W, Gao X, Li Y, Zhang J, Lei Y, Gu Y. Progression in Vascular Cognitive Impairment: Pathogenesis, Neuroimaging Evaluation, and Treatment. Cell Transplant 2019; 28:18-25. [PMID: 30488737 PMCID: PMC6322135 DOI: 10.1177/0963689718815820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular cognitive impairment (VCI) defines an entire spectrum of neurologic disorders from mild cognitive impairment to dementia caused by cerebral vascular disease. The pathogenesis of VCI includes ischemic factors (e.g., large vessel occlusion and small vessel dysfunction); hemorrhagic factors (e.g., intracerebral hemorrhage and subarachnoid hemorrhage); and other factors (combined with Alzheimer's disease). Clinical evaluations of VCI mainly refer to neuropsychological testing and imaging assessments, including structural and functional neuroimaging, with different advantages. At present, the main treatment for VCI focuses on neurological protection, cerebral blood flow reconstruction, and neurological rehabilitation, such as pharmacological treatment, revascularization, and cognitive training. In this review, we discuss the pathogenesis, neuroimaging evaluation, and treatment of VCI.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Lei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Yu Lei and Yuxiang Gu, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, No. 12 Middle Wulumuqi Road, Shanghai 200040, China. Emails: ;
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Yu Lei and Yuxiang Gu, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, No. 12 Middle Wulumuqi Road, Shanghai 200040, China. Emails: ;
| |
Collapse
|
24
|
T-type calcium channel enhancer SAK3 promotes dopamine and serotonin releases in the hippocampus in naive and amyloid precursor protein knock-in mice. PLoS One 2018; 13:e0206986. [PMID: 30571684 PMCID: PMC6301769 DOI: 10.1371/journal.pone.0206986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/23/2018] [Indexed: 01/12/2023] Open
Abstract
T-type calcium channels in the brain mediate the pathophysiology of epilepsy, pain, and sleep. Recently, we developed a novel therapeutic candidate, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a] pyridine]-2-ene-3-carboxylate), for Alzheimer's disease (AD). The cognitive improvement by SAK3 is closely associated with enhanced acetylcholine (ACh) release in the hippocampus. Since monoamines such as dopamine (DA), noradrenaline (NA), and serotonin (5-HT) are also involved in hippocampus-dependent learning and psychomotor behaviors in mice, we investigated the effects of SAK3 on these monoamine releases in the mouse brain. Oral administration of SAK3 (0.5 mg/kg, p.o.) significantly promoted DA and 5-HT releases in the naive mouse hippocampal CA1 region but not in the medial prefrontal cortex (mPFC), while SAK3 did not affect NA release in either brain region. The T-type calcium channel-specific inhibitor, NNC 55-0396 (1 μM) significantly antagonized SAK3-enhanced DA and 5-HT releases in the hippocampus. Interestingly, the α7 nicotinic ACh receptor (nAChR) antagonist, methyllycaconitine (1 nM) significantly inhibited DA release, and the α4 nAChR antagonist, dihydro-β-erythroidine (100 μM) significantly blocked both DA and 5-HT releases following SAK3 (0.5 mg/kg, p.o.) administration in the hippocampus. SAK3 did not alter basal monoamine contents both in the mPFC and hippocampus. SAK3 (0.5 mg/kg, p.o.) administration also significantly elevated DA and 5-HT releases in the hippocampal CA1 region of amyloid-precursor protein (APP)NL-GF knock-in (KI) mice. Moreover, hippocampal DA and 5-HT contents were significantly decreased in APPNL-GF KI mice. Taken together, our data suggest that SAK3 promotes monoamine DA and 5-HT releases by enhancing the T-type calcium channel and nAChR in the mouse hippocampus.
Collapse
|