1
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Hu B, Pei J, Wan C, Liu S, Xu Z, Zou Y, Li Z, Tang Z. Mechanisms of Postischemic Stroke Angiogenesis: A Multifaceted Approach. J Inflamm Res 2024; 17:4625-4646. [PMID: 39045531 PMCID: PMC11264385 DOI: 10.2147/jir.s461427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated. This review meticulously examines the constituents of the neurovascular unit, ion channels, molecular mediators, and signaling pathways implicated in angiogenesis following stroke. Furthermore, it delves into prospective therapeutic strategies informed by these factors. Our objective is to provide detailed and exhaustive information on the intricate mechanisms governing postischemic stroke angiogenesis, thus providing a robust scientific foundation for the advancement of novel neurorepair therapies.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, People’s Republic of China
- School of Basic Medical Sciences, Qujing Medical College, Qujing, People’s Republic of China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
3
|
Huang Y, Han Z, Shen T, Zheng Y, Yang Z, Fan J, Wang R, Yan F, Tao Z, Luo Y, Liu P. Neutrophil migration participates in the side effect of recombinant human tissue plasminogen activator. CNS Neurosci Ther 2024; 30:e14825. [PMID: 38954749 PMCID: PMC11218914 DOI: 10.1111/cns.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
AIMS Ischemic stroke remains a challenge in medical research because of the limited treatment options. Recombinant human tissue plasminogen activator (rtPA) is the primary treatment for recanalization. However, nearly 50% of the patients experience complications that result in ineffective reperfusion. The precise factors contributing to ineffective reperfusion remain unclear; however, recent studies have suggested that immune cells, notably neutrophils, may influence the outcome of rtPA thrombolysis via mechanisms such as the formation of neutrophil extracellular traps. This study aimed to explore the nonthrombolytic effects of rtPA on neutrophils and highlight their contribution to ineffective reperfusion. METHODS We evaluated the effects of rtPA treatment on middle cerebral artery occlusion in rats. We also assessed neutrophil infiltration and activation after rtPA treatment in vitro and in vivo in a small cohort of patients with massive cerebral ischemia (MCI). RESULTS rtPA increased neutrophil infiltration into the brain microvessels and worsened blood-brain barrier damage during ischemia. It also increased the neutrophil counts of the patients with MCI. CONCLUSION Neutrophils play a crucial role in promoting ischemic injury and blood-brain barrier disruption, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Yuyou Huang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Tong Shen
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yangmin Zheng
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhenhong Yang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Junfen Fan
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Rongliang Wang
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhen Tao
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yumin Luo
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
| | - Ping Liu
- Department of Neurology and Institute of Cerebrovascular Diseases ResearchXuanwu Hospital of Capital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Min XL, Jia WJ, Guo L, Jing R, Zhao XH, Hu JY, Li XH, Liu W, Wang T, Dou XK. Brain microvascular endothelial cell-derived exosomes transmitting circ_0000495 promote microglial M1-polarization and endothelial cell injury under hypoxia condition. FASEB J 2024; 38:e23387. [PMID: 38193649 DOI: 10.1096/fj.202301637r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Human brain microvascular endothelial cells (HBMVECs) and microglia play critical roles in regulating cerebral homeostasis during ischemic stroke. However, the role of HBMVECs-derived exosomes in microglia polarization after stroke remains unknown. We isolated exosomes (Exos) from oxygen glucose deprivation (OGD)-exposed HBMVECs, before added them into microglia. Microglia polarization markers were tested using RT-qPCR or flow cytometry. Inflammatory cytokines were measured with ELISA. Endothelial cell damage was assessed by cell viability, apoptosis, apoptosis-related proteins, oxidative stress, and angiogenic activity using CCK-8, flow cytometry, western blot, ELISA, and endothelial tube formation assay, respectively. We also established middle cerebral artery occlusion (MCAO) mice model to examine the function of circ_0000495 on stroke in vivo. Our study found that HBMVECs-Exos reduced M2 markers (IL-10, CD163, and CD206), increased M1 markers (TNF-α, IL-1β, and IL-12), CD86-positive cells, and inflammatory cytokines (TNF-α and IL-1β), indicating the promotion of microglial M1-polarization. Microglial M1-polarization induced by HBMVECs-Exos reduced viability and promoted apoptosis and oxidative stress, revealing the aggravation of endothelial cell damage. However, circ_0000495 silencing inhibited HBMVECs-Exos-induced alterations. Mechanistically, circ_0000495 adsorbed miR-579-3p to upregulate toll-like receptor 4 (TLR4) in microglia; miR-579-3p suppressed HBMVECs-Exos-induced alterations via declining TLR4; furthermore, Yin Yang 1 (YY1) transcriptionally activated circ_0000495 in HBMVECs. Importantly, circ_0000495 aggravated ischemic brain injury in vivo via activating TLR4/nuclear factor-κB (NF-κB) pathway. Collectively, OGD-treated HBMVECs-Exos transmitted circ_0000495 to regulate miR-579-3p/TLR4/NF-κB axis in microglia, thereby facilitating microglial M1-polarization and endothelial cell damage.
Collapse
Affiliation(s)
- Xiao-Li Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Ji Jia
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Guo
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Jing
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Hong Zhao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-Yi Hu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xu-Hui Li
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Liu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xing-Kui Dou
- Department of Cardiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Aharon-Yariv A, Wang Y, Ahmed A, Delgado-Olguín P. Integrated small RNA, mRNA and protein omics reveal a miRNA network orchestrating metabolic maturation of the developing human heart. BMC Genomics 2023; 24:709. [PMID: 37996818 PMCID: PMC10668469 DOI: 10.1186/s12864-023-09801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND As the fetal heart develops, cardiomyocyte proliferation potential decreases while fatty acid oxidative capacity increases in a highly regulated transition known as cardiac maturation. Small noncoding RNAs, such as microRNAs (miRNAs), contribute to the establishment and control of tissue-specific transcriptional programs. However, small RNA expression dynamics and genome-wide miRNA regulatory networks controlling maturation of the human fetal heart remain poorly understood. RESULTS Transcriptome profiling of small RNAs revealed the temporal expression patterns of miRNA, piRNA, circRNA, snoRNA, snRNA and tRNA in the developing human heart between 8 and 19 weeks of gestation. Our analysis demonstrated that miRNAs were the most dynamically expressed small RNA species throughout mid-gestation. Cross-referencing differentially expressed miRNAs and mRNAs predicted 6200 mRNA targets, 2134 of which were upregulated and 4066 downregulated as gestation progressed. Moreover, we found that downregulated targets of upregulated miRNAs, including hsa-let-7b, miR-1-3p, miR-133a-3p, miR-143-3p, miR-499a-5p, and miR-30a-5p predominantly control cell cycle progression. In contrast, upregulated targets of downregulated miRNAs, including hsa-miR-1276, miR-183-5p, miR-1229-3p, miR-615-3p, miR-421, miR-200b-3p and miR-18a-3p, are linked to energy sensing and oxidative metabolism. Furthermore, integrating miRNA and mRNA profiles with proteomes and reporter metabolites revealed that proteins encoded in mRNA targets and their associated metabolites mediate fatty acid oxidation and are enriched as the heart develops. CONCLUSIONS This study presents the first comprehensive analysis of the small RNAome of the maturing human fetal heart. Our findings suggest that coordinated activation and repression of miRNA expression throughout mid-gestation is essential to establish a dynamic miRNA-mRNA-protein network that decreases cardiomyocyte proliferation potential while increasing the oxidative capacity of the maturing human fetal heart. Our results provide novel insights into the molecular control of metabolic maturation of the human fetal heart.
