1
|
Khati WH, Al Mutery AF, Moudilou EN, Exbrayat JM, Hammouche S. WITHDRAWN: Distribution of the Novel RFRP-3/receptors system in the epididymis of the seasonal desert rodent, Gerbillus tarabuli, during sexual activity. Morphologie 2024:S1286-0115(21)00233-2. [PMID: 34774455 DOI: 10.1016/j.morpho.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 12/06/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at: https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- W H Khati
- USTHB, Arid Area Research Laboratory, Biological Sciences Faculty, University of Sciences and Technology of Houari-Boumediene, Algiers, Algeria.
| | - A F Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates; Molecular Genetics Research Laboratory, University of Sharjah, Sharjah, United Arab Emirates
| | - E N Moudilou
- UMRS 449 - General Biology - Reproduction and Comparative Development, UDL; École Pratique des Hautes Études, PSL, Lyon Catholic University, Lyon, France
| | - J-M Exbrayat
- UMRS 449 - General Biology - Reproduction and Comparative Development, UDL; École Pratique des Hautes Études, PSL, Lyon Catholic University, Lyon, France
| | - S Hammouche
- USTHB, Arid Area Research Laboratory, Biological Sciences Faculty, University of Sciences and Technology of Houari-Boumediene, Algiers, Algeria
| |
Collapse
|
2
|
Briski KP, Napit PR, Alhamyani A, Leprince J, Mahmood AH. Sex-Dimorphic Octadecaneuropeptide (ODN) Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neuron Function and Counterregulatory Hormone Secretion. ASN Neuro 2023; 15:17590914231167230. [PMID: 37194319 PMCID: PMC10196551 DOI: 10.1177/17590914231167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 05/18/2023] Open
Abstract
Central endozepinergic signaling is implicated in glucose homeostasis. Ventromedial hypothalamic nucleus (VMN) metabolic monitoring governs glucose counter-regulation. VMN glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) neurons express the energy gauge 5'-AMP-activated protein kinase (AMPK). Current research addresses the premise that the astrocyte glio-peptide octadecaneuropeptide (ODN) imposes sex-dimorphic control of metabolic sensor activity and neurotransmitter signaling in these neurons. The ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) was administered intracerebroventricularly (icv) to euglycemic rats of each sex; additional groups were pretreated icv with the ODN isoactive surrogate ODN11-18 (OP) before insulin-induced hypoglycemia. Western blotting of laser-catapult-microdissected VMN NO and GABA neurons showed that hypoglycemia caused OP-reversible augmentation of phospho-, e.g., activated AMPK and nitric oxide synthase (nNOS) expression in rostral (female) or middle (male) VMN segments or ODN-dependent suppression of nNOS in male caudal VMN. OP prevented hypoglycemic down-regulation of glutamate decarboxylase profiles in female rat rostral VMN, without affecting AMPK activity. LV-1075 treatment of male, not female rats elevated plasma glucagon and corticosterone concentrations. Moreover, OP attenuated hypoglycemia-associated augmentation of these hormones in males only. Results identify, for each sex, regional VMN metabolic transmitter signals that are subject to endozepinergic regulation. Directional shifts and gain-or-loss of ODN control during eu- versus hypoglycemia infer that VMN neuron receptivity to or post-receptor processing of this stimulus may be modulated by energy state. In male, counter-regulatory hormone secretion may be governed principally by ODN-sensitive neural pathways, whereas this endocrine outflow may be controlled by parallel, redundant ODN-dependent and -independent mechanisms in female.
Collapse
Affiliation(s)
- Karen P. Briski
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Prabhat R. Napit
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Jérôme Leprince
- Neuronal and Neuroendocrine Differentiation
and Communication Laboratory, Normandy University, INSERM U1239, PRIMACEN, Rouen,
France
| | - A.S.M. Hasan Mahmood
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| |
Collapse
|
3
|
Roy SC, Sapkota S, Pasula MB, Bheemanapally K, Briski KP. Diazepam Binding Inhibitor Control of Eu- and Hypoglycemic Patterns of Ventromedial Hypothalamic Nucleus Glucose-Regulatory Signaling. ASN Neuro 2023; 15:17590914231214116. [PMID: 38031405 PMCID: PMC10687944 DOI: 10.1177/17590914231214116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Pharmacological stimulation/antagonism of astrocyte glio-peptide octadecaneuropeptide signaling alters ventromedial hypothalamic nucleus (VMN) counterregulatory γ-aminobutyric acid (GABA) and nitric oxide transmission. The current research used newly developed capillary zone electrophoresis-mass spectrometry methods to investigate hypoglycemia effects on VMN octadecaneuropeptide content, along with gene knockdown tools to determine if octadecaneuropeptide signaling regulates these transmitters during eu- and/or hypoglycemia. Hypoglycemia caused dissimilar adjustments in the octadecaneuropeptide precursor, i.e., diazepam-binding-inhibitor and octadecaneuropeptide levels in dorsomedial versus ventrolateral VMN. Intra-VMN diazepam-binding-inhibitor siRNA administration decreased baseline 67 and 65 kDa glutamate decarboxylase mRNA levels in GABAergic neurons laser-microdissected from each location, but only affected hypoglycemic transcript expression in ventrolateral VMN. This knockdown therapy imposed dissimilar effects on eu- and hypoglycemic glucokinase and 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) gene profiles in dorsomedial versus ventrolateral GABAergic neurons. Diazepam-binding-inhibitor gene silencing up-regulated baseline (dorsomedial) or hypoglycemic (ventrolateral) nitrergic neuron neuronal nitric oxide synthase mRNA profiles. Baseline nitrergic cell glucokinase mRNA was up- (ventrolateral) or down- (dorsomedial) regulated by diazepam-binding-inhibitor siRNA, but knockdown enhanced hypoglycemic profiles in both sites. Nitrergic nerve cell AMPKα1 and -α2 transcripts exhibited division-specific responses to this genetic manipulation during eu- and hypoglycemia. Results document the utility of capillary zone electrophoresis-mass spectrometric tools for quantification of ODN in small-volume brain tissue samples. Data show that hypoglycemia has dissimilar effects on ODN signaling in the two major neuroanatomical divisions of the VMN and that this glio-peptide imposes differential control of glucose-regulatory neurotransmission in the VMNdm versus VMNvl during eu- and hypoglycemia.
