1
|
Yang J, Yan FF, Wang T, Wang Z, Ma Q, Xiao J, Yang X, Lu ZL, Huang CB. Anterograde interference in multitask perceptual learning. NPJ SCIENCE OF LEARNING 2025; 10:23. [PMID: 40346059 PMCID: PMC12064804 DOI: 10.1038/s41539-025-00312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/09/2025] [Indexed: 05/11/2025]
Abstract
Learning to perform multiple tasks robustly is a crucial facet of human intelligence, yet its mechanisms remain elusive. Here, we formulated four hypotheses concerning task interactions and investigated them by analyzing training sequence effects through a continual learning framework. Forty-nine subjects learned seven tasks sequentially, each of the seven groups following a distinct sequence. Results showed that subjects learning a task later in a sequence exhibited poorer performance in six tasks (Contrast, Vernier, Face, Motion, Auditory, and N-back tasks, except for the Shape task) compared to those who learned this task earlier. Interestingly, sequence position had minimal impact on forgetting. A complementary dual-task experiment corroborated these findings. Through detailed analyses of session and block learning curves, we revealed task-specific anterograde interference, but no retrograde interference. These findings support the integrated reweighting theory and shed light on the meta-plasticity mechanism governing how human brain balances plasticity and stability.
Collapse
Affiliation(s)
- Jia Yang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fang-Fang Yan
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zile Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qingshang Ma
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jinmei Xiao
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xianyuan Yang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Lin Lu
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China.
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA.
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
| | - Chang-Bing Huang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Wirtshafter HS, Solla SA, Disterhoft JF. A universal hippocampal memory code across animals and environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620127. [PMID: 39484538 PMCID: PMC11527332 DOI: 10.1101/2024.10.24.620127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
How learning is affected by context is a fundamental question of neuroscience, as the ability to generalize learning to different contexts is necessary for navigating the world. An example of swift contextual generalization is observed in conditioning tasks, where performance is quickly generalized from one context to another. A key question in identifying the neural substrate underlying this ability is how the hippocampus (HPC) represents task-related stimuli across different environments, given that HPC cells exhibit place-specific activity that changes across contexts (remapping). In this study, we used calcium imaging to monitor hippocampal neuron activity as rats performed a conditioning task across multiple spatial contexts. We investigated whether hippocampal cells, which encode both spatial locations (place cells) and task-related information, could maintain their task representation even when their spatial encoding remapped in a new spatial context. To assess the consistency of task representations, we used advanced dimensionality reduction techniques combined with machine learning to develop manifold representations of population level HPC activity. The results showed that task-related neural representations remained stable even as place cell representations of spatial context changed, thus demonstrating similar embedding geometries of neural representations of the task across different spatial contexts. Notably, these patterns were not only consistent within the same animal across different contexts but also significantly similar across different animals, suggesting a standardized neural encoding or 'neural syntax' in the hippocampus. These findings bridge a critical gap between memory and navigation research, revealing how the hippocampus maintains cognitive consistency across different spatial environments. These findings also suggest that hippocampal function is governed by a neural framework shared between animals, an observation that may have broad implications for understanding memory, learning, and related cognitive processes. Looking ahead, this work opens new avenues for exploring the fundamental principles underlying hippocampal encoding strategies.
Collapse
Affiliation(s)
- Hannah S Wirtshafter
- Department of Neuroscience, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - Sara A Solla
- Department of Neuroscience, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - John F Disterhoft
- Department of Neuroscience, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Cook SW, Wernette EMD, Valentine M, Aldugom M, Pruner T, Fenn KM. How Prior Knowledge, Gesture Instruction, and Interference After Instruction Interact to Influence Learning of Mathematical Equivalence. Cogn Sci 2024; 48:e13412. [PMID: 38402447 DOI: 10.1111/cogs.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/26/2024]
Abstract
Although children learn more when teachers gesture, it is not clear how gesture supports learning. Here, we sought to investigate the nature of the memory processes that underlie the observed benefits of gesture on lasting learning. We hypothesized that instruction with gesture might create memory representations that are particularly resistant to interference. We investigated this possibility in a classroom study with 402 second- and third-grade children. Participants received classroom-level instruction in mathematical equivalence using videos with or without accompanying gesture. After instruction, children solved problems that were either visually similar to the problems that were taught, and consistent with an operational interpretation of the equal sign (interference), or visually distinct from equivalence problems and without an equal sign (control) in order to assess the role of gesture in resisting interference after learning. Gesture facilitated learning, but the effects of gesture and interference varied depending on type of problem being solved and the strategies that children used to solve problems prior to instruction. Some children benefitted from gesture, while others did not. These findings have implications for understanding the mechanisms underlying the beneficial effect of gesture on mathematical learning, revealing that gesture does not work via a general mechanism like enhancing attention or engagement that would apply to children with all forms of prior knowledge.