Collapse
Affiliation(s)
- Adar Aharon-Yariv
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yaxu Wang
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Abdalla Ahmed
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Paul Delgado-Olguín
- Translational Medicine, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G0A4, Canada.
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Heart & Stroke, Richard Lewar Centre of Excellence, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Ren ZL, Kang XD, Zheng YX, Shi HF, Chen CA, Shi YY, Wang QG, Cheng FF, Wang XQ, Li CX. Emerging effects of non-coding RNA in vascular endothelial cells during strokes. Vascul Pharmacol 2023; 150:107169. [PMID: 37059212 DOI: 10.1016/j.vph.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Vascular and neurological damage are the typical outcomes of ischemic strokes. Vascular endothelial cells (VECs), a substantial component of the blood-brain barrier (BBB), are necessary for normal cerebrovascular physiology. During an ischemic stroke (IS), changes in the brain endothelium can lead to a BBB rupture, inflammation, and vasogenic brain edema, and VECs are essential for neurotrophic effects and angiogenesis. Non-coding RNAs (nc-RNAs) are endogenous molecules, and brain ischemia quickly changes the expression patterns of several non-coding RNA types, such as microRNA (miRNA/miR), long non-coding RNA (lncRNA), and circular RNA (circRNA). Furthermore, vascular endothelium-associated nc-RNAs are important mediators in the maintenance of healthy cerebrovascular function. In order to better understand how VECs are regulated epigenetically during an IS, in this review, we attempted to assemble the molecular functions of nc-RNAs that are linked with VECs during an IS.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang-Dong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han-Fen Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Yu-Yu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
8
|
Abdel Mageed SS, Doghish AS, Ismail A, El-Husseiny AA, Fawzi SF, Mahmoud AMA, El-Mahdy HA. The role of miRNAs in insulin resistance and diabetic macrovascular complications - A review. Int J Biol Macromol 2023; 230:123189. [PMID: 36623613 DOI: 10.1016/j.ijbiomac.2023.123189] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Diabetes is the most prevalent metabolic disturbance disease and has been regarded globally as one of the principal causes of mortality. Diabetes is accompanied by several macrovascular complications, including stroke, coronary artery disease (CAD), and cardiomyopathy as a consequence of atherosclerosis. The onset of type 2 diabetes is closely related to insulin resistance (IR). miRNAs have been linked to various metabolic processes, including glucose homeostasis, regulation of lipid metabolism, gluconeogenesis, adipogenesis, glucose transporter type 4 expression, insulin sensitivity, and signaling. Consequently, miRNA dysregulation mediates IR in some target organs, comprising liver, muscle, and adipose tissue. Moreover, miRNAs are crucial in developing diabetes and its associated macrovascular complications through their roles in several signaling pathways implicated in inflammation, apoptosis, cellular survival and migration, the proliferation of vascular smooth muscle cells, neurogenesis, angiogenesis, autophagy, oxidative stress, cardiac remodeling, and fibrosis. Therefore, the purpose of this review is to clarify the role of miRNAs in hepatic, muscle, and adipose tissue IR and explain their roles in the pathogenesis of macrovascular diabetic complications, including stroke, CAD, and cardiomyopathy. Also, explain their roles in gestational diabetes mellitus (GDM). Besides, this review discusses the latest updates on the alteration of miRNA expression in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Sylvia F Fawzi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
9
|
Iwaya C, Suzuki A, Iwata J. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate. Int J Mol Sci 2023; 24:3552. [PMID: 36834963 PMCID: PMC9958963 DOI: 10.3390/ijms24043552] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cleft lip and palate is one of the most common congenital birth defects and has a complex etiology. Either genetic or environmental factors, or both, are involved at various degrees, and the type and severity of clefts vary. One of the longstanding questions is how environmental factors lead to craniofacial developmental anomalies. Recent studies highlight non-coding RNAs as potential epigenetic regulators in cleft lip and palate. In this review, we will discuss microRNAs, a type of small non-coding RNAs that can simultaneously regulate expression of many downstream target genes, as a causative mechanism of cleft lip and palate in humans and mice.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
10
|
Todoran R, Falcione SR, Clarke M, Joy T, Boghozian R, Jickling GC. microRNA as a therapeutic for ischemic stroke. Neurochem Int 2023; 163:105487. [PMID: 36657721 DOI: 10.1016/j.neuint.2023.105487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
microRNA (miRNA) are important regulators of gene expression. miRNA have the potential as a treatment to modulate genes, pathways and cells involved in ischemic stroke. In this review, we specifically present miRNA in stroke as a treatment to decrease thrombosis, reduce blood brain barrier (BBB) disruption and hemorrhagic transformation (HT), modulate inflammation, and modify angiogenesis. miRNA as a treatment for stroke is an emerging area with evidence from animal studies demonstrating its potential. While no miRNA is currently approved for human use, several have shown promise in clinical trials to treat medical conditions, such as miR-122 for hepatitis C. The role of miRNA as a treatment for specific applications in ischemic stroke is presented including a discussion of the benefits and barriers of miRNA as a treatment, and directions for future advancement.