Collapse
Affiliation(s)
- Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
4
|
Alshamrani AA, Ibrahim MM, Briski KP. Effects of Short-Term Food Deprivation on Catecholamine and Metabolic-Sensory Biomarker Gene Expression in Hindbrain A2 Noradrenergic Neurons Projecting to the Forebrain Rostral Preoptic Area: Impact of Negative versus Positive Estradiol Feedback. IBRO Neurosci Rep 2022; 13:38-46. [PMID: 35711244 PMCID: PMC9193863 DOI: 10.1016/j.ibneur.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Hindbrain A2 noradrenergic neurons assimilate estrogenic and metabolic cues. In female mammals, negative- versus positive-feedback patterns of estradiol (E) secretion impose divergent regulation of the gonadotropin-releasing hormone (GnRH)-pituitary-gonadal (HPG) neuroendocrine axis. Current research used retrograde tracing, dual-label immunocytochemistry, single-cell laser-microdissection, and multiplex qPCR methods to address the premise that E feedback modes uniquely affect metabolic regulation of A2 neurons involved in HPG control. Ovariectomized female rats were given E replacement to replicate plasma hormone levels characteristic of positive (high-E dose) or negative (low-E dose) feedback. Animals were either full-fed (FF) or subjected to short-term, e.g., 18-h food deprivation (FD). After FF or FD, rostral preoptic area (rPO)-projecting A2 neurons were characterized by the presence or absence of nuclear glucokinase regulatory protein (nGKRP) immunostaining. FD augmented or suppressed mRNAs encoding the catecholamine enzyme dopamine-beta-hydroxylase (DβH) and the metabolic-sensory biomarker glucokinase (GCK), relative to FF controls, in nGKRP-immunoreactive (ir)-positive A2 neurons from low-E or high-E animals, respectively. Yet, these transcript profiles were unaffected by FD in nGKRP-ir-negative A2 neurons at either E dosage level. FD altered estrogen receptor (ER)-alpha and ATP-sensitive potassium channel subunit sulfonylurea receptor-1 gene expression in nGKRP-ir-positive neurons from low-E, but not high-E animals. Results provide novel evidence that distinct hindbrain A2 neuron populations exhibit altered versus unaffected transmission to the rPO during FD-associated metabolic imbalance, and that the direction of change in this noradrenergic input is controlled by E feedback mode. These A2 cell types are correspondingly distinguished by FD-sensitive or -insensitive GCK, which correlates with the presence versus absence of nGKRP-ir. Further studies are needed to determine how E signal volume regulates neurotransmitter and metabolic sensor responses to FD in GKRP-expressing A2 neurons.
Collapse
Affiliation(s)
| | | | - Karen P. Briski
- Correspondence to: School of Basic Pharmaceutical and Toxicological Sciences College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
5
|
Wei D, Wu D, Zeng W, Che L, Xu S, Fang Z, Feng B, Li J, Zhuo Y, Wu C, Zhang J, Lin Y. Arginine promotes testicular development in boars through nitric oxide and putrescine. J Anim Physiol Anim Nutr (Berl) 2021; 106:266-275. [PMID: 34212433 DOI: 10.1111/jpn.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/01/2022]
Abstract
The present work aimed to explore the influence and underlying mechanisms involving arginine in testicular development in boars. To this end, thirty 30-day-old male Duroc piglets (7.00 ± 0.30 kg) were randomly sorted into two groups, maintained on either a basal diet (CON, n = 15) or a diet supplemented with 0.8% arginine (ARG, n = 15). Blood and testicular samples were collected during the experimental period to analyse amino acid composition and arginine metabolite levels. The results showed that dietary supplementation with arginine increased number of spermatogonia and height of the seminiferous epithelium (p < 0.05). Sperm density, total number and effective number of sperm of the boars in the ARG group increased significantly compared with those in the CON group (p < 0.05). Although arginine supplementation did not affect plasma amino acid levels, testicular arginine levels in 150-day-old boars exhibited a significant increase (p < 0.05). The level of serum nitric oxide (NO) and activity of nitric oxide synthase (NOS) also increased in 150-day-old boars in the ARG group (p < 0.05). Interestingly, dietary supplementation with arginine increased testicular levels of putrescine in 150-day-old boars (p < 0.05). These results indicated that arginine supplementation increased serum NO levels and testicular arginine and putrescine abundance, thereby improving testicular development and semen quality in boars.
Collapse
Affiliation(s)
- Dongqin Wei
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Junjie Zhang
- School of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Bheemanapally K, Ibrahim MMH, Alshamrani A, Briski KP. Ventromedial hypothalamic nucleus glycogen regulation of metabolic-sensory neuron AMPK and neurotransmitter expression: role of lactate. Am J Physiol Regul Integr Comp Physiol 2021; 320:R791-R799. [PMID: 33825506 PMCID: PMC8285616 DOI: 10.1152/ajpregu.00292.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Astrocyte glycogen is dynamically remodeled during metabolic stability and provides oxidizable l-lactate equivalents during neuroglucopenia. Current research investigated the hypothesis that ventromedial hypothalamic nucleus (VMN) glycogen metabolism controls glucostimulatory nitric oxide (NO) and/or glucoinhibitory gamma-aminobutyric acid (GABA) neuron 5'-AMP-activated protein kinase (AMPK) and transmitter marker, e.g., neuronal nitric oxide synthase (nNOS), and glutamate decarboxylase65/67 (GAD) protein expression. Adult ovariectomized estradiol-implanted female rats were injected into the VMN with the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) before vehicle or l-lactate infusion. Western blot analysis of laser-catapult-microdissected nitrergic and GABAergic neurons showed that DAB caused lactate-reversible upregulation of nNOS and GAD proteins. DAB suppressed or increased total AMPK content of NO and GABA neurons, respectively, by lactate-independent mechanisms, but lactate prevented drug enhancement of pAMPK expression in nitrergic neurons. Inhibition of VMN glycogen disassembly caused divergent changes in counter-regulatory hormone, e.g. corticosterone (increased) and glucagon (decreased) secretion. Outcomes show that VMN glycogen metabolism controls local glucoregulatory transmission by means of lactate signal volume. Results implicate glycogen-derived lactate deficiency as a physiological stimulus of corticosterone release. Concurrent normalization of nitrergic neuron nNOS and pAMPK protein and corticosterone secretory response to DAB by lactate infers that the hypothalamic-pituitary-adrenal axis may be activated by VMN NO-mediated signals of cellular energy imbalance.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Ayed Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
7
|
Djouahra N, Moudilou EN, Exbrayat JM, Hammouche S. Immunodistribution of RFamide-related peptide-3 (RFRP-3) during the seminiferous epithelium cycle in a desert rodent Psammomys obesus. Tissue Cell 2021; 69:101484. [PMID: 33450652 DOI: 10.1016/j.tice.2020.101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
The Sand rat, Psammomys obesus, living northwest of the Algerian Sahara, presents a seasonal reproductive cycle. The purposes of this study were firstly to determine the stages of seminiferous epithelium cycle (SEC) by histological and morphometric analysis and secondly to investigate, for the first time, the testicular expression of RFamide-related peptide-3 (RFRP-3) during the SEC by immunohistochemistry. The results showed that the SEC consists of 14 stages according to the tubular morphology method. RFRP-3 was observed in both testicular compartments: the tubular and the interstitial. Leydig cells exhibited the highest RFRP-3 signal (30.73 % ± 4.80) compared to Sertoli cells (13-15 %). In the germline, RFRP-3 was detected during the late prophase I of meiosis in late pachytene, diplotene and metaphasic spermatocytes I. In addition, only round and triangular spermatids were positive during spermiogenesis. Referring to the SEC, it was found that the increased staining of RFRP-3 in spermatocytes I coincided with late pachytene of XI and XII stages (16.90 % ± 0.69 and 16.61 % ± 0.28, respectively). In spermatids, the labeling decreased in the triangular ones at stage IX (8.04 % ± 0.42). These results suggest the involvement of RFRP-3 in the control of SEC in P. obesus.
