1
|
Kitase Y, Madurai NK, Boyd RJ, Gerner G, Bibic A, McCallion AS, Chin EM, Robinson S, Jantzie LL. CXCR2 immunomodulatory therapy protects against microstructural white matter injury and gait abnormalities but does not mitigate deficits of cognition in a preclinical model of cerebral palsy. J Neurochem 2025; 169:e16253. [PMID: 39680469 PMCID: PMC11879638 DOI: 10.1111/jnc.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
Abstract
Minimizing central nervous system (CNS) injury from preterm birth depends upon understanding the critical pathways that underlie essential neurodevelopmental and CNS pathophysiology. Signaling by chemokine (C-X-C motif) ligand 1 (CXCL1) through its cognate receptor, CXCR2 [(C-X-C motif) receptor 2] is essential for neurodevelopment. Increased CXCR2 signaling, however, is implicated in a variety of uterine and neuropathologies, and their role in the CNS injury associated with perinatal brain injury is poorly defined. To evaluate the long-term efficacy of CXCR2 blockade in functional repair of brain injury secondary to chorioamnionitis (CHORIO), we used an established preclinical rat model of cerebral palsy. We tested the hypothesis that transient postnatal CXCR2 antagonism with SB225002 would reduce gait deficits, hypermobility, hyperactivity, and disinhibition concomitant with repair of functional and anatomical white and gray matter injury. CHORIO was induced in pregnant Sprague Dawley rats on embryonic day 18 (E18). SB225002 (3 mg/kg) was administered intraperitoneally from postnatal day 1 (P1)-P5. Rats were aged to adulthood and tested for gait, open-field behavior and cognitive and executive function deficits using a touchscreen cognitive assessment platform. Results show that transient CXCR2 blockade attenuated microstructural white matter injury after CHORIO consistent with improved anatomical connectivity, and mitigated deficits in gait coordination, posture, balance, paw placement, and stepping (p < 0.05). Animals with CHORIO were hyperactive and hypermobile with fMRI deficits in neural circuitry central to cognition. However, CXCR2 antagonism in CHORIO animals did not normalize open-field behavior, neural activity, or cognition on a touchscreen task of discrimination learning (all p > 0.05). Studies in CXCR2 knockout mice confirmed significantly impaired cognitive performance independent of CHORIO. Taken together, transient postnatal blockade of CXCR2 ameliorates aspects of the lasting neural injury after CHORIO including normalizing gait deficits and white matter injury. However, improvement in essential functional and cognitive domains are not achieved limiting the utility of this therapeutic approach for treatment of perinatal brain injury. This study emphasizes the complex, multi-faceted role of chemokines in typical neurodevelopment, circuit formation, neural network function, and injury response.
Collapse
Affiliation(s)
- Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nethra K. Madurai
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel J. Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gwendolyn Gerner
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adnan Bibic
- Division of MR Research, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- FM Kirby Research Center, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Andrew S. McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric M. Chin
- Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shenandoah Robinson
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Zimmerman AJ, Serrano-Rodriguez A, Sun M, Wilson SJ, Linsenbardt DN, Brigman JL, Weick JP. Knockout of AMPA receptor binding protein Neuron-specific gene 2 (NSG2) enhances associative learning and cognitive flexibility. Mol Brain 2024; 17:95. [PMID: 39695712 DOI: 10.1186/s13041-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
Affiliation(s)
- Amber J Zimmerman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
- Present Address: Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Antonio Serrano-Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Melody Sun
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Sandy J Wilson
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - David N Linsenbardt
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Zimmerman AJ, Serrano-Rodriguez A, Wilson SJ, Linsenbardt DN, Brigman JL, Weick J. Knockout of AMPA receptor binding protein Neuron-Specific Gene 2 (NSG2) enhances associative learning and cognitive flexibility. RESEARCH SQUARE 2024:rs.3.rs-4790348. [PMID: 39257983 PMCID: PMC11384823 DOI: 10.21203/rs.3.rs-4790348/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
|
4
|
Licheri V, Chandrasekaran J, Kenton JA, Bird CW, Valenzuela CF, Brigman JL. Optogenetic stimulation of corticostriatal circuits improves behavioral flexibility in mice with prenatal alcohol exposure. Neuropharmacology 2024; 247:109860. [PMID: 38336243 PMCID: PMC10901293 DOI: 10.1016/j.neuropharm.2024.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common preventable form of developmental and neurobehavioral disability. Animal models have demonstrated that even low to moderate prenatal alcohol exposure (PAE) is sufficient to impair behavioral flexibility in multiple domains. Previously, utilizing a moderate limited access drinking in the dark paradigm, we have shown that PAE 1) impairs touchscreen pairwise visual reversal in male adult offspring 2) leads to small but significant decreases in orbitofrontal (OFC) firing rates 3) significantly increases dorsal striatum (dS) activity and 4) aberrantly sustains OFC-dS synchrony across early reversal. In the current study, we examined whether optogenetic stimulation of OFC-dS projection neurons would be sufficient to rescue the behavioral inflexibility induced by PAE in male C57BL/6J mice. Following discrimination learning, we targeted OFC-dS projections using a retrograde adeno-associated virus (AAV) delivered to the dS which expressed channel rhodopsin (ChR2). During the first four sessions of reversal learning, we delivered high frequency optogenetic stimulation to the OFC via optic fibers immediately following correct choice responses. Our results show that optogenetic stimulation significantly reduced the number of sessions, incorrect responses, and correction errors required to move past the early perseverative phase for both PAE and control mice. In addition, OFC-dS stimulation during early reversal learning reduced the increased sessions, correct and incorrect responding seen in PAE mice during the later learning phase of reversal but did not significantly alter later performance in control ChR2 mice. Taken together these results suggest that stimulation of OFC-dS projections can improve early reversal learning in PAE and control mice, and these improvements can persist even into later stages of the task days later. These studies provide an important foundation for future clinical approaches to improve executive control in those with FASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA.
| | | | - Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Clark W Bird
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
5
|
Chandrasekaran J, Caldwell KK, Brigman JL. Dynamic regulation of corticostriatal glutamatergic synaptic expression during reversal learning in male mice. Neurobiol Learn Mem 2024; 208:107892. [PMID: 38242226 PMCID: PMC10936219 DOI: 10.1016/j.nlm.2024.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Behavioral flexibility, one of the core executive functions of the brain, has been shown to be an essential skill for survival across species. Corticostriatal circuits play a critical role in mediating behavioral flexibility. The molecular mechanisms underlying these processes are still unclear. Here, we measured how synaptic glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartic acid receptor (NMDAR) expression dynamically changed during specific stages of learning and reversal. Following training to well-established stages of discrimination and reversal learning on a touchscreen visual task, lateral orbitofrontal cortex (OFC), dorsal striatum (dS) as well as medial prefrontal cortex (mPFC), basolateral amygdala (BLA) and piriform cortex (Pir) were micro dissected from male mouse brain and the expression of glutamatergic receptor subunits in the synaptic fraction were measured via immunoblotting. We found that the GluN2B subunit of NMDAR in the OFC remained stable during initial discrimination learning but significantly increased in the synaptic fraction during mid-reversal stages, the period during which the OFC has been shown to play a critical role in updating outcome expectancies. In contrast, both GluA1 and GluA2 subunits of the AMPAR significantly increased in the dS synaptic fraction as new associations were learned late in reversal. Expression of NMDAR and AMPAR subunits did not significantly differ across learning stages in any other brain region. Together, these findings further support the involvement of OFC-dS circuits in moderating well-learned associations and flexible behavior and suggest that dynamic synaptic expression of NMDAR and AMPAR in these circuits may play a role in mediating efficient learning during discrimination and the ability to update previously learned associations as environmental contingencies change.
Collapse
Affiliation(s)
- Jayapriya Chandrasekaran
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kevin K Caldwell
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM 87131, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque NM 87131, USA.
| |
Collapse
|
6
|
Mellios N, Papageorgiou G, Gorgievski V, Maxson G, Hernandez M, Otero M, Varangis M, Dell'Orco M, Perrone-Bizzozero N, Tzavara E. Regulation of neuronal circHomer1 biogenesis by PKA/CREB/ERK-mediated pathways and effects of glutamate and dopamine receptor blockade. RESEARCH SQUARE 2024:rs.3.rs-3547375. [PMID: 38260249 PMCID: PMC10802743 DOI: 10.21203/rs.3.rs-3547375/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
There are currently only very few efficacious drug treatments for SCZ and BD, none of which can significantly ameliorate cognitive symptoms. Thus, further research is needed in elucidating molecular pathways linked to cognitive function and antipsychotic treatment. Circular RNAs (circRNAs) are stable brain-enriched non-coding RNAs, derived from the covalent back-splicing of precursor mRNA molecules. CircHomer1 is a neuronal-enriched, activity-dependent circRNA, derived from the precursor of the long HOMER1B mRNA isoform, which is significantly downregulated in the prefrontal cortex of subjects with psychosis and is able to regulate cognitive function. Even though its relevance to psychiatric disorders and its role in brain function and synaptic plasticity have been well established, little is known about the molecular mechanisms that underlie circHomer1 biogenesis in response to neuronal activity and psychiatric drug treatment. Here we suggest that the RNA-binding protein (RBP) FUS positively regulates neuronal circHomer1 expression. Furthermore, we show that the MEK/ERK and PKA/CREB pathways positively regulate neuronal circHomer1 expression, as well as promote the transcription of Fus and Eif4a3, another RBP previously shown to activate circHomer1 biogenesis. We then demonstrate via both in vitro and in vivo studies that NMDA and mGluR5 receptors are upstream modulators of circHomer1 expression. Lastly, we report that in vivo D2R antagonism increases circHomer1 expression, whereas 5HT2AR blockade reduces circHomer1 levels in multiple brain regions. Taken together, this study allows us to gain novel insights into the molecular circuits that underlie the biogenesis of a psychiatric disease-associated circRNA.