Collapse
Affiliation(s)
- Raluca Todoran
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sarina R Falcione
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Michael Clarke
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Twinkle Joy
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Roobina Boghozian
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Glen C Jickling
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
11
|
Circulating miRNA-195-5p and -451a in Patients with Acute Hemorrhagic Stroke in Emergency Department. Life (Basel) 2022; 12:life12050763. [DOI: 10.3390/life12050763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: In our previous study, acute ischemic stroke (AIS) patients showed increased levels of circulating miRNAs (-195-5p and -451a) involved in vascular endothelial growth factor A (VEGF-A) regulation. Here, we evaluated, for the first time, both circulating miRNAs in acute intracerebral hemorrhagic (ICH) patients. (2) Methods: Circulating miRNAs and serum VEGF-A were assessed by real-time PCR and ELISA in 20 acute ICH, 21 AIS patients, and 21 controls. These were evaluated at hospital admission (T0) and after 96 h (T96) from admission. (3) Results: At T0, circulating miRNAs were five-times up-regulated in AIS patients, tending to decrease at T96. By contrast, in the acute ICH group, circulating miRNAs were significantly increased at both T0 and T96. Moreover, a significant decrease was observed in serum VEGF-A levels at T0 in AIS patients, tending to increase at T96. Conversely, in acute ICH patients, the levels of VEGF-A were significantly decreased at both T0 and T96. (4) Conclusions: The absence of a reduction in circulating miRNAs (195-5p and -451a), reported in acute ICH subjects after 96 h from hospital admission, together with the absence of increment of serum VEGF-A, may represent useful biomarkers indicating the severe brain damage status that characterizes acute ICH patients.
Collapse
|
12
|
Serum Exosomal mir-340-5p Promotes Angiogenesis in Brain Microvascular Endothelial Cells During Oxygen-Glucose Deprivation. Neurochem Res 2022; 47:907-920. [PMID: 34993704 DOI: 10.1007/s11064-021-03492-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke (IS) is a cerebrovascular disease with high morbidity, recurrence, and mortality. The purpose of the present study was to investigate the role and mechanism of human serum exosomes on angiogenesis after IS. The middle cerebral artery occlusion (MCAO) in vivo model and oxygen-glucose deprivation (OGD) in vitro model were established. Human serum exosomes from healthy samples (NC-exo) and IS samples (IS-exo) were injected into MCAO mice. Neurobehavioral tests were performed to assess the extent of neurological deficits. The infarct volume was assessed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining, and the levels of inflammatory cytokines were analyzed by enzyme-linked immunosorbent assay (ELISA). In addition, human serum exosomes were cocultured with brain microvascular endothelial cells (BMECs). Cell Counting Kit-8 (CCK-8), Transwell, and tubule formation assays were performed to investigate the proliferation, migration, invasion, length, and branching of BMECs. The miRNA expression profiles of NC-exo and IS-exo were analyzed by high-throughput sequencing and compared. Bioinformatics and luciferase reporter assays were performed to evaluate the relationship between miR-340-5p and CD147. Serum NC-exo and IS-exo had protective effects on IS injury and promoted BMEC angiogenesis. Interestingly, the protective effect of IS-exo was weaker than that of NC-exo. In addition, miR-340-5p was downregulated in IS-exo, and miR-340-5p accelerated angiogenesis of BMECs after OGD. Mechanistically, CD147 was confirmed as a direct target of miR-340-5p. Finally, miR-340-5p promoted angiogenesis by directly targeting CD147. Serum exosome-derived miR-340-5p promote angiogenesis in OGD-induced BMECs by targeting CD147.
Collapse
|
13
|
MiR-429 Inhibits the Angiogenesis of Human Brain Microvascular Endothelial Cells through SNAI2-Mediated GSK-3 β/ β-Catenin Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6753926. [PMID: 34966442 PMCID: PMC8712146 DOI: 10.1155/2021/6753926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023]
Abstract
MicroRNA (miRNA) dysfunction has been confirmed as a key event of ischemic stroke appearance. This study is aimed at revealing the role of miR-429 in the angiogenesis of HBMECs. The HBMECs were treated with oxygen and glucose deprivation (OGD) to establish the ischemic cell model. The qRT-PCR was used to measure the expression levels of the miR-429 in the serums of the patients or cells, and CCK-8, wound healing assay, and tube formation assay were used to observe the effects of miR-429 on the phenotype of HBMECs. Moreover, the Targetscan, dual-luciferase reporter assay, and Western blot were used to reveal the downstream target and regulation mechanism of miR-429 in OGD-induced HBMECs. The results showed that miR-429 was significantly upregulated in the serums of the patients, and overexpressed miR-429 could extremely inhibit the viability, migration, and tube formation of OGD-induced HBMECs. Furthermore, it was found that SNAI2 was a downstream factor of miR-429, and SNAI2 could rescue the effects of miR-429 on OGD-induced HBMECs. Besides, the Western blot showed that miR-429 could affect the activity of GSK-3β/β-catenin pathway via inhibiting the expression of SNAI2. In conclusion, this study suggests that miR-429 inhibits the angiogenesis of HBMECs through SNAI2-mediated GSK-3β/β-catenin pathway.
Collapse
|
14
|
Zhao Z, Wu C, He X, Zhao E, Hu S, Han Y, Wang T, Chen Y, Liu T, Huang S. MicroRNA let-7f alleviates vascular endothelial cell dysfunction via targeting HMGA2 under oxygen-glucose deprivation and reoxygenation. Brain Res 2021; 1772:147662. [PMID: 34529965 DOI: 10.1016/j.brainres.2021.147662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023]
Abstract
Stroke is a fatal disease with high disability and mortality and there is no credible treatment for stroke at present. Studies on stroke are extensively developed to explore the underlying mechanisms of ischemic and reperfusion injuries. Herein, we investigated the functions of microRNA let-7f (also termed let-7f-5p) in vascular endothelial cell dysfunction. The bEnd.3 cells were stimulated with oxygen-glucose deprivation and reoxygenation (OGD/R) to mimic cell injury in vitro. CCK-8 assays, flow cytometry and western blot analyses were conducted to examine the viability and apoptosis of bEnd.3 cells. Reverse transcription quantitative polymerase chain reaction analyses were employed to measure RNA expression. Endothelial cell permeability in vitro assay was employed to assess endothelial permeability of bEnd.3 cells, and expression levels of proteins associated with cell apoptosis or blood-brain barrier (BBB) were detected by western blot analyses. Luciferase reporter assay was conducted to explore the combination between let-7f and HMGA2. We found that OGD/R induced injuries on endothelial cells (bEnd.3) by decreasing cell viability and promoting cell apoptosis. Let-7f exhibited low expression in bEnd.3 cells under OGD/R. Let-7f overexpression increased the viability of bEnd.3 cells and inhibited cell apoptosis. In addition, the endothelial permeability of bEnd.3 cells was increased by OGD/R and reversed by let-7f overexpression. The levels of tight junction proteins (ZO-1 and occludin) were downregulated by OGD/R and then reversed by let-7f overexpression. Mechanistically, HMGA2 is a target gene of let-7f and its expression was negatively regulated by let-7f. Rescue assays revealed that HMGA2 overexpression reversed the effects of let-7f overexpression on cell viability, cell apoptosis, endothelial permeability, and BBB function. In conclusion, let-7f alleviates vascular endothelial cell dysfunction by downregulating HMGA2 expression under OGD/R.