Collapse
Affiliation(s)
| | | | | | - Mary Aldugom
- Department of Psychological and Brain Sciences, University of Iowa
| | - Todd Pruner
- Department of Psychological and Brain Sciences, University of Iowa
| | | |
Collapse
|
4
|
Zaltz Y. The Impact of Trained Conditions on the Generalization of Learning Gains Following Voice Discrimination Training. Trends Hear 2024; 28:23312165241275895. [PMID: 39212078 PMCID: PMC11367600 DOI: 10.1177/23312165241275895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Auditory training can lead to notable enhancements in specific tasks, but whether these improvements generalize to untrained tasks like speech-in-noise (SIN) recognition remains uncertain. This study examined how training conditions affect generalization. Fifty-five young adults were divided into "Trained-in-Quiet" (n = 15), "Trained-in-Noise" (n = 20), and "Control" (n = 20) groups. Participants completed two sessions. The first session involved an assessment of SIN recognition and voice discrimination (VD) with word or sentence stimuli, employing combined fundamental frequency (F0) + formant frequencies voice cues. Subsequently, only the trained groups proceeded to an interleaved training phase, encompassing six VD blocks with sentence stimuli, utilizing either F0-only or formant-only cues. The second session replicated the interleaved training for the trained groups, followed by a second assessment conducted by all three groups, identical to the first session. Results showed significant improvements in the trained task regardless of training conditions. However, VD training with a single cue did not enhance VD with both cues beyond control group improvements, suggesting limited generalization. Notably, the Trained-in-Noise group exhibited the most significant SIN recognition improvements posttraining, implying generalization across tasks that share similar acoustic conditions. Overall, findings suggest training conditions impact generalization by influencing processing levels associated with the trained task. Training in noisy conditions may prompt higher auditory and/or cognitive processing than training in quiet, potentially extending skills to tasks involving challenging listening conditions, such as SIN recognition. These insights hold significant theoretical and clinical implications, potentially advancing the development of effective auditory training protocols.
Collapse
Affiliation(s)
- Yael Zaltz
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Valois R, Tojal C, Barros H, Costa R. Perinatal and social risk of poor language, memory, and learning outcomes in a cohort of extremely and very preterm children. Child Neuropsychol 2023; 29:906-921. [PMID: 36343685 DOI: 10.1080/09297049.2022.2138845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Children born extremely preterm (EPT) or very preterm (VPT) are at risk of neurodevelopmental impairment. How the interaction between biological and social risk factors affects cognitive development has not yet been completely understood. The objectives of this study are to analyze and compare the language, memory, and learning outcomes of five-year-old children born EPT (<28 weeks' gestational age) and VPT (28-31+6 weeks' gestational age) and to determine the risk of having poor outcomes attending to perinatal and maternal characteristics. The analysis included 377 children born VPT (n = 284) and EPT (n = 93) in 2011-2012. Maternal, neonatal, and clinical information was obtained at birth, and maternal education was obtained at five years using a parental questionnaire. At five years, the language, memory, and learning outcomes were assessed with the developmental NEuroPSYchological assessment second edition (NEPSY-II®). Logistic regression models were applied to assess the association of biological and social risk factors with performance below the expected level for the child's age in language, memory, and learning subtests. Lower maternal age and education increased the odds of having language performance below the expected level for the child's age, while lower maternal educational level and gestational age increased the likelihood of having memory performance below the expected level. Children living in the most social disadvantage contexts are at a higher risk of suboptimal cognitive development. Implementing intervention programs in disadvantaged contexts and targeting specific cognitive domains may enable EPT and VPT children to reach and fulfill their potential in society.
Collapse
Affiliation(s)
- Rachel Valois
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Matosinhos Public Health Unit, Matosinhos Local Health Unit, Matosinhos, Portugal
| | - Catarina Tojal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Henrique Barros
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Public Health and Forensic Sciences, and Medical Education Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Raquel Costa
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- HEI-Lab: Digital Human-Environment Interactions Lab, Lusofona University, Lisbon, Portugal
| |
Collapse
|
6
|
Huang Z, Niu Z, Li S. Reactivation-induced memory integration prevents proactive interference in perceptual learning. J Vis 2023; 23:1. [PMID: 37129883 PMCID: PMC10158987 DOI: 10.1167/jov.23.5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
We acquire perceptual skills through experience to adapt ourselves to the changing environment. Accomplishing an effective skill acquisition is a main purpose of perceptual learning research. Given the often observed learning effect specificity, multiple perceptual learnings with shared parameters could serve to improve the generalization of the learning effect. However, the interference between the overlapping memory traces of different learnings may impede this effort. Here, we trained human participants on an orientation discrimination task. We observed a proactive interference effect that the first training blocked the second training at its untrained location. This was a more pronounced effect than the well-known location specificity in perceptual learning. We introduced a short reactivation of the first training before the second training and successfully eliminated the proactive interference when the second training was inside the reconsolidation time window of the reactivated first training. Interestingly, we found that practicing an irrelevant task at the location of the second training immediately after the reactivation of the first training could also restore the effect of the second training but in a smaller magnitude, even if the second training was conducted outside of the reconsolidation window. We proposed a two-level mechanism of reactivation-induced memory integration to account for these results. The reactivation-based procedure could integrate either the previously trained and untrained locations or the two trainings at these locations, depending on the activated representations during the reconsolidation process. The findings provide us with new insight into the roles of long-term memory mechanisms in perceptual learning.