Collapse
Affiliation(s)
- Nassima Djouahra
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria.
| | - Elara N Moudilou
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Jean-Marie Exbrayat
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Sadjia Hammouche
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria
| |
Collapse
|
8
|
Estienne A, Bongrani A, Ramé C, Kurowska P, Błaszczyk K, Rak A, Ducluzeau PH, Froment P, Dupont J. Energy sensors and reproductive hypothalamo-pituitary ovarian axis (HPO) in female mammals: Role of mTOR (mammalian target of rapamycin), AMPK (AMP-activated protein kinase) and SIRT1 (Sirtuin 1). Mol Cell Endocrinol 2021; 521:111113. [PMID: 33301839 DOI: 10.1016/j.mce.2020.111113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
In female, energy metabolism influences reproductive function by modulating the Hypothalamic Pituitary Ovarian axis including the hypothalamic GnRH neuronal network, the pituitary gonadotropin secretion and the ovarian follicle growth and steroidogenesis. Several hormones and neuropeptides or metabolites are important signals between energy balance and reproduction. These energy sensors mediate their action on reproductive cells through specific kinases or signaling pathways. This review focuses on the role of three main enzymes-specifically, mTOR, AMPK, and SIRT1 at the hypothalamic pituitary and ovarian axis in normal female fertility and then we discuss their possible involvement in some women reproductive disorders known to be associated with metabolic complications, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF).
Collapse
Affiliation(s)
- Anthony Estienne
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Alice Bongrani
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Klaudia Błaszczyk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Pierre-Henri Ducluzeau
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; Université François Rabelais de Tours, F-37041, Tours, France; IFCE, F-37380, Nouzilly, France.
| |
Collapse
|
9
|
Franssen D, Barroso A, Ruiz-Pino F, Vázquez MJ, García-Galiano D, Castellano JM, Onieva R, Ruiz-Cruz M, Poutanen M, Gaytán F, Diéguez C, Pinilla L, Lopez M, Roa J, Tena-Sempere M. AMP-activated protein kinase (AMPK) signaling in GnRH neurons links energy status and reproduction. Metabolism 2021; 115:154460. [PMID: 33285180 DOI: 10.1016/j.metabol.2020.154460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/08/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Reproduction is tightly coupled to body energy and metabolic status. GnRH neurons, master elements and final output pathway for the brain control of reproduction, directly or indirectly receive and integrate multiple metabolic cues to regulate reproductive function. Yet, the molecular underpinnings of such phenomenon remain largely unfolded. AMP-activated protein kinase (AMPK), the fundamental cellular sensor that becomes activated in conditions of energy deficit, has been recently shown to participate in the control of Kiss1 neurons, essential gatekeepers of the reproductive axis, by driving an inhibitory valence in situations of energy scarcity at puberty. However, the contribution of AMPK signaling specifically in GnRH neurons to the metabolic control of reproduction remains unknown. METHODS Double immunohistochemistry (IHC) was applied to evaluate expression of active (phosphorylated) AMPK in GnRH neurons and a novel mouse line, named GAMKO, with conditional ablation of the AMPK α1 subunit in GnRH neurons, was generated. GAMKO mice of both sexes were subjected to reproductive characterization, with attention to puberty and gonadotropic responses to kisspeptin and metabolic stress. RESULTS A vast majority (>95%) of GnRH neurons co-expressed pAMPK. Female (but not male) GAMKO mice displayed earlier puberty onset and exaggerated LH (as surrogate marker of GnRH) responses to kisspeptin-10 at the prepubertal age. In adulthood, GAMKO females retained increased LH responsiveness to kisspeptin and showed partial resilience to the inhibitory effects of conditions of negative energy balance on the gonadotropic axis. The modulatory role of AMPK in GnRH neurons required preserved ovarian function, since the differences in LH pulsatility detected between GAMKO and control mice subjected to fasting were abolished in ovariectomized animals. CONCLUSIONS Altogether, our data document a sex-biased, physiological role of AMPK signaling in GnRH neurons, as molecular conduit of the inhibitory actions of conditions of energy deficit on the female reproductive axis.
Collapse
Affiliation(s)
- D Franssen
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - A Barroso
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - F Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - M J Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - D García-Galiano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - J M Castellano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - R Onieva
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - M Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - M Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - F Gaytán
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - C Diéguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - L Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - M Lopez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - J Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain; Departament of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofía, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
10
|
Alhamyani A, Mahmood AH, Alshamrani A, Ibrahim MMH, Briski KP. Central Type II Glucocorticoid Receptor Regulation of Ventromedial Hypothalamic Nucleus Glycogen Metabolic Enzyme and Glucoregulatory Neurotransmitter Marker Protein Expression in the Male Rat. JOURNAL OF ENDOCRINOLOGY AND DIABETES 2021; 8:148. [PMID: 34258390 PMCID: PMC8274514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ventromedial hypothalamic nucleus (VMN) glucoregulatory neurotransmitters γ-aminobutyric acid (GABA) and nitric oxide (NO) signal adjustments in glycogen mobilization. Glucocorticoids control astrocyte glycogen metabolism in vitro. The classical (type II) glucocorticoid receptor (GR) is expressed in key brain structures that govern glucostasis, including the VMN. Current research addressed the hypothesis that forebrain GR regulation of VMN glycogen synthase (GS) and phosphorylase (GP) protein expression correlates with control of glucoregulatory transmission. Groups of male rats were pretreated by intracerebroventricular (icv) delivery of the GR antagonist RU486 or vehicle prior to insulin-induced hypoglycemia (IIH), or were pretreated icv with dexamethasone (DEX) or vehicle before subcutaneous insulin diluent injection. DEX increased VMN GS and norepinephrine-sensitive GP-muscle type (GPmm), but did not alter metabolic deficit-sensitive GP-brain type (GPbb) expression. RU486 enhanced GS and GPbb profiles during IIH. VMN astrocyte (MCT1) and neuronal (MCT2) monocarboxylate transporter profiles were up-regulated in euglycemic and hypoglycemic animals by DEX or RU486, respectively. Glutamate decarboxylase65/67 and neuronal nitric oxide synthase (nNOS) proteins were both increased by DEX, yet RU486 augmented hypoglycemic nNOS expression patterns. Results show that GR exert divergent effects on VMN GS, MCT1/2, and nNOS proteins during eu- (stimulatory) versus hypoglycemia (inhibitory); these findings imply that up-regulated NO transmission may reflect, in part, augmented glucose incorporation into glycogen and/or increased tissue lactate requirements. Data also provide novel evidence for metabolic state-dependent GR regulation of VMN GPmm and GPbb profiles; thus, GABA signaling of metabolic stability may reflect, in part, stimulus-specific glycogen breakdown during eu- versus hypoglycemia.