Collapse
Affiliation(s)
- Zhongyan Zhao
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Chanji Wu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Xiangying He
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Eryi Zhao
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Shijun Hu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Yeguang Han
- Department of Central Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Ting Wang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Yanquan Chen
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China
| | - Tao Liu
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China.
| | - Shixiong Huang
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, Hainan, China.
| |
Collapse
|
15
|
Wang M, Bai Y, Chi H, Lin P, Wu Y, Cui J, Wang Y, Sun J, Lang MF. miR-451 protects against ischemic stroke by targeting Phd3. Exp Neurol 2021; 343:113777. [PMID: 34058227 DOI: 10.1016/j.expneurol.2021.113777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022]
Abstract
Ischemic stroke still remains a therapeutic challenge due to its complex pathogenesis and implications. By screening biomarkers in the peripheral blood of ischemic stroke patients, miR-451 was identified as a differentially expressed miRNA along the disease course of ischemic stroke. To investigate the role of miR-451, middle cerebral artery occlusion (MCAO) was performed as an ischemic stroke model in mice. Intracerebroventricular administration of miR-451 mimic in the MCAO mice significantly decreased infarct size, while miR-451 inhibitor significantly increased infarct size. To understand the molecular mechanism of the protective effect of miR-451, Phd3 (also Egln3) was validated as a new miR-451 target. Either fewer or more Phd3-positive cells were observed in brain sections from mice receiving miR-451 mimic or inhibitor, respectively. In addition, the levels of p53 (a known Phd3 target) were significantly downregulated when the levels of Phd3 were reduced, suggesting its participation in reducing apoptosis after the miR-451 administration. Indeed, reduced apoptosis upon miR-451 mimic administration was detected by TUNEL staining. In conclusion, this study demonstrated a new protective role of miR-451 in cerebral ischemia and identified Phd3 as a novel miR-451 target, linking the mechanism to the involvement of p53 in the regulation of apoptosis during the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China; Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China; Graduate School, Dalian University, Dalian, Liaoning 116622, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China.
| | - Haitao Chi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Ping Lin
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Yu Wu
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Jiahui Cui
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Yi Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning 116021, China
| | - Jing Sun
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Ming-Fei Lang
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China.
| |
Collapse
|
16
|
Vijayan M, Reddy PH. Non-Coding RNAs Based Molecular Links in Type 2 Diabetes, Ischemic Stroke, and Vascular Dementia. J Alzheimers Dis 2021; 75:353-383. [PMID: 32310177 DOI: 10.3233/jad-200070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews recent advances in the study of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and their functions in type 2 diabetes mellitus (T2DM), ischemic stroke (IS), and vascular dementia (VaD). miRNAs and lncRNAs are gene regulation markers that both regulate translational aspects of a wide range of proteins and biological processes in healthy and disease states. Recent studies from our laboratory and others have revealed that miRNAs and lncRNAs expressed differently are potential therapeutic targets for neurological diseases, especially T2DM, IS, VaD, and Alzheimer's disease (AD). Currently, the effect of aging in T2DM, IS, and VaD and the cellular and molecular pathways are largely unknown. In this article, we highlight results from the works on the molecular connections between T2DM and IS, and IS and VaD. In each disease, we also summarize the pathophysiology and the differential expressions of miRNAs and lncRNAs. Based on current research findings, we hypothesize that 1) T2DM bi-directionally and age-dependently induces IS and VaD, and 2) these changes are precursors to the onset of dementia in elderly people. Research into these hypotheses is required to examine further whether research efforts on reducing T2DM, IS, and VaD may affect dementia and/or delay the AD disease process in the aged population.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
17
|
Hutchings G, Kruszyna Ł, Nawrocki MJ, Strauss E, Bryl R, Spaczyńska J, Perek B, Jemielity M, Mozdziak P, Kempisty B, Nowicki M, Krasiński Z. Molecular Mechanisms Associated with ROS-Dependent Angiogenesis in Lower Extremity Artery Disease. Antioxidants (Basel) 2021; 10:735. [PMID: 34066926 PMCID: PMC8148529 DOI: 10.3390/antiox10050735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Currently, atherosclerosis, which affects the vascular bed of all vital organs and tissues, is considered as a leading cause of death. Most commonly, atherosclerosis involves coronary and peripheral arteries, which results in acute (e.g., myocardial infarction, lower extremities ischemia) or chronic (persistent ischemia leading to severe heart failure) consequences. All of them have a marked unfavorable impact on the quality of life and are associated with increased mortality and morbidity in human populations. Lower extremity artery disease (LEAD, also defined as peripheral artery disease, PAD) refers to atherosclerotic occlusive disease of the lower extremities, where partial or complete obstruction of peripheral arteries is observed. Decreased perfusion can result in ischemic pain, non-healing wounds, and ischemic ulcers, and significantly reduce the quality of life. However, the progressive atherosclerotic changes cause stimulation of tissue response processes, like vessel wall remodeling and neovascularization. These mechanisms of adapting the vascular network to pathological conditions seem to play a key role in reducing the impact of the changes limiting the flow of blood. Neovascularization as a response to ischemia induces sprouting and expansion of the endothelium to repair and grow the vessels of the circulatory system. Neovascularization consists of three different biological processes: vasculogenesis, angiogenesis, and arteriogenesis. Both molecular and environmental factors that may affect the process of development and growth of blood vessels were analyzed. Particular attention was paid to the changes taking place during LEAD. It is important to consider the molecular mechanisms underpinning vessel growth. These mechanisms will also be examined in the context of diseases commonly affecting blood vessel function, or those treatable in part by manipulation of angiogenesis. Furthermore, it may be possible to induce the process of blood vessel development and growth to treat peripheral vascular disease and wound healing. Reactive oxygen species (ROS) play an important role in regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. With regard to the repair processes taking place during diseases such as LEAD, prospective therapeutic methods have been described that could significantly improve the treatment of vessel diseases in the future. Summarizing, regenerative medicine holds the potential to transform the therapeutic methods in heart and vessel diseases treatment.