Collapse
Affiliation(s)
- Zhibang Huang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| | - Zhimei Niu
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Sheng Li
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| |
Collapse
|
7
|
Herszage J, Bönstrup M, Cohen LG, Censor N. Reactivation-induced motor skill modulation does not operate at a rapid micro-timescale level. Sci Rep 2023; 13:2930. [PMID: 36808164 PMCID: PMC9941091 DOI: 10.1038/s41598-023-29963-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Abundant evidence shows that consolidated memories are susceptible to modifications following their reactivation. Processes of memory consolidation and reactivation-induced skill modulation have been commonly documented after hours or days. Motivated by studies showing rapid consolidation in early stages of motor skill acquisition, here we asked whether motor skill memories are susceptible to modifications following brief reactivations, even at initial stages of learning. In a set of experiments, we collected crowdsourced online motor sequence data to test whether post-encoding interference and performance enhancement occur following brief reactivations in early stages of learning. Results indicate that memories forming during early learning are not susceptible to interference nor to enhancement within a rapid reactivation-induced time window, relative to control conditions. This set of evidence suggests that reactivation-induced motor skill memory modulation might be dependent on consolidation at the macro-timescale level, requiring hours or days to occur.
Collapse
Affiliation(s)
- Jasmine Herszage
- grid.12136.370000 0004 1937 0546School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978 Tel Aviv, Israel
| | - Marlene Bönstrup
- grid.9647.c0000 0004 7669 9786Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Leonardo G. Cohen
- grid.416870.c0000 0001 2177 357XHuman Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978, Tel Aviv, Israel.
| |
Collapse
|
8
|
Heinbockel H, W.E.M. Quaedflieg C, Wacker J, Schwabe L. Spatio-temporal theta pattern dissimilarity in the right centro-parietal area during memory generalization. Brain Cogn 2022; 164:105926. [DOI: 10.1016/j.bandc.2022.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
|
9
|
The Role of the Adenosine System on Emotional and Cognitive Disturbances Induced by Ethanol Binge Drinking in the Immature Brain and the Beneficial Effects of Caffeine. Pharmaceuticals (Basel) 2022; 15:ph15111323. [DOI: 10.3390/ph15111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure’s hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.
Collapse
|
10
|
Schrift G, Dotan D, Censor N. Brief memory reactivations induce learning in the numeric domain. NPJ SCIENCE OF LEARNING 2022; 7:18. [PMID: 35977983 PMCID: PMC9385657 DOI: 10.1038/s41539-022-00136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Learning of arithmetic facts such as the multiplication table requires time-consuming, repeated practice. In light of evidence indicating that reactivation of encoded memories can modulate learning and memory processes at the synaptic, system and behavioral levels, we asked whether brief memory reactivations can induce human learning in the numeric domain. Adult participants performed a number-fact retrieval task in which they learned arbitrary numeric facts. Following encoding and a baseline test, 3 passive, brief reactivation sessions of only 40 s each were conducted on separate days. Learning was evaluated in a retest session. Results showed reactivations induced learning, with improved performance at retest relative to baseline test. Furthermore, performance was superior compared to a control group performing test-retest sessions without reactivations, who showed significant memory deterioration. A standard practice group completed active-retrieval sessions on 3 separate days, and showed significant learning gains. Interestingly, while these gains were higher than those of the reactivations group, subjects showing reactivation-induced learning were characterized by superior efficiency relative to standard practice subjects, with higher rate of improvement per practice time. A follow-up long-term retention experiment showed that 30 days following initial practice, weekly brief reactivations reduced forgetting, with participants performing superior to controls undergoing the same initial practice without reactivations. Overall, the results demonstrate that brief passive reactivations induce efficient learning and reduce forgetting within a numerical context. Time-efficient practice in the numeric domain carries implications for enhancement of learning strategies in daily-life settings.