Collapse
Affiliation(s)
- Abdulrahman Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - A.S.M. Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Ayed Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Mostafa M. H. Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201
| |
Collapse
|
11
|
Uddin MM, Ibrahim MMH, Aryal D, Briski KP. Sex-dimorphic moderate hypoglycemia preconditioning effects on Hippocampal CA1 neuron bio-energetic and anti-oxidant function. Mol Cell Biochem 2020; 473:39-50. [PMID: 32779041 DOI: 10.1007/s11010-020-03806-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Abstract
Hypoglycemia is a detrimental complication of rigorous management of type 1 diabetes mellitus. Moderate hypoglycemia (MH) preconditioning of male rats partially affords protection from loss of vulnerable brain neurons to severe hypoglycemia (SH). Current research investigated whether MH preconditioning exerts sex-dimorphic effects on hippocampal CA1 neuron bio-energetic and anti-oxidant responses to SH. SH up-regulated CA1 glucose or monocarboxylate transporter proteins in corresponding hypoglycemia-naïve male versus female rats; precedent MH amplified glucose transporter expression in SH irrespective of sex. Sex-differentiating SH effects on glycolytic and tricarboxylic pathway markers correlated with elevated tissue ATP content and diminished CA1 5'-AMP-activated protein kinase (AMPK) activation in females. MH-preconditioned suppression of mitochondrial energy pathway enzyme profiles and tissue ATP in SH rats coincided with amplified CA1 AMPK activity in both sexes. Anti-oxidative stress enzyme protein responses to SH were primarily sex-contingent; preconditioning amplified most of these profiles, yet exacerbated expression of lipid and protein oxidation markers in SH male and female rats, respectively. Results show that MH preconditioning abolishes female CA1 neuron neuroprotection of positive energy balance through SH, resulting in augmented CA1 AMPK activity and oxidative injury and diminished tissue ATP in hypoglycemia-conditioned versus naïve rats in each sex. It is unclear if SH elicits differential rates of CA1 neuronal destruction in the two sexes, or how MH may impact sex-specific cell loss. Further research is needed to determine if molecular mechanism(s) that maintain female CA1 neuron metabolic stability in the absence of MH preconditioning can be leveraged for therapeutic prevention of hypoglycemic nerve cell damage.
Collapse
Affiliation(s)
- Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA, 71201, USA.
| |
Collapse
|
12
|
Alshamrani AA, Bheemanapally K, Ibrahim MMH, Briski KP. Impact of caudal hindbrain glycogen metabolism on A2 noradrenergic neuron AMPK activation and ventromedial hypothalamic nucleus norepinephrine activity and glucoregulatory neurotransmitter marker protein expression. Neuropeptides 2020; 82:102055. [PMID: 32451071 PMCID: PMC7354902 DOI: 10.1016/j.npep.2020.102055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023]
Abstract
The brain glycogen reserve is a source of oxidizable substrate fuel. Lactoprivic-sensitive hindbrain A2 noradrenergic neurons provide crucial metabolic-sensory input to downstream hypothalamic glucose-regulatory structures. Current research examined whether hindbrain glycogen fuel supply impacts A2 energy stability and governance of ventromedial hypothalamic nucleus (VMN) metabolic transmitter signaling. Male rats were injected into the caudal fourth ventricle (CV4) with the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) prior to continuous intra-CV4 infusion of L-lactate or vehicle. Lactate reversed DAB suppression of A2 neuron AMPK protein and up-regulated phosphoAMPK profiles. A2 dopamine-β-hydroxylase expression was refractory to DAB, but elevated by DAB/lactate. Lactate normalized A2 estrogen receptor-alpha and GPER proteins and up-regulated estrogen receptor-beta levels in DAB-treated rats. VMN norepinephrine content was decreased by DAB, but partially restored by lactate. DAB caused lactate-reversible or -irreversible augmentation of VMN glycogen phosphorylase-brain (GPbb) and -muscle type (GPmm) variant profiles, and correspondingly up- or down-regulated VMN protein markers of glucose-stimulatory nitrergic and glucose-inhibitory γ-aminobutyric acid transmission. DAB did not alter plasma glucose, but suppressed or elevated circulating glucagon and corticosterone in that order. Results show that diminished hindbrain glycogen breakdown is communicated to the VMN, in part by NE signaling, to up-regulate VMN glycogen breakdown and trigger neurochemical signaling of energy imbalance in that site. DAB effects on GPmm, VMN glycogen content, and counter-regulatory hormone secretion were unabated by lactate infusion, suggesting that aside from substrate fuel provision rate, additional indicators of glycogen metabolism such as turnover rate may be monitored in the hindbrain.
Collapse
Affiliation(s)
- Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
13
|
Mahmood ASMH, Napit PR, Ali MH, Briski KP. Estrogen Receptor Involvement in Noradrenergic Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neurotransmitter and Stimulus-Specific Glycogen Phosphorylase Enzyme Isoform Expression. ASN Neuro 2020; 12:1759091420910933. [PMID: 32233668 PMCID: PMC7133083 DOI: 10.1177/1759091420910933] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Norepinephrine (NE) directly regulates ventromedial hypothalamic nucleus (VMN) glucoregulatory neurons and also controls glycogen-derived fuel provision to those cells. VMN nitric oxide (NO) and γ-aminobutyric acid (GABA) neurons and astrocytes express estrogen receptor-alpha (ERα) and ER-beta (ERβ) proteins. Current research used selective ERα (1,3Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride) or ERβ (4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol) antagonists to address the premise that these ERs govern basal and/or NE-associated patterns of VMN metabolic neuron signaling and astrocyte glycogen metabolism. Both ERs stimulate expression of the enzyme marker protein neuronal nitric oxide synthase, not glutamate decarboxylase65/67. NE inhibition or augmentation of neuronal nitric oxide synthase and glutamate decarboxylase65/67 profiles was ER-independent or -dependent, respectively. In both neuron types, VMN ERβ activity inhibited baseline alpha1- (α1-) and/or alpha2- (α2-)adrenergic receptor (AR) expression, but ERα and -β signaling was paradoxically crucial for noradrenergic upregulation of α2-AR. NE inhibited glycogen synthase expression and exerted opposite effects on VMN adenosine monophosphate-sensitive glycogen phosphorylase (GP)-brain type (stimulatory) versus NE-sensitive GP muscle (inhibitory) via ERα or -β activity. Results document unique ERα and ERβ actions on metabolic transmitter and AR protein expression in VMN nitrergic versus GABAergic neurons. ER effects varied in the presence versus absence of NE, indicating that both neuron types are substrates for estradiol and noradrenergic regulatory interaction. NE-dependent ER control of VMN GP variant expression implies that these signals also act on astrocytes to direct physiological stimulus-specific control of glycogen metabolism, which may in turn influence GABA transmission.