Collapse
Affiliation(s)
- Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Łukasz Kruszyna
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Ewa Strauss
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Julia Spaczyńska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (B.P.); (M.J.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.N.); (R.B.); (J.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Michał Nowicki
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 60-848 Poznan, Poland; (Ł.K.); (E.S.); (Z.K.)
| |
Collapse
|
18
|
Yang D, Tan Y, Li H, Zhang X, Li X, Zhou F. Upregulation of miR-20b Protects Against Cerebral Ischemic Stroke by Targeting Thioredoxin Interacting Protein (TXNIP). Exp Neurobiol 2021; 30:170-182. [PMID: 33972468 PMCID: PMC8118756 DOI: 10.5607/en20046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is involved in abnormal development and pathophysiology in the brain. Although miR-20b plays essential roles in various human diseases, its function in cerebral ischemic stroke remains unclear. A cell model of oxygen glucose deprivation/reoxygenation (OGD/R) and A rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) were constructed. qRT-PCR and western blot were used to evaluate the expression of miR-20b and TXNIP. Cell viability was detected by MTT assay, and cell apoptosis was evaluated by flow cytometry. Targetscan and Starbase were used to predict the potential targets of miR-20b. Luciferase reporter assay was applied to determine the interaction between miR-20b and TXNIP. Rescue experiments were conducted to confirm the functions of miR-20b/TXNIP axis in cerebral ischemic stroke. MiR-20b was significantly downregulated after I/R both in vitro and in vivo. Upregulation of miR-20b inhibited OGD/R-induced neurons apoptosis and attenuated ischemic brain injury in rat model. Bioinformatic prediction suggested that TXNIP might be a target of miR-20b, and luciferase reporter assay revealed that miR-20b negatively regulated TXNIP expression by directly binding to the 3’-UTR of TXNIP. Downregulation of TXNIP inhibited OGD/R-induced neurons apoptosis in vitro and ischemic brain injury in vivo. Rescue experiments indicated that downregulation of TXNIP effectively reversed the effect of miR-20b inhibitor in neurons apoptosis after OGD/R-treatment and ischemic brain injury in a mouse model after MCAO/R-treatment. Our study demonstrated that upregulation of miR-20b protected the brain from ischemic brain injury by targeting TXNIP, extending our understanding of miRNAs in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Dejiang Yang
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Yu Tan
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Huanhuan Li
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Xiaowei Zhang
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Xinming Li
- Department of Neurology, the Third Affiliated Hospital of Nanchang University, Nanchang 330008, PR. China
| | - Feng Zhou
- Department of Neurology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR. China
| |
Collapse
|
19
|
Wang L, Xiong X, Zhang L, Shen J. Neurovascular Unit: A critical role in ischemic stroke. CNS Neurosci Ther 2021; 27:7-16. [PMID: 33389780 PMCID: PMC7804897 DOI: 10.1111/cns.13561] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke (IS), a common cerebrovascular disease, results from a sudden blockage of a blood vessel in the brain, thereby restricting blood supply to the area in question, and making a significantly negative impact on human health. Unfortunately, current treatments, that are mainly based on a recanalization of occluded blood vessels, are insufficient or inaccessible to many stroke patients. Recently, the profound influence of the neurovascular unit (NVU) on recanalization and the prognosis of IS have become better understood; in‐depth studies of the NVU have also provided novel approaches for IS treatment. In this article, we review the intimate connections between the changes in the NVU and IS outcomes, and discuss possible new management strategies having practical significance to IS. We discuss the concept of the NVU, as well as its roles in IS blood‐brain barrier regulation, cell preservation, inflammatory immune response, and neurovascular repair. Besides, we also summarize the influence of noncoding RNAs in NVU, and IS therapies targeting the NVU. We conclude that both the pathophysiological and neurovascular repair processes of IS are strongly associated with the homeostatic state of the NVU and that further research into therapies directed at the NVU could expand the range of treatments available for IS.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luyuan Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Tagliaferri S, Cepparulo P, Vinciguerra A, Campanile M, Esposito G, Maruotti GM, Zullo F, Annunziato L, Pignataro G. miR-16-5p, miR-103-3p, and miR-27b-3p as Early Peripheral Biomarkers of Fetal Growth Restriction. Front Pediatr 2021; 9:611112. [PMID: 33777862 PMCID: PMC7991078 DOI: 10.3389/fped.2021.611112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Current tests available to diagnose fetal hypoxia in-utero lack sensitivity thus failing to identify many fetuses at risk. Emerging evidence suggests that microRNAs derived from the placenta circulate in the maternal blood during pregnancy and may be used as non-invasive biomarkers for pregnancy complications. With the intent to identify putative markers of fetal growth restriction (FGR) and new therapeutic druggable targets, we examined, in maternal blood samples, the expression of a group of microRNAs, known to be regulated by hypoxia. The expression of microRNAs was evaluated in maternal plasma samples collected from (1) women carrying a preterm FGR fetus (FGR group) or (2) women with an appropriately grown fetus matched at the same gestational age (Control group). To discriminate between early- and late-onset FGR, the study population was divided into two subgroups according to the gestational age at delivery. Four microRNAs were identified as possible candidates for the diagnosis of FGR: miR-16-5p, miR-103-3p, miR-107-3p, and miR-27b-3p. All four selected miRNAs, measured by RT-PCR, resulted upregulated in FGR blood samples before the 32nd week of gestation. By contrast, miRNA103-3p and miRNA107-3p, analyzed between the 32nd and 37th week of gestation, showed lower expression in the FGR group compared to aged matched controls. Our results showed that measurement of miRNAs in maternal blood may form the basis for a future diagnostic test to determine the degree of fetal hypoxia in FGR, thus allowing the start of appropriate therapeutic interventions to alleviate the burden of this disease.