Collapse
Affiliation(s)
- Gilad Schrift
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Dotan
- School of Education and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
11
|
Simple contextual cueing prevents retroactive interference in short-term perceptual training of orientation detection tasks. Atten Percept Psychophys 2022; 84:2540-2551. [PMID: 35676554 DOI: 10.3758/s13414-022-02520-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Perceptual training of multiple tasks suffers from interference between the trained tasks. Here, we conducted five psychophysical experiments with separate groups of participants to investigate the possibility of preventing the interference in short-term perceptual training. We trained the participants to detect two orientations of Gabor stimuli in two adjacent days at the same retinal location and examined the interference of training effects between the two orientations. The results showed significant retroactive interference from the second orientation to the first orientation (Experiment 1 and Experiment 2). Introducing a 6-h interval between the pre-test and training of the second orientation did not eliminate the interference effect, excluding the interpretation of disrupted reconsolidation as the pre-test of the second orientation may reactivate and destabilize the representation of the first orientation (Experiment 3). Finally, the training of the two orientations was accompanied by fixations in two colors, each serving as a contextual cue for one orientation. The results showed that the retroactive interference was not evident if the participants passively perceived contextual cues during the training and test sessions (Experiment 4). Importantly, this facilitation effect could be observed if the contextual cues appeared only during the training, demonstrating the robustness of the effect (Experiment 5). Our findings suggest that the retroactive interference effect in short-term perceptual training of orientation detection tasks was likely the result of higher-level factors such as shared contextual cues embedded in the tasks. The efficiency of multiple perceptual trainings could be facilitated by associating the trained tasks with different contextual cues.
Collapse
|
12
|
Mu R, Tang S, Han X, Wang H, Yuan D, Zhao J, Long Y, Hong H. A cholinergic medial septum input to medial habenula mediates generalization formation and extinction of visual aversion. Cell Rep 2022; 39:110882. [PMID: 35649349 DOI: 10.1016/j.celrep.2022.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/07/2021] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomeng Han
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
13
|
Hamel R, Lepage JF, Bernier PM. Anterograde interference emerges along a gradient as a function of task similarity: A behavioural study. Eur J Neurosci 2021; 55:49-66. [PMID: 34894023 PMCID: PMC9299670 DOI: 10.1111/ejn.15561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Anterograde interference emerges when two opposite (B → A) or identical tasks (A → A) are learned in close temporal succession, suggesting that interference cannot be fully accounted for by competing memories. Informed by neurobiological evidence, this work tested the hypothesis that interference depends upon the degree of overlap between the neural networks involved in the learning of two tasks. In a fully within‐subject and counterbalanced design, participants (n = 24) took part in two learning sessions where the putative overlap between learning‐specific neural networks was behaviourally manipulated across four conditions by modifying reach direction and the effector used during gradual visuomotor adaptation. The results showed that anterograde interference emerged regardless of memory competition—that is, to a similar extent in the B → A and A → A conditions—and along a gradient as a function of the tasks' similarity. Specifically, learning under similar reaching conditions generated more anterograde interference than learning under dissimilar reaching conditions, suggesting that putatively overlapping neural networks are required to generate interference. Overall, these results indicate that competing memories are not the sole contributor to anterograde interference and suggest that overlapping neural networks between two learning sessions are required to trigger interference. One discussed possibility is that initial learning modifies the properties of its neural networks to constrain further plasticity induction and learning capabilities, therefore causing anterograde interference in a network‐dependent manner. One implication is that learning‐specific neural networks must be maximally dissociated to minimize the interfering influences of previous learning on subsequent learning.
Collapse
Affiliation(s)
- Raphaël Hamel
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Michel Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Wittkuhn L, Chien S, Hall-McMaster S, Schuck NW. Replay in minds and machines. Neurosci Biobehav Rev 2021; 129:367-388. [PMID: 34371078 DOI: 10.1016/j.neubiorev.2021.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022]
Abstract
Experience-related brain activity patterns reactivate during sleep, wakeful rest, and brief pauses from active behavior. In parallel, machine learning research has found that experience replay can lead to substantial performance improvements in artificial agents. Together, these lines of research suggest replay has a variety of computational benefits for decision-making and learning. Here, we provide an overview of putative computational functions of replay as suggested by machine learning and neuroscientific research. We show that replay can lead to faster learning, less forgetting, reorganization or augmentation of experiences, and support planning and generalization. In addition, we highlight the benefits of reactivating abstracted internal representations rather than veridical memories, and discuss how replay could provide a mechanism to build internal representations that improve learning and decision-making.