Collapse
Affiliation(s)
- A S M H Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe
| |
Collapse
|
14
|
Tulipano G. How treatments with endocrine and metabolic drugs influence pituitary cell function. Endocr Connect 2020; 9:R14-R27. [PMID: 31905162 PMCID: PMC6993271 DOI: 10.1530/ec-19-0482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
Abstract
A variety of endocrine and metabolic signals regulate pituitary cell function acting through the hypothalamus-pituitary neuroendocrine axes or directly at the pituitary level. The underlying intracellular transduction mechanisms in pituitary cells are still debated. AMP-activated protein kinase (AMPK) functions as a cellular sensor of low energy stores in all mammalian cells and promotes adaptive changes in response to calorie restriction. It is also regarded as a target for therapy of proliferative disorders. Various hormones and drugs can promote tissue-specific activation or inhibition of AMPK by enhancing or inhibiting AMPK phosphorylation, respectively. This review explores the preclinical studies published in the last decade that investigate the role of AMP-activated protein kinase in the intracellular transduction pathways downstream of endocrine and metabolic signals or drugs affecting pituitary cell function, and its role as a target for drug therapy of pituitary proliferative disorders. The effects of the hypoglycemic agent metformin, which is an indirect AMPK activator, are discussed. The multiple effects of metformin on cell metabolism and cell signalling and ultimately on cell function may be either dependent or independent of AMPK. The in vitro effects of metformin may also help highlighting differences in metabolic requirements between pituitary adenomatous cells and normal cells.
Collapse
|
15
|
Bheemanapally K, Ibrahim MMH, Briski KP. Combinatory high-resolution microdissection/ultra performance liquid chromatographic-mass spectrometry approach for small tissue volume analysis of rat brain glycogen. J Pharm Biomed Anal 2020; 178:112884. [PMID: 31606560 PMCID: PMC6936218 DOI: 10.1016/j.jpba.2019.112884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 01/31/2023]
Abstract
Cyto-architectural diversity of brain structures emphasizes need for analytical tools for discriminative investigation of distinctive neural structures. Glycogen is the major energy reserve in the brain. There is speculation that brain utilization of this fuel source may affect detection of hypoglycemia. To evaluate sex-specific regulation of glycogen mass and mobilization in the glucose-sensory ventromedial hypothalamic nucleus (VMN), current research coupled UHPLC-electrospray ionization mass spectrometric (LC-ESI-MS) analysis capabilities with novel derivatization protocols for high-sensitivity measurement of glucose and glycogen in small-volume neural tissue samples. This work also sought to demonstrate utility of pairing this approach with optimized Western blot methods for measurement of glycogen metabolic enzyme protein expression. Here, high-resolution micropunch dissection tools for discriminative isolation of VMN tissue were used in conjunction with newly developed glycogen analytical methods and an experimental treatment paradigm for intra-cranial hindbrain-targeted administration of estrogen receptor-alpha (ERα) or -beta (ERβ) receptor antagonists to address the hypothesis that estradiol activates one or both hindbrain ER populations to exert sex-specific regulatory effects on VMN glycogen mass and hypoglycemia-associated mobilization. Outcomes validate a novel multi-analytical platform for investigation of in vivo sex-dimorphic regulation of glycogen metabolism in precisely-defined brain elements under conditions of energy balance versus imbalance. This combinatory approach will facilitate ongoing efforts to elucidate effects of acute versus chronic hypoglycemia on glycogen metabolism in characterized brain glucose-sensory loci and determine effects local glycogen mass and/or mobilization adaptions on sensory monitoring and signaling of recurring hypoglycemia in each sex.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
16
|
Briski KP, Mandal SK, Bheemanapally K, Ibrahim MMH. Effects of acute versus recurrent insulin-induced hypoglycemia on ventromedial hypothalamic nucleus metabolic-sensory neuron AMPK activity: Impact of alpha 1-adrenergic receptor signaling. Brain Res Bull 2020; 157:41-50. [PMID: 31981674 DOI: 10.1016/j.brainresbull.2020.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/15/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Mechanisms that underlie metabolic sensor acclimation to recurring insulin-induced hypoglycemia (RIIH) are unclear. Norepinephrine (NE) regulates ventromedial hypothalamic nucleus (VMN) gluco-stimulatory nitric oxide (NO) and gluco-inhibitory γ-aminobutryic acid (GABA) neuron signaling. Current research addressed the hypothesis that during RIIH, NE suppresses 5'-AMP-activated protein kinase (AMPK) reactivity in both populations and impedes counter-regulation. The brain is postulated to utilize non-glucose substrates, e.g. amino acids glutamine (Gln), glutamate (Glu), and aspartate (Asp), to produce energy during hypoglycemia. A correlated aim investigated whether NE controls pyruvate recycling pathway marker protein (glutaminase, GLT; malic enzyme, ME-1) expression in either metabolic-sensory cell population. Male rats were injected subcutaneously with vehicle or insulin on days 1-3, then pretreated on day 4 by intracerebroventricular delivery of the alpha1-adrenergic receptor (α1-AR) reverse-agonist prazocin (PRZ) or vehicle before final insulin therapy. PRZ prevented acute hypoglycemic augmentation of AMPK activation in each cell group. Antecedent hypoglycemic repression of sensor activity was reversed by PRZ in GABA neurons. During RIIH, nitrergic neurons exhibited α1-AR - dependent up-regulated GLT and α2-AR profiles, while GABA cells showed down-regulated α1-AR. LC-ESI-MS analysis documented a decline in VMN Glu, Gln, and Asp concentrations during acute hypoglycemia, and habituation of the former two profiles to RIIH. PRZ attenuated glucagon and corticosterone secretion during acute hypoglycemia, but reversed decrements in output of both hormones during RIIH. Results implicate adjustments in impact of α1-AR signaling in repressed VMN metabolic-sensory AMPK activation and counter-regulatory dysfunction during RIIH. Antecedent hypoglycemia may up-regulate NO neuron energy yield via α1-AR - mediated up-regulated pyruvate recycling.
Collapse
Affiliation(s)
- Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| |
Collapse
|
17
|
Effects of Intracerebroventricular Glycogen Phosphorylase Inhibitor CP-316,819 Infusion on Hypothalamic Glycogen Content and Metabolic Neuron AMPK Activity and Neurotransmitter Expression in Male Rat. J Mol Neurosci 2020; 70:647-658. [PMID: 31925707 DOI: 10.1007/s12031-019-01471-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 12/26/2019] [Indexed: 02/03/2023]
Abstract
Brain glycogen is a vital energy source during metabolic imbalance. Metabolic sensory neurons in the ventromedial hypothalamic nucleus (VMN) shape glucose counter-regulation. Insulin-induced hypoglycemic (IIH) male rats were infused icv with the glycogen breakdown inhibitor CP-316,819 (CP) to investigate whether glycogen-derived fuel controls basal and/or hypoglycemic patterns of VMN gluco-regulatory neuron energy stability and transmitter signaling. CP caused dose-dependent amplification of basal VMN glycogen content and either mobilization (low dose) or augmentation (high dose) of this depot during IIH. Drug treatment also prevented hypoglycemic diminution of tissue glucose in multiple structures. Low CP dose caused IIH-reversible augmentation of AMPK activity and glutamate decarboxylase (GAD) protein levels in laser-microdissected VMN GABA neurons, while the higher dose abolished hypoglycemic adjustments in these profiles. VMN steroidogenic factor-1 (SF-1) neurons exhibited suppressed (low CP dose) or unchanged (high CP dose) basal SF-1 expression and AMPK refractoriness of hypoglycemia at each dose. CP caused dose-proportionate augmentation of neuronal nitric oxide synthase protein and enhancement (low dose) or diminution (high dose) of this profile during IIH; AMPK activity in these cells was decreased in high dose-pretreated IIH rats. CP exerted dose-dependent effects on basal and hypoglycemic patterns of glucagon, but not corticosterone secretion. Results verify that VMN GABA, SF-1, and nitrergic neurons are metabolic sensory in function and infer that these populations may screen unique aspects of neurometabolic instability. Correlation of VMN glycogen augmentation with attenuated hypoglycemic VMN gluco-regulatory neuron AMPK activity implies that expansion of this fuel reservoir preserves cellular energy stability during this metabolic threat.