Collapse
Affiliation(s)
- Salvatore Tagliaferri
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Marta Campanile
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Giuseppina Esposito
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Maria Maruotti
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Fulvio Zullo
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
21
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Taheri M. Non-coding RNAs regulate angiogenic processes. Vascul Pharmacol 2020; 133-134:106778. [PMID: 32784009 DOI: 10.1016/j.vph.2020.106778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis has critical roles in numerous physiologic processes during embryonic and adult life such as wound healing and tissue regeneration. However, aberrant angiogenic processes have also been involved in the pathogenesis of several disorders such as cancer and diabetes mellitus. Vascular endothelial growth factor (VEGF) is implicated in the regulation of this process in several physiologic and pathologic conditions. Notably, several non-coding RNAs (ncRNAs) have been shown to influence angiogenesis through modulation of expression of VEGF or other angiogenic factors. In the current review, we summarize the function and characteristics of microRNAs and long non-coding RNAs which regulate angiogenic processes. Understanding the role of these transcripts in the angiogenesis can facilitate design of therapeutic strategies to defeat the pathogenic events during this process especially in the human malignancies. Besides, angiogenesis-related mechanisms can improve tissue regeneration after conditions such as arteriosclerosis, myocardial infarction and limb ischemia. Thus, ncRNA-regulated angiogenesis can be involved in the pathogenesis of several disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Zhang S, Jin T, Wang L, Liu W, Zhang Y, Zheng Y, Lin Y, Yang M, He X, Lin H, Chen L, Tao J. Electro-Acupuncture Promotes the Differentiation of Endogenous Neural Stem Cells via Exosomal microRNA 146b After Ischemic Stroke. Front Cell Neurosci 2020; 14:223. [PMID: 32792909 PMCID: PMC7385414 DOI: 10.3389/fncel.2020.00223] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Evidences indicate that exosomes-mediated delivery of microRNAs (miRNAs or miRs) is involved in the neurogenesis of stroke. This study was to investigate the role of exosomal miRNAs in non-drug therapy of electro-acupuncture (EA) regulating endogenous neural stem cells for stroke recovery. Methods: The model of focal cerebral ischemia and reperfusion in rats were established by middle cerebral artery occlusion (MCAO) and treated by EA. The exosomes were extracted from peri-ischemic striatum and identified by exosomal biomarkers, and detected differentially expressed miRNAs with microarray chip. Primary stem cells were cultured, and oxygen–glucose deprivation and reperfusion (OGD/R) was used to mimic vitro ischemic injury. Results: The levels of exosomal biomarkers TSG101 and CD81 were increased in peri-ischemic striatum after EA treatment, and we revealed 25 differentially expressed miRNAs in isolated exosomes, of which miR-146b was selected for further analysis, and demonstrated that EA increased miR-146b expression and its inhibitors could block the effects. Subsequently, we confirmed that EA upregulated miR-146b expression to promote neural stem cells differentiation into neurons in peri-ischemic striatum. In vitro, it was verified that OGD/R hindered neural stem cells differentiation, and miR-146b inhibitors furtherly suppressed its differentiation, simultaneously NeuroD1 was involved in neural stem cells differentiation into neurons. Moreover, in vivo we found EA promoted NeuroD1-mediated neural stem cells differentiation via miR-146b. In addition, EA also could improve neurological deficits through miR-146b after ischemic stroke. Conclusion: EA promotes the differentiation of endogenous neural stem cells via exosomal miR-146b to improve neurological injury after ischemic stroke.
Collapse
Affiliation(s)
- Shenghang Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,The 900 Hospital of the Joint Logistic Team, Fuzhou, China
| | - Tingting Jin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lulu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- Fujian University of Traditional Chinese Medicine, The Academy of Rehabilitation Industry, Fuzhou, China
| | - Yuhao Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunjiao Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minguang Yang
- Fujian University of Traditional Chinese Medicine, The Academy of Rehabilitation Industry, Fuzhou, China
| | - Xiaojun He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
23
|
Bahlakeh G, Gorji A, Soltani H, Ghadiri T. MicroRNA alterations in neuropathologic cognitive disorders with an emphasis on dementia: Lessons from animal models. J Cell Physiol 2020; 236:806-823. [PMID: 32602584 DOI: 10.1002/jcp.29908] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cognitive dysfunction is a state of losing or having difficulties in remembering, learning, focusing, or making decisions that impact individual healthy life. Small single-stranded and nonprotein coding RNAs, microRNAs (miRNAs) participate actively in regulatory processes, incorporate cognitive signaling pathways, and intensely affect cognitive evolution. miRNAs exert their modification activities through translational or transcriptional processes. Reportedly, cognitive impairment and dementia are rising, especially in developing countries. Herein we provided a brief review of original studies addressing miRNA changes in the most common neurological diseases with a focus on dementia and Alzheimer's disease. It must be noted that an increase in the level of certain miRNAs but a decrease in other ones deteriorate cognitive performance. The current review revealed that induction of miR-214-3p, miR-302, miR-21, miR- 200b/c, miR-207, miR-132, miR-188-3p and 5p, and miR-873 improved cognitive impairment in various cognitive tasks. On the other hand, intentionally lowering the level of miR-34a, miR-124, miR-574, and miR-191a enhanced cognitive function and memory. Synaptic dysfunction is a core cause of cognitive dysfunction; miRNA-34, miRNA-34-c, miRNA-124, miRNA-188-5p, miRNA-210-5p, miRNA-335-3p, and miRNA-134 strongly influence synaptic-related mechanisms. The downregulation of miRNA-132 aggregates both amyloid and tau in tauopathy. Concerning the massive burden of neurological diseases worldwide, the future challenge is the translation of animal model knowledge into the detection of pathophysiological stages of neurocognitive disorders and designing efficient therapeutic strategies. While the delivery procedure of agomir or antagomir miRNAs into the brain is invasive and only applied in animal studies, finding a safe and specific delivery route is a priority.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Soltani
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.,Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Sadat-Ebrahimi SR, Aslanabadi N. Role of MicroRNAs in Diagnosis, Prognosis, and Treatment of Acute Heart Failure: Ambassadors from Intracellular Zone. Galen Med J 2020; 9:e1818. [PMID: 34466598 PMCID: PMC8343948 DOI: 10.31661/gmj.v9i0.1818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Acute heart failure (AHF) is one of the burdensome diseases affecting a considerable proportion of the population. Recently, it has been demonstrated that micro-ribonucleic acids (miRNAs) can exert diagnostic, prognostic, and therapeutic roles in a variety of conditions including AHF. These molecules play essential roles in HF-related pathophysiology, particularly, cardiac fibrosis, and hypertrophy. Some miRNAs namely miRNA-423-5p are reported to have both diagnostic and prognostic capabilities. However, some studies suggest that combination of biomarkers is a much better way to achieve the highest accuracy such as the combination of miRNAs and N-terminal pro b-type Natriuretic Peptide (NT pro-BNP). Therefore, this review discusses different views towards various roles of miRNAs in AHF.