Collapse
Affiliation(s)
- Lennart Wittkuhn
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany.
| | - Samson Chien
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany
| | - Sam Hall-McMaster
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, D-14195 Berlin, Germany.
| |
Collapse
|
15
|
Zaltz Y, Kishon-Rabin L, Karni A, Ari-Even Roth D. Practice Makes Transfer Imperfect: Evidence From Auditory Learning. Ear Hear 2021; 41:1470-1482. [PMID: 33136624 DOI: 10.1097/aud.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Evidence from motor and visual studies suggests that the ability to generalize learning gains to untrained conditions decreases as the training progresses. This decrease in generalization was suggested to reflect a shift from higher to lower levels of neuronal representations of the task following prolonged training. In the auditory modality, however, the few studies that tested the influence of prolonging training on generalization ability showed no decrease and sometimes even an increase in generalization. OBJECTIVE To test the impact of extending training in a basic psychoacoustic task on the ability to generalize the gains attained in training to untrained conditions. DESIGN Eighty-two young adults participated in two experiments that differed in the specific training regimen. In both experiments, training was conducted using a difference limen for frequency (DLF) task with an adaptive forced-choice procedure, for either a single- or nine-session training. Following training, generalization to the untrained ear and to an untrained frequency was assessed. RESULTS (a) Training induced significant learning (i.e., smaller DLF thresholds) following a single session of training, and more so following nine training sessions; (b) results from the combined data from both experiments showed that the ability to generalize the learning gains to the untrained ear and frequency was limited after the extended DLF training; (c) larger improvements under the trained condition resulted in smaller generalization to the untrained conditions. CONCLUSIONS The findings of increased specificity with training in the auditory modality support the notion that gradual changes, both quantitative and qualitative, occur in the neural representations of an auditory task during its acquisition. These findings suggest common underlying mechanisms in basic skill learning across different modalities.
Collapse
Affiliation(s)
- Yael Zaltz
- The Department of Communication Disorders, Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Liat Kishon-Rabin
- The Department of Communication Disorders, Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Avi Karni
- The Sagol Department of Neurobiology, Faculty of Natural Sciences and The E.J. Safra Brain Research Center for the Study of Learning and Learning Disabilities, Faculty of Education, University of Haifa, Israel
- Division of Diagnostic Radiology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Daphne Ari-Even Roth
- The Department of Communication Disorders, Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
16
|
Herz N, Bar-Haim Y, Tavor I, Tik N, Sharon H, Holmes EA, Censor N. Neuromodulation of Visual Cortex Reduces the Intensity of Intrusive Memories. Cereb Cortex 2021; 32:408-417. [PMID: 34265849 PMCID: PMC8754386 DOI: 10.1093/cercor/bhab217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Aversive events can be reexperienced as involuntary and spontaneous mental images of the event. Given that the vividness of retrieved mental images is coupled with elevated visual activation, we tested whether neuromodulation of the visual cortex would reduce the frequency and negative emotional intensity of intrusive memories. Intrusive memories of a viewed trauma film and their accompanied emotional intensity were recorded throughout 5 days. Functional connectivity, measured with resting-state functional magnetic resonance imaging prior to film viewing, was used as predictive marker for intrusions-related negative emotional intensity. Results indicated that an interaction between the visual network and emotion processing areas predicted intrusions’ emotional intensity. To test the causal influence of early visual cortex activity on intrusions’ emotional intensity, participants’ memory of the film was reactivated by brief reminders 1 day following film viewing, followed by inhibitory 1 Hz repetitive transcranial magnetic stimulation (rTMS) over early visual cortex. Results showed that visual cortex inhibitory stimulation reduced the emotional intensity of later intrusions, while leaving intrusion frequency and explicit visual memory intact. Current findings suggest that early visual areas constitute a central node influencing the emotional intensity of intrusive memories for negative events. Potential neuroscience-driven intervention targets designed to downregulate the emotional intensity of intrusive memories are discussed.
Collapse
Affiliation(s)
- Noa Herz
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yair Bar-Haim
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido Tavor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Niv Tik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Haggai Sharon
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.,Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Emily A Holmes
- Department of Psychology, Uppsala University, Uppsala 75142, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Solna 17177, Sweden
| | - Nitzan Censor
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Abstract
Learning motor skills commonly requires repeated execution to achieve gains in performance. Motivated by memory reactivation frameworks predominantly originating from fear-conditioning studies in rodents, which have extended to humans, we asked the following: Could motor skill learning be achieved by brief memory reactivations? To address this question, we had participants encode a motor sequence task in an initial test session, followed by brief task reactivations of only 30 s each, conducted on separate days. Learning was evaluated in a final retest session. The results showed that these brief reactivations induced significant motor skill learning gains. Nevertheless, the efficacy of reactivations was not consistent but determined by the number of consecutive correct sequences tapped during memory reactivations. Highly continuous reactivations resulted in higher learning gains, similar to those induced by full extensive practice, while lower continuity reactivations resulted in minimal learning gains. These results were replicated in a new independent sample of subjects, suggesting that the quality of memory reactivation, reflected by its continuity, regulates the magnitude of learning gains. In addition, the change in noninvasive brain stimulation measurements of corticospinal excitability evoked by transcranial magnetic stimulation over primary motor cortex between pre- and postlearning correlated with retest and transfer performance. These results demonstrate a unique form of rapid motor skill learning and may have far-reaching implications, for example, in accelerating motor rehabilitation following neurological injuries.