Collapse
|
18
|
Briski KP, Mandal SK. Hindbrain metabolic deficiency regulates ventromedial hypothalamic nucleus glycogen metabolism and glucose-regulatory signaling. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Briski KP, Mandal SK. Hindbrain metabolic deficiency regulates ventromedial hypothalamic nucleus glycogen metabolism and glucose‑regulatory signaling. Acta Neurobiol Exp (Wars) 2020; 80:57-65. [PMID: 32214275 PMCID: PMC7325596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The catecholamine norepinephrine (NE) links hindbrain metabolic‑sensory neurons with downstream gluco‑regulatory loci, including the ventromedial hypothalamic nucleus (VMN). Exogenous NE up‑regulates VMN expression of glutamate decarboxylase (GAD), biomarker for the gluco‑inhibitory transmitter γ‑aminobutryic acid (GABA). Brain glycogen phosphorylase (GP)‑muscle (GPmm) and ‑brain (GPbb) variants are stimulated in vitro by NE or energy deficiency, respectively. Current research investigated whether lactoprivic‑driven VMN NE signaling regulates GABA and if VMN GPmm and GPbb profiles react differently to that deficit cue. Male rats were pretreated by caudal fourth ventricle delivery of the selective catecholamine neurotoxin 6‑hydroxydopamine (6OHDA) ahead of the monocarboxylate transporter inhibitor alpha‑cyano‑4‑hydroxycinnamic acid (4CIN). Micropunch‑dissected VMN tissue was analyzed by Western blot and ELISA to assess NE‑dependent 4CIN regulation of GAD and GP variant protein expression and NE activity. 4CIN caused 6OHDA‑reversible augmentation of VMN NE content and plasma glucose and counter‑regulatory hormone levels. 6OHDA stimulated basal VMN GAD expression, but prevented 4CIN stimulation of this profile. Neurotoxin inhibited or increased baseline VMN GPmm and GPbb levels, respectively, in non‑4CIN‑injected rats. 6OHDA deterred 4CIN inhibition of GPmm, but did not prevent drug stimulation of GPbb. Results affirm hindbrain lactoprivic regulation of glucostasis. Hindbrain NE exerts opposite effects on VMN GABA transmission during hindbrain lactostasis vs. ‑privation. VMN norepinephrine‑ vs. energy‑sensitive GP variants are subject to dissimilar NE regulation during energy homeostasis, and respond differently to hindbrain lactoprivation.
Collapse
Affiliation(s)
- Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, United States;
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, United States
| |
Collapse
|
20
|
Uddin MM, Mahmood ASMH, Ibrahim MMH, Briski KP. Sex-dimorphic estrogen receptor regulation of ventromedial hypothalamic nucleus glucoregulatory neuron adrenergic receptor expression in hypoglycemic male and female rats. Brain Res 2019; 1720:146311. [PMID: 31265816 PMCID: PMC6702034 DOI: 10.1016/j.brainres.2019.146311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/15/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
The ventromedial hypothalamic nucleus (VMN) is a vital component of the neural circuitry that regulates glucostasis. Norepinephrine (NE) controls VMN gluco-inhibitory γ-aminobutyric acid (GABA) and gluco-stimulatory nitric oxide (NO) transmission. Sex-specific insulin-induced hypoglycemic (IIH) patterns of VMN GABA signaling are estrogen receptor-alpha (ERα)- and -beta (ERβ)-dependent. Current research utilized combinatory immunocytochemistry, laser-microdissection, and Western blot techniques in a pharmacological approach to address the hypothesis that ERα and/or -β mediate sex-dimorphic VMN GABAergic and/or nitrergic nerve cell receptivity to NE and estradiol during IIH. The impact of these ER on expression of the pyruvate recycling pathway marker proteins glutaminase (GLS) and malic enzyme-1 (ME-1) was also examined. Both VMN neuron populations express ERα, ERβ, and G protein-coupled estrogen receptor-1 (GPER), along with alpha1, alpha2, and beta1 adrenergic receptor (AR) proteins. NO neurons exhibited ERα/β-dependent (beta1 AR, GPER) and -independent (alpha1 AR) sex differences in receptor protein responses to hypoglycemia. Similarly, sex-dimorphic effects of IIH on alpha1 AR, alpha2 AR, and ERα profiles in GABA neurons involve ERα/β. These ERs also underlie divergent adjustments in gluco-regulatory nerve cell GLS and ME-1 protein expression in hypoglycemic males and females. Sex-specific nitrergic and GABAergic nerve cell sensitivity to NE and E, respectively, during IIH may contribute to sex-contingent patterns of neurotransmitter signaling.
Collapse
Affiliation(s)
- M Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
21
|
Briski KP, Mandal SK. Hindbrain lactoprivic regulation of hypothalamic neuron transactivation and gluco-regulatory neurotransmitter expression: Impact of antecedent insulin-induced hypoglycemia. Neuropeptides 2019; 77:101962. [PMID: 31488323 PMCID: PMC6756167 DOI: 10.1016/j.npep.2019.101962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Hindbrain energy state shapes hypothalamic control of glucostasis. Dorsal vagal complex (DVC) L-lactate deficiency is a potent glucose-stimulatory signal that triggers neuronal transcriptional activation in key hypothalamic metabolic loci. The energy gauge AMPK is activated in DVC metabolic-sensory A2 noradrenergic neurons by hypoglycemia-associated lactoprivation, but sensor reactivity is diminished by antecedent hypoglycemia (AH). Current research addressed the premise that AH alters hindbrain lactoprivic regulation of hypothalamic metabolic transmitter function. AH did not modify reductions in A2 dopamine-beta-hydroxylase and monocarboxylate-2 (MCT2) protein expression elicited by caudal fourth ventricular delivery of the MCT inhibitor alpha-cyano-4-hydroxycinnamic acid (4CIN), but attenuated 4CIN activation of A2 AMPK. 4CIN constraint of hypothalamic norepinephrine (NE) activity was averted by AH in a site-specific manner. 4CIN induction of Fos immunolabeling in hypothalamic arcuate (ARH), ventromedial (VMN), dorsomedial (DMN) and paraventricular (PVN) nuclei and lateral hypothalamic area (LHA) was avoided by AH. AH affected reactivity of select hypothalamic metabolic neurotransmitter/enzyme marker proteins, e.g. ARH neuropeptide Y, VMN glutamate decarboxylase, DMN RFamide-related peptide-1 and -3, and LHA orexin-A profiles to 4CIN, but did not alleviate drug inhibition of ARH proopiomelanocortin. AH prevented 4CIN augmentation of circulating glucagon, but did not alter hyperglycemic or hypocorticosteronemic responses to that treatment. Results identify hindbrain lactate deficiency as a stimulus for glucagon secretion, and imply that habituation of this critical counter-regulatory hormone to recurring hypoglycemia may involve one or more hypothalamic neurotransmitters characterized here by acclimation to this critical sensory stimulus.