Collapse
Affiliation(s)
- Seyyed-Reza Sadat-Ebrahimi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Aslanabadi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence to: Naser Aslanabadi, Professor of Cardiology, Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran Telephone Number: +989143110844 Email Address:
| |
Collapse
|
25
|
miR-27b promotes angiogenesis and skin repair in scalded rats through regulating VEGF-C expression. Lasers Med Sci 2020; 35:1577-1588. [PMID: 32170506 DOI: 10.1007/s10103-020-02991-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
In this study, the effects of miR-27b on angiogenesis in skin repair procedure in rats with deep II degree scald were explored. The rat model of deep II scald was established. miR-27b mimics and inhibitor were injected daily at the wound site for 3 weeks. The healing of scald was observed at 0, 3, 7, 14, and 21 days after the model was established, and the pathological changes of skin were observed by HE and Masson's trichrome stains. Skin tissues were taken 14 days after the operation; CD31 and Ki-67 immunohistochemistry was exerted to evaluate neovascularization and proliferation. Human microvascular endothelial cells (HMEC-1) cells were cultured in vitro. miR-27b mimics or inhibitor was transfected to construct over-expression or inhibition cell lines. MTT assay, scratch test, and angiogenesis test were used to evaluate cell proliferation, migration, and vascular regeneration. Finally, RT-PCR and Western blot were exerted to determine the expression of vascular endothelial growth factor C (VEGF-C), epidermal growth factor (EGF) mRNAs, and protein, respectively. Control, inhibitor, mi-NC, VEGF-C, inhibitor + si-NC, and inhibitor + VEGF-C siRNA groups were used to further analyze the mechanism of miR-27b on VEGF-C; the above experiments were repeated. In contrast to model group, miR-27b inhibitor could significantly promote the healing of scalded skin, alleviate the pathological status of scalded, and promote the angiogenesis and proliferation (p < 0.05). In vitro, miR-27b inhibitor evidently promoted cell proliferation, migration, and angiogenesis and increased the expression of VEGF-C, EGF genes, and protein, while miR-27b mimics significantly reversed the above trends. Further studies shown that downregulation of miR-27b expression can promote the proliferation, migration, and angiogenesis of HMEC-1 cells by promoting the expression of VEGF-C. miR-27b promotes angiogenesis and skin repair in scalded rats through regulating VEGF-C expression.
Collapse
|
26
|
Li L, Dong L, Xiao Z, He W, Zhao J, Pan H, Chu B, Cheng J, Wang H. Integrated analysis of the proteome and transcriptome in a MCAO mouse model revealed the molecular landscape during stroke progression. J Adv Res 2020; 24:13-27. [PMID: 32181013 PMCID: PMC7063112 DOI: 10.1016/j.jare.2020.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
DIA proteomics was applied to MCAO mice detection for the first time. Proteomics and bioinformatics revealed relationship between stroke process and immunity, especially inflammation. C3, Apoa4 and S100a9 were highlighted as a marker or drug targets for stroke.
Strokes usually results in long-term disability and death, and they occur worldwide. Recently, increased research on both on the physiopathological mechanisms and the transcriptome during stroke progression, have highlighted the relationship between stroke progression and immunity, with a special focus on inflammation. Here, we applied proteome analysis to a middle carotid artery occlusion (MCAO) mouse model at 0 h, 6 h, 12 h and 24 h, in which proteome profiling was performed with 23 samples, and 41 differentially expressed proteins (DEPs) were identified. Bioinformatics studies on our data revealed the importance of the immune response and particularly identified the inflammatory response, cytokine- cytokine receptor interactions, the innate immune response and reactive oxygen species (ROS) during stroke progression. In addition, we compared our data with multiple gene expression omnibus (GEO) datasets with and without a time series, in which similar pathways were identified, and three proteins, C3, Apoa4 and S100a9, were highlighted as markers or drug targets for stroke; these three proteins were significantly upregulated in the MCAO model, both in our proteomic data and in the GEO database.