Collapse
|
18
|
Hermer E, Murphy B, Chaine AS, Morand-Ferron J. Great tits who remember more accurately have difficulty forgetting, but variation is not driven by environmental harshness. Sci Rep 2021; 11:10083. [PMID: 33980907 PMCID: PMC8114932 DOI: 10.1038/s41598-021-89125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
The causes of individual variation in memory are poorly understood in wild animals. Harsh environments with sparse or rapidly changing food resources are hypothesized to favour more accurate spatial memory to allow animals to return to previously visited patches when current patches are depleted. A potential cost of more accurate spatial memory is proactive interference, where accurate memories block the formation of new memories. This relationship between spatial memory, proactive interference, and harsh environments has only been studied in scatter-hoarding animals. We compare spatial memory accuracy and proactive interference performance of non-scatter hoarding great tits (Parus major) from high and low elevations where harshness increases with elevation. In contrast to studies of scatter-hoarders, we did not find a significant difference between high and low elevation birds in their spatial memory accuracy or proactive interference performance. Using a variance partitioning approach, we report the first among-individual trade-off between spatial memory and proactive interference, uncovering variation in memory at the individual level where selection may act. Although we have no evidence of harsh habitats affecting spatial memory, our results suggest that if elevation produced differences in spatial memory between elevations, we could see concurrent changes in how quickly birds can forget.
Collapse
Affiliation(s)
- Ethan Hermer
- grid.28046.380000 0001 2182 2255University of Ottawa, Ottawa, ON Canada
| | - Ben Murphy
- grid.7836.a0000 0004 1937 1151University of Cape Town, Cape Town, South Africa
| | - Alexis S. Chaine
- Station d’Ecologie Théorique et Expérimentale du CNRS, Moulis, France ,grid.424401.70000 0004 0384 0611Institute for Advanced Studies in Toulouse, Toulouse School of Economics, Toulouse, France
| | | |
Collapse
|
19
|
Johnson BP, Cohen LG, Westlake KP. The Intersection of Offline Learning and Rehabilitation. Front Hum Neurosci 2021; 15:667574. [PMID: 33967725 PMCID: PMC8098688 DOI: 10.3389/fnhum.2021.667574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brian P Johnson
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States.,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
20
|
Chen YC, Chou YC, Hwang IS. Reliance on Visual Input for Balance Skill Transfer in Older Adults: EEG Connectome Analysis Using Minimal Spanning Tree. Front Aging Neurosci 2021; 13:632553. [PMID: 33613272 PMCID: PMC7890183 DOI: 10.3389/fnagi.2021.632553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023] Open
Abstract
Skill transfer from trained balance exercises is critical to reduce the rate of falls in older adults, who rely more on vision to control postural responses due to age-dependent sensory reweighting. With an electroencephalography (EEG) minimum spanning tree (MST) structure, the purpose of this study was to compare the organization of supraspinal neural networks of transfer effect after postural training using full and intermittent visual feedbacks for older adults. Thirty-two older adults were randomly assigned to the stroboscopic vision (SV) (n = 16; age = 64.7 ± 3.0 years) and control (16; 66.3 ± 2.7 years) groups for balance training on a stabilometer (target task) with on-line visual feedback. Center-of-pressure characteristics and an MST-based connectome of the weighted phase-lag index during the bilateral stance on a foam surface (transfer task) were compared before and after stabilometer training. The results showed that both the SV and control groups showed improvements in postural stability in the trained task (p < 0.001). However, unlike the control group (p = 0.030), the SV group who received intermittent visual feedback during the stabilometer training failed to reduce the size of postural sway in the anteroposterior direction of the postural transfer task (unstable stance on the foam surface) in the post-test (p = 0.694). In addition, network integration for the transfer task in the post-test was absent in the SV group (p > 0.05). For the control group in the post-test, it manifested with training-related increases in leaf fraction in beta band (p = 0.015) and maximum betweenness in alpha band (p = 0.018), but a smaller diameter in alpha (p = 0.006)/beta (p = 0.021) bands and average eccentricity in alpha band (p = 0.028). In conclusion, stabilometer training with stroboscopic vision impairs generalization of postural skill to unstable stance for older adults. Adequate visual information is a key mediating factor of supraspinal neural networks to carry over balance skill in older adults.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung City, Taiwan.,Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Yu-Chen Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