Collapse
Affiliation(s)
- Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States of America.
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States of America
| |
Collapse
|
22
|
Ali MH, Napit PR, Mahmood ASMH, Bheemanapally K, Alhamami HN, Uddin MM, Mandal SK, Ibrahim MMH, Briski KP. Hindbrain estrogen receptor regulation of ventromedial hypothalamic glycogen metabolism and glucoregulatory transmitter expression in the hypoglycemic male rat. Neuroscience 2019; 409:253-260. [PMID: 30954669 DOI: 10.1016/j.neuroscience.2019.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
Abstract
Estrogen receptor-alpha (ERα) and -beta (ERβ) occur in key elements of the brain gluco-homeostatic network in both sexes, including the hindbrain dorsal vagal complex (DVC), but the influence of distinct receptor populations on this critical function is unclear. The ventromedial hypothalamic nucleus (VMN) maintains glucose balance by integrating nutrient, endocrine, and neurochemical cues, including metabolic sensory information supplied by DVC A2 noradrenergic neurons. Current research utilized the selective ERα and ERβ antagonists MPP and PHTPP to characterize effects of DVC ERs on VMN norepinephrine (NE) activity and metabolic neurotransmitter signaling in insulin-induced hypoglycemic (IIH) male rats. Data show that ERβ inhibits VMN glycogen synthase and stimulates phosphorylase protein expression, while attenuating hypoglycemic augmentation of glycogen content. Furthermore, both ERs attenuate VMN glucose concentrations during IIH. Hypoglycemic up-regulation of nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) signaling was correspondingly driven by ERα or -β, whereas GABA and steroidogenic factor-1 were respectively suppressed independently of ER input or by ERβ. IIH intensified VMN NE accumulation by ERβ-dependent mechanisms, but did not alter NE levels in other gluco-regulatory loci. ERβ amplified the magnitude of insulin-induced decline in blood glucose. Both ERs regulate corticosterone, but not glucagon secretion during IIH and oppose hypoglycemic diminution of circulating free fatty acids. These findings identify distinguishing versus common VMN functions targeted by DVC ERα and -β. Sex differences in hypoglycemic VMN NE accumulation, glycogen metabolism, and transmitter signaling may involve, in part, discrepant regulatory involvement or differential magnitude of impact of these hindbrain ERs.
Collapse
Affiliation(s)
- Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Hussain N Alhamami
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Md Main Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
23
|
Hasan Mahmood ASM, Mandal SK, Bheemanapally K, Ibrahim MMH, Briski KP. Norepinephrine control of ventromedial hypothalamic nucleus glucoregulatory neurotransmitter expression in the female rat: Role of monocarboxylate transporter function. Mol Cell Neurosci 2019; 95:51-58. [PMID: 30660767 PMCID: PMC6472905 DOI: 10.1016/j.mcn.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
The ventromedial hypothalamic nucleus (VMN) is a critical component of the neural circuitry that regulates glucostasis. Astrocyte glycogen is a vital reserve of glucose and its oxidizable metabolite L-lactate. In hypoglycemic female rats, estradiol-dependent augmentation of VMN glycogen phosphorylase (GP) protein requires hindbrain catecholamine input. Research here investigated the premise that norepinephrine (NE) regulation of VMN astrocyte metabolism shapes local glucoregulatory neurotransmitter signaling in this sex. Estradiol-implanted ovariectomized rats were pretreated by intra-VMN administration of the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxy-cinnamic acid (4CIN) or vehicle before NE delivery to that site. NE caused 4CIN-reversible reduction or augmentation of VMN glycogen synthase and phosphorylase expression. 4CIN prevented NE stimulation of gluco-inhibitory (glutamate decarboxylase65/67) and suppression of gluco-stimulatory (neuronal nitric oxide synthase) neuron marker proteins. These outcomes imply that effects of noradrenergic stimulation of VMN astrocyte glycogen depletion on glucoregulatory transmitter signaling may be mediated, in part, by glycogen-derived substrate fuel provision. NE control of astrocyte glycogen metabolism may involve down-regulated adrenoreceptor (AR), e.g. alpha1 and alpha2, alongside amplified beta1 AR and estrogen receptor-beta signaling. Noradrenergic hypoglycemia was refractory to 4CIN, implying that additional NE-sensitive VMN glucoregulatory neurochemicals may be insensitive to monocarboxylate uptake. Augmentation of circulating free fatty acids by combinatory NE and 4CIN, but not NE alone implies that acute hypoglycemia induced here is an insufficient stimulus for mobilization of these fuels, but is adequate when paired with diminished brain monocarboxylate fuel availability.
Collapse
Affiliation(s)
- A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
24
|
Ibrahim MMH, Alhamami HN, Briski KP. Norepinephrine regulation of ventromedial hypothalamic nucleus metabolic transmitter biomarker and astrocyte enzyme and receptor expression: Impact of 5' AMP-activated protein kinase. Brain Res 2019; 1711:48-57. [PMID: 30629946 DOI: 10.1016/j.brainres.2019.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/12/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022]
Abstract
The ventromedial hypothalamic energy sensor AMP-activated protein kinase (AMPK) maintains glucostasis via neurotransmitter signals that diminish [γ-aminobutyric acid] or enhance [nitric oxide] counter-regulation. Ventromedial hypothalamic nucleus (VMN) 'fuel-inhibited' neurons are sensitive to astrocyte-generated metabolic substrate stream. Norepinephrine (NE) regulates astrocyte glycogen metabolism in vitro, and hypoglycemia intensifies VMN NE activity in vivo. Current research investigated the premise that NE elicits AMPK-dependent adjustments in VMN astrocyte glycogen metabolic enzyme [glycogen synthase (GS); glycogen phosphorylase (GP)] and gluco-regulatory neuron biomarker [glutamate decarboxylase65/67 (GAD); neuronal nitric oxide synthase (nNOS); SF-1] protein expression in male rats. We also examined whether VMN astrocytes are directly receptive to NE and if noradrenergic input regulates cellular sensitivity to the neuro-protective steroid estradiol. Intra-VMN NE correspondingly augmented or reduced VMN tissue GAD and nNOS protein despite no change in circulating glucose, data that imply that short-term exposure to NE promotes persistent improvement in VMN nerve cell energy stability. The AMPK inhibitor Compound C (Cc) normalized VMN nNOS, GS, and GP expression in NE-treated animals. NE caused AMPK-independent down-regulation of alpha2-, alongside Cc-reversible augmentation of beta1-adrenergic receptor protein profiles in laser-microdissected astrocytes. NE elicited divergent adjustments in astrocyte estrogen receptor-beta (AMPK-unrelated reduction) and GPR-30 (Cc-revocable increase) proteins. Outcomes implicate AMPK in noradrenergic diminution of VMN nitrergic metabolic-deficit signaling and astrocyte glycogen shunt activity. Differentiating NE effects on VMN astrocyte adrenergic and estrogen receptor variant expression suggest that noradrenergic regulation of glycogen metabolism may be mediated, in part, by one or more receptors characterized here by sensitivity to this catecholamine.