Collapse
Affiliation(s)
- Litao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Lipeng Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Zhen Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Jingru Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Henan Pan
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China.,North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Bao Chu
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Jinming Cheng
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
27
|
Zhou T, Wang S, Lu K, Yin C. Long Non-Coding RNA SNHG7 Alleviates Oxygen and Glucose Deprivation/Reoxygenation-Induced Neuronal Injury by Modulating miR-9/SIRT1 Axis in PC12 Cells: Potential Role in Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:2837-2848. [PMID: 33262598 PMCID: PMC7700012 DOI: 10.2147/ndt.s273421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The roles of long non-coding RNA (lncRNAs) in ischemic stroke (IS) have been widely illustrated. Here, we focused on the function and mechanism of lncRNA SNHG7 in IS. METHODS Middle cerebral artery occlusion (MCAO) was used for inducing mice to establish IS models in vivo. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used for treating PC12 cells to establish IS models in vitro. Relative expression of SNHG7 and miR-9 was determined by qRT-PCR. The neuronal injury was assessed by measuring relative activity of ROS, malondialdehyde (MDA) level and cell viability. Cell viability was determined by MTT assay. Dual-luciferase reporter (DLR) assay was employed to test the target of SNHG7 or miR-9. Western blot was used to determine the protein expression of SIRT1. Apoptosis rate was measured by flow cytometry. RESULTS SNHG7 was down-regulated and miR-9 was up-regulated by MCAO treatment in brain tissues of mice and by OGD/R treatment in PC12 cells. Overexpression of SNHG7 or suppression of miR-9 decreased the relative activity of ROS and the MDA level as well as enhancing cell viability, and SNHG7 reduced apoptosis rate in OGD/R-induced PC12 cells (IS cells). MiR-9 was targeted by SNHG7 and SIRT1 was targeted by miR-9. The protein expression of SIRT1 was reduced by OGD/R treatment in PC12 cells. The suppressive effects of SNHG7 on the relative activity of ROS, the MDA level and apoptosis rate as well as the promotion effect of SNHG7 on cell viability were reversed by miR-9 mimics or sh-SIRT1 in IS cells. CONCLUSION LncRNA SNHG7 alleviated OGD/R-induced neuronal injury by mediating miR-9/SIRT1 axis in vitro.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery, Zibo First Hospital, Zibo City 255200, People's Republic of China
| | - Shuai Wang
- Department of Neurosurgery, Zibo First Hospital, Zibo City 255200, People's Republic of China
| | - Kai Lu
- Department of Neurology, Liaocheng Third People's Hospital, Liaocheng City 252000, People's Republic of China
| | - Chunhui Yin
- Department of Intervention Clinic, Weifang Hospital of Traditional Chinese Medicine, Weifang City 261000, People's Republic of China
| |
Collapse
|
28
|
Up-Regulated MicroRNA-27b Promotes Adipocyte Differentiation via Induction of Acyl-CoA Thioesterase 2 Expression. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2916243. [PMID: 31930115 PMCID: PMC6942750 DOI: 10.1155/2019/2916243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by a spectrum of liver pathologies, from simple steatosis to steatohepatitis. Recent studies have increasingly noted the aberrant expression of microRNAs closely related to NAFLD pathologies. We have previously shown the presence of increased levels of microRNA-27b (miR-27b) in patients with NAFLD. In this study, we investigated the role of miR-27b in NAFLD by examining the impact of up-regulated miR-27b on the differentiation of preadipocytes into mature adipocytes. We found that miR-27b-3p remarkably enhances the adipocyte differentiation of 3T3-L1 cells associated with lipid accumulation and intracellular triglyceride contents. Furthermore, we have demonstrated not only that miR-27b-3p induces acyl-CoA thioesterase 2 (ACOT2) expression in 3T3-L1 cells, but also that the knockdown of ACOT2 suppresses lipid accumulation and adipocyte differentiation in both the presence and absence of miR-27b-3p treatment. Our data strongly suggest that the miR-27b-ACOT2 axis is an important pathway in adipocyte differentiation and may play a role in the pathogenesis of NAFLD.
Collapse
|
29
|
Peng H, Yang H, Xiang X, Li S. ΜicroRNA-221 participates in cerebral ischemic stroke by modulating endothelial cell function by regulating the PTEN/PI3K/AKT pathway. Exp Ther Med 2019; 19:443-450. [PMID: 31885694 PMCID: PMC6913279 DOI: 10.3892/etm.2019.8263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022] Open
Abstract
An effective method to improve the blood supply of brain tissue is by angiogenesis, which is crucial for the prognosis of patients with cerebral ischemic stroke (CIS). Therefore, angiogenesis has been a focus of CIS research in recent years. The present study aimed to investigate the expression of microRNA (miR)-221 in patients with CIS and to explore the effect of miR-221 on endothelial cell function. The level of miR-221 was detected using reverse transcription-quantitative PCR (RT-qPCR). The relationship between miR-221 and phosphatase and tensin homolog (PTEN) was predicted and confirmed by bioinformatics and dual luciferase reporter assay. Cell viability, migration and invasion, and cell apoptosis were determined using MTT assay, Transwell assay and flow cytometry respectively. Tube formation in human umbilical vein endothelial cells (HUVECs) was determined by performing the tube formation assay. In addition, protein levels were measured using western blot analysis. The results of the current study indicated that miR-221 levels were significantly decreased in the peripheral blood of patients with CIS. PTEN was confirmed to be a direct target of miR-221. Downregulation of miR-221 significantly inhibited the function of HUVECs as evidenced by the decreased cell viability, migration and invasion with increased cell apoptosis and tube formation inhibition. miR-221 upregulation produced the reverse effects, whilst all the effects of miR-221 upregulation on HUVECs were reversed by PTEN overexpression. The PI3K/AKT pathway was identified to be involved in the regulation of miR-221 on HUVECs. In conclusion, miR-221 was downregulated in CIS patients, and it promoted the function of HUVECs by regulating the PTEN/PI3K/AKT pathway in vitro, suggesting the ability to promote angiogenesis. Therefore, miR-221 may be a novel and promising therapeutic target for CIS treatment.
Collapse
Affiliation(s)
- Han Peng
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Xin Xiang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Shenggang Li
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
30
|
Wang Z, Yuan Y, Zhang Z, Ding K. Inhibition of miRNA-27b enhances neurogenesis via AMPK activation in a mouse ischemic stroke model. FEBS Open Bio 2019; 9:859-869. [PMID: 30974042 PMCID: PMC6487723 DOI: 10.1002/2211-5463.12614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
Stroke is a leading cause of death and disability, but treatment options remain limited. Recent studies have suggested that cerebral ischemia‐induced neurogenesis plays a vital role in post‐stroke repair. Overactivation of AMP‐activated protein kinase (AMPK), a master sensor of energy balance, has been reported to exacerbate neuron apoptosis, but the role of chronic AMPK stimulus in post‐stroke recovery remains unclear. MicroRNAs have emerged as regulators of neurogenesis and have been reported to be involved in neurological function. In this study, we verified that miR‐27b directly targets AMPK and inhibits AMPK expression. In cultured neural stem cells, miR‐27b inhibitor improved proliferation and differentiation via the AMPK signaling pathway, but did not have an obvious effect on cell viability under oxygen and glucose deprivation conditions. In a mouse middle cerebral artery occlusion model, administration of miR‐27b inhibitor significantly enhanced behavioral function recovery and spatial memory. Up‐regulation of neurogenesis was observed both in the subventricular zone and in the hippocampal dentate gyrus. Collectively, our data suggest that miR‐27b inhibition promotes recovery after ischemic stroke by regulating AMPK activity. These findings may facilitate the development of novel therapeutic strategies for stroke.
Collapse
Affiliation(s)
- Zhengang Wang
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China
| | - Yimei Yuan
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, China
| | - Zhaoguang Zhang
- Department of Ultrasonography, Affiliated Hospital of Weifang Medical University, China
| | - Kuiying Ding
- Technology Center, Weifang Entry-exit Inspection and Quarantine Bureau, China
| |
Collapse
|
31
|
Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019; 317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.
Collapse
Affiliation(s)
- Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|