21
|
Yuan J, Jia J, Wu T, Liu X, Hu S, Zhang J, Ding R, Pang C, Cheng X. Comprehensive evaluation of differential long non-coding RNA and gene expression in patients with cartilaginous endplate degeneration of cervical vertebra. Exp Ther Med 2020; 20:260. [PMID: 33199985 PMCID: PMC7664616 DOI: 10.3892/etm.2020.9390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key regulators in gene expression; however, little is currently known regarding their role in cartilaginous endplate (CE) degeneration (CED) of cervical vertebra. The present study aimed to investigate the expression levels of lncRNAs and analyze their potential functions in CED of cervical vertebra in patients with cervical fracture and cervical spondylosis. Human competitive endogenous RNA (ceRNA) array was used to analyze lncRNA and mRNA expression levels in CE samples from patients with cervical fracture and cervical spondylosis, who received anterior cervical discectomy and fusion. Differentially expressed lncRNAs (DELs) or differentially expressed genes (DEGs) were identified and functionally analyzed, using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. An lncRNA-microRNA(miRNA)-mRNA ceRNA regulatory network was constructed based on the DELs and DEGs, and the ceRNA network was visualized using Cytoscape 3.7.2 software. In total, one downregulated mRNA, one upregulated miRNA and five downstream regulated lncRNAs were identified using reverse transcription-quantitative PCR in CED and healthy CE samples. A total of 369 lncRNAs and 246 mRNAs were identified as differentially expressed in CE. The GO and KEGG analyses demonstrated that the majority of GO and KEGG enrichments were associated with CED. Furthermore, a ceRNA network was established, including 168 putative miRNA response elements, 189 upregulated and 37 downregulated lncRNAs and 47 upregulated and 10dow regulated DEGs. The present study analyzed the function of DEGs in the ceRNA network and filtered out the same items as in DEG-function enrichment analysis. These results provide a new perspective for an improved understanding of ceRNA-mediated gene regulation in cervical spondylosis, and provide a novel theoretical basis for further studies on the function of lncRNA in cervical spondylosis. However, further experiments are required to validate the results of the present study.
Collapse
Affiliation(s)
- Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shen Hu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chongzhi Pang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Correspondence to: Professor Xigao Cheng, Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Marin FN, Franzen JM, Troyner F, Molina VA, Giachero M, Bertoglio LJ. Taking advantage of fear generalization-associated destabilization to attenuate the underlying memory via reconsolidation intervention. Neuropharmacology 2020; 181:108338. [PMID: 33002500 DOI: 10.1016/j.neuropharm.2020.108338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/05/2023]
Abstract
Upon retrieval, an aversive memory can undergo destabilization and reconsolidation. A traumatic-like memory, however, may be resistant to this process. The present study sought to contribute with a strategy to overcome this potential issue by investigating whether generalized fear retrieval is susceptible to destabilization-reconsolidation that can be pharmacologically modified. We hypothesized that exposure to a context that elicits moderate generalization levels would allow a malleable memory state. We developed a fear conditioning protocol in context A (cxt-A) paired with yohimbine administration to promote significant fear to a non-conditioned context B (cxt-B) in rats, mimicking the enhanced noradrenergic activity reported after traumatic events in humans. Next, we attempted to impair the reconsolidation phase by administering clonidine (CLO) immediately after exposure to cxt-A, cxt-B, or a third context C (cxt-C) neither conditioned nor generalized. CLO administered post-cxt-B exposure for two consecutive days subsequently resulted in decreased freezing levels in cxt-A. CLO after cxt-B only once, after cxt-A or cxt-C in two consecutive days, or independently of cxt-B exposures did not affect fear in a later test. A 6-h-delay in CLO treatment post-cxt-B exposures produced no effects, and nimodipine administered pre-cxt-B exposures precluded the CLO action. We then quantified the Egr1/Zif268 protein expression following cxt-B exposures and CLO treatments. We found that these factors interact to modulate this memory destabilization-reconsolidation mechanism in the basolateral amygdala but not the dorsal CA1 hippocampus. Altogether, memory destabilization can accompany generalized fear expression; thus, we may exploit it to potentiate reconsolidation blockers' action.