Collapse
Affiliation(s)
- Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Hussain N Alhamami
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
25
|
Briski KP, Shakya M. Mu Opioid Receptor Regulation of Gonadotropin-Releasing Hormone-Luteinizing Hormone Axis during Short-Term Food Deprivation: Role of Alpha1-Adrenoreceptor Signaling. NEURO ENDOCRINOLOGY LETTERS 2018; 39:363-370. [PMID: 30664341 PMCID: PMC7506469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVES Brain bio-energetic stability is required for optimal gonadal steroid positive-feedback activation of the gonadotropin-releasing hormone-I (GnRH-I)-pituitary luteinizing hormone (LH) neuroendocrine axis. Caudal hindbrain metabolic-sensory noradrenergic neurons counter energy deficiency by curtailing the mid-cycle LH surge. Central mu opioid receptors (mu-R) impose inhibitory effects of diverse physiological stimuli, including stress, on LH. DESIGN/MATERIAL AND METHODS To address the premise that mu-R attenuate the LH surge due to metabolic stress of food deprivation (FD), this study examined impacts of lateral ventricular administration of the selective mu-R antagonist CTOP on FD-associated patterns of GnRH-I protein expression and LH release in estradiol-primed ovariectomized female rats. RESULTS FD caused CTOP-reversible reductions in circulating LH and in micropunch-dissected neural tissue GnRH-I and upstream neurotransmitter (kisspeptin)/biosynthetic enzyme (neuronal nitric oxide synthase) protein content. FD up-regulated mu-R protein expression in reproduction-relevant preoptic structures, e.g. anteroventral periventricular (AVPV) and medial preoptic (MPN) nuclei, responses that were abolished by the alpha1-adrenergic receptor (α1A-R) inverse agonist prazosin. CONCLUSIONS Current data implicate mu-R in FD attenuation of the E positive-feedback - induced LH surge. Results imply that FD-triggered noradrenergic input to the GnRH-I/LH axis acts in part to enhance reproductive neuroendocrine sensitivity to mu-R inhibition. Further studies are needed to characterize the neurochemical phenotype of AVPV and MPN neurons that express α1A- and/or mu-R, and to determine how these cells are organized within regulatory pathways to impose FD restraint of GnRH-1.
Collapse
Affiliation(s)
- Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Manita Shakya
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
26
|
Hasan Mahmood ASM, Uddin MM, Ibrahim MMH, Mandal SK, Alhamami HN, Briski KP. Sex differences in forebrain estrogen receptor regulation of hypoglycemic patterns of counter-regulatory hormone secretion and ventromedial hypothalamic nucleus glucoregulatory neurotransmitter and astrocyte glycogen metabolic enzyme expression. Neuropeptides 2018; 72:65-74. [PMID: 30396594 PMCID: PMC6293983 DOI: 10.1016/j.npep.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The female ventromedial hypothalamic nucleus (VMN) is a focal substrate for estradiol (E) regulation of energy balance, feeding, and body weight, but how E shapes VMN gluco-regulatory signaling in each sex is unclear. This study investigated the hypothesis that estrogen receptor-alpha (ERα) and/or -beta (ERβ) control VMN signals that inhibit [γ-aminobutyric acid] or stimulate [nitric oxide, steroidogenic factor-1 (SF-1)] counter-regulation in a sex-dependent manner. VMN nitrergic neurons monitor astrocyte fuel provision; here, we examined how these ER regulate astrocyte glycogen metabolic enzyme, monocarboxylate transporter, and adrenoreceptor protein responses to insulin-induced hypoglycemia (IIH) in each sex. Testes-intact male and E-replaced ovariectomized female rats were pretreated by intracerebroventricular ERα antagonist (MPP) or ERβ antagonist (PHTPP) administration before IIH. Data implicate both ER in hypoglycemic inhibition of neuronal nitric oxide synthase protein in each sex and up-regulation of glutamate decarboxylase65/67 and SF-1 expression in females. ERα and -β enhance astrocyte AMPK and glycogen synthase expression and inhibit glycogen phosphorylase in hypoglycemic females, while ERβ suppresses the same proteins in males. Differential VMN astrocyte protein responses to IIH may partially reflect ERα and -β augmentation of ERβ and down-regulation of alpha1, alpha2, and beta1 adrenoreceptor proteins in females, versus ERβ repression of GPER and alpha2 adrenoreceptor profiles in males. MPP or PHTPP pretreatment blunted counter-regulatory hormone secretion in hypoglycemic males only, suggesting that in males one or more VMN neurotransmitters exhibiting sensitivity to forebrain ER may passively regulate this endocrine outflow, whereas female forebrain ERα and -β are apparently uninvolved in these contra-regulatory responses.
Collapse
Affiliation(s)
- A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - M M Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - M M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - S K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - H N Alhamami
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - K P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 356 Bienville Building, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
27
|
Mandal SK, Briski KP. Hindbrain dorsal vagal complex AMPK controls hypothalamic gluco-regulatory transmitter and counter-regulatory hormone responses to hypoglycemia. Brain Res Bull 2018; 144:171-179. [PMID: 30481553 DOI: 10.1016/j.brainresbull.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/24/2018] [Accepted: 11/22/2018] [Indexed: 12/26/2022]
Abstract
Pharmacologic activation of the hindbrain dorsal vagal complex energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) causes site-specific adjustments in hypothalamic AMPK activity. DVC A2 noradrenergic neurons are a likely source of metabolo-sensory cues to downstream network components as they express substrate fuel-sensitive AMPK. This study investigated the hypothesis that DVC AMPK controls hypothalamic sensor, metabolic effector transmitter, and counter-regulatory hormone responses to insulin-induced hypoglycemia. Male rats were injected into the caudal fourth ventricle with the AMPK inhibitor compound C (Ccor vehicle before hypoglycemia. Arcuate (ARH), ventromedial (VMN), and dorsomedial (DMN) nuclei and lateral hypothalamic area (LHA) were micropunch-dissected for norepinephrine ELISA and Western blot analyses. Hypoglycemic stimulation of norepinephrine activity in each site was impeded by compound C. Hypoglycemia caused drug-revocable (ARH) or -refractory (VMN, DMN) reductions in AMPK, alongside hindbrain AMPK-dependent augmentation of phospho-AMPK expression in each location. Compound C prevented hypoglycemic augmentation of gluco-stimulatory ARH neuropeptide Y, VMN neuronal nitric oxide synthase, and LHA orexin-A expression, while hypoglycemic suppression of the catabolic neuron protein markers ARH pro-opiomelanocortin and VMN glutamate decarboxylase65/67 was respectively averted or unaffected by drug treatment. DMN RFamide-related peptide-1 and -3 profiles were correspondingly amplified or suppressed hindbrain AMPK-reliant mechanisms during hypoglycemia. Results show that DVC AMPK is required for hypoglycemic intensification of norepinephrine activity in characterized hypothalamic gluco-regulatory structures, and that this sensor regulates AMPK activation and metabolic effector transmission in those sites.
Collapse
Affiliation(s)
- Santosh K Mandal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, 71201, United States.
| |
Collapse
|