Collapse
Affiliation(s)
- Fernanda Navarro Marin
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jaqueline Maisa Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fernanda Troyner
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Victor Alejandro Molina
- Departamento de Farmacología, IFEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo Giachero
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Instituto de Neurociencia Cognitiva y Traslacional (INCYT), CONICET, Fundación INECO, Universidad Favaloro, Buenos Aires, Argentina.
| | - Leandro Jose Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
23
|
Mutanen TP, Bracco M, Robertson EM. A Common Task Structure Links Together the Fate of Different Types of Memories. Curr Biol 2020; 30:2139-2145.e5. [PMID: 32302588 DOI: 10.1016/j.cub.2020.03.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/06/2020] [Accepted: 03/17/2020] [Indexed: 12/28/2022]
Abstract
Our memories frequently have features in common. For example, a learned sequence of words or actions can follow a common rule, which determines their serial order, despite being composed of very different events [1, 2]. This common abstract structure might link the fates of memories together. We tested this idea by creating different types of memory task: a sequence of words or actions that either did or did not have a common structure. Participants learned one of these memory tasks and then they learned another type of memory task 6 h later, either with or without the same structure. We then tested the newly formed memory's susceptibility to interference. We found that the newly formed memory was protected from interference when it shared a common structure with the earlier memory. Specifically, learning a sequence of words protected a subsequent sequence of actions learned hours later from interference, and conversely, learning a sequence of actions protected a subsequent sequence of words learned hours later from interference provided the sequences shared a common structure. Yet this protection of the newly formed memory came at a cost. The earlier memory had disrupted recall when it had the same rather than a different structure to the newly formed and protected memory. Thus, a common structure can determine what is retained (i.e., protected) and what is modified (i.e., disrupted). Our work reveals that a shared common structure links the fate of otherwise different types of memories together and identifies a novel mechanism for memory modification.
Collapse
Affiliation(s)
- Tuomas P Mutanen
- Department of Neuroscience & Biomedical Engineering, Aalto University, School of Science, 00076 Aalto, Espoo, Finland
| | - Martina Bracco
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
24
|
Robertson EM, Genzel L. Memories replayed: reactivating past successes and new dilemmas. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190226. [PMID: 32248775 DOI: 10.1098/rstb.2019.0226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Our experiences continue to be processed 'offline' in the ensuing hours of both wakefulness and sleep. During these different brain states, the memory formed during our experience is replayed or reactivated. Here, we discuss the unique challenges in studying offline reactivation, the growth in both the experimental and analytical techniques available across different animals from rodents to humans to capture these offline events, the important challenges this innovation has brought, our still modest understanding of how reactivation drives diverse synaptic changes across circuits, and how these changes differ (if at all), and perhaps complement, those at memory formation. Together, these discussions highlight critical emerging issues vital for identifying how reactivation affects circuits, and, in turn, behaviour, and provides a broader context for the contributions in this special issue. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Edwin M Robertson
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Reyes S, Algarín C, Lozoff B, Peigneux P, Peirano P. Sleep and motor sequence learning consolidation in former iron deficient anemic adolescents. Sleep Med 2019; 64:116-122. [PMID: 31704427 DOI: 10.1016/j.sleep.2019.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Iron deficiency is the most prevalent micronutrient deficiency worldwide. There is evidence that iron deficiency produces alterations in the developing brain, eventually leading to long-lasting effects on various cognitive functions. METHODS Here, we investigated motor learning and its consolidation after sleep in adolescents who sustained iron deficiency anemia (IDA) in infancy, compared to healthy controls, in the context of a long-term follow-up Chilean research project. Fifty-three adolescents who formerly had iron deficiency anemia as infants and 40 control adolescents practiced a sequential motor finger tapping task, before and after a night of sleep. Performance was measured at the end of learning, 30 min later (boost effect), and the next morning. RESULTS Revealed slower learning in subjects with infant iron deficiency anemia than control subjects, followed by a proportionally similar performance boost at 30 min. Performance remained stable overnight in healthy controls but further improved in infant IDA adolescents, suggesting a beneficial effect of post-training sleep on the consolidation of incompletely learned motor skills. In particular, overnight gains in performance were observed in female, but not male infant iron deficiency anemic subjects, suggesting a gender effect. CONCLUSIONS Our results indicate long-lasting motor learning deficits in infant IDA adolescents and provide support to the hypothesis that post-training sleep might, to some extent, compensate for hampered motor learning during wakefulness.
Collapse
Affiliation(s)
- Sussanne Reyes
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Cecilia Algarín
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Betsy Lozoff
- Department of Pediatrics and Communicable Disease, University of Michigan, North Ingalls Building, 10th Floor, 300 N. Ingalls Street, Ann Arbor, MI, 48109-5406, USA
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group, CRCN - Center for Research in Cognition and Neurosciences, UNI - ULB Neurosciences Institute, Université Libre de Bruxelles, 50 avenue F.D. Roosevelt CP191 B-1050, Brussels, Belgium.
| | - Patricio Peirano
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
26
|
Continuous exposure to α-glycosyl isoquercitrin from developmental stage facilitates fear extinction learning in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|