Collapse
|
7
|
Stock AK, Werner A, Kuntke P, Petasch MS, Bensmann W, Zink N, Koyun AH, Quednow BB, Beste C. Gamma-Aminobutyric Acid and Glutamate Concentrations in the Striatum and Anterior Cingulate Cortex Not Found to Be Associated with Cognitive Flexibility. Brain Sci 2023; 13:1192. [PMID: 37626548 PMCID: PMC10452168 DOI: 10.3390/brainsci13081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Behavioral flexibility and goal-directed behavior heavily depend on fronto-striatal networks. Within these circuits, gamma-aminobutyric acid (GABA) and glutamate play an important role in (motor) response inhibition, but it has remained largely unclear whether they are also relevant for cognitive inhibition. We hence investigated the functional role of these transmitters for cognitive inhibition during cognitive flexibility. Healthy young adults performed two paradigms assessing different aspects of cognitive flexibility. Magnetic resonance spectroscopy (MRS) was used to quantify GABA+ and total glutamate/glutamine (Glx) levels in the striatum and anterior cingulate cortex (ACC) referenced to N-acetylaspartate (NAA). We observed typical task switching and backward inhibition effects, but striatal and ACC concentrations of GABA+/NAA and Glx/NAA were not associated with cognitive flexibility in a functionally relevant manner. The assumption of null effects was underpinned by Bayesian testing. These findings suggest that behavioral and cognitive inhibition are functionally distinct faculties, that depend on (at least partly) different brain structures and neurotransmitter systems. While previous studies consistently demonstrated that motor response inhibition is modulated by ACC and striatal GABA levels, our results suggest that the functionally distinct cognitive inhibition required for successful switching is not, or at least to a much lesser degree, modulated by these factors.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
- Biopsychology, Department of Psychology, School of Science, TU Dresden, D-01062 Dresden, Germany
| | - Annett Werner
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, D-01309 Dresden, Germany; (A.W.); (P.K.)
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, D-01309 Dresden, Germany; (A.W.); (P.K.)
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| | - Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| | - Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| | - Boris B. Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zürich, Switzerland;
- Neuroscience Center Zurich, Swiss Federal Institute of Technology Zurich, University of Zurich, 8032 Zürich, Switzerland
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, D-01309 Dresden, Germany; (M.-S.P.); (W.B.); (N.Z.); (A.H.K.); (C.B.)
| |
Collapse
|
8
|
Ge Y, Wang YT. GluN2B-containing NMDARs in the mammalian brain: pharmacology, physiology, and pathology. Front Mol Neurosci 2023; 16:1190324. [PMID: 37324591 PMCID: PMC10264587 DOI: 10.3389/fnmol.2023.1190324] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) is critical for promoting physiological synaptic plasticity and neuronal viability. As a major subpopulation of the NMDAR, the GluN2B subunit-containing NMDARs have distinct pharmacological properties, physiological functions, and pathological relevance to neurological diseases compared with other NMDAR subtypes. In mature neurons, GluN2B-containing NMDARs are likely expressed as both diheteromeric and triheteromeric receptors, though the functional importance of each subpopulation has yet to be disentangled. Moreover, the C-terminal region of the GluN2B subunit forms structural complexes with multiple intracellular signaling proteins. These protein complexes play critical roles in both activity-dependent synaptic plasticity and neuronal survival and death signaling, thus serving as the molecular substrates underlying multiple physiological functions. Accordingly, dysregulation of GluN2B-containing NMDARs and/or their downstream signaling pathways has been implicated in neurological diseases, and various strategies to reverse these deficits have been investigated. In this article, we provide an overview of GluN2B-containing NMDAR pharmacology and its key physiological functions, highlighting the importance of this receptor subtype during both health and disease states.
Collapse
Affiliation(s)
- Yang Ge
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Memar S, Jiang E, Prado VF, Saksida LM, Bussey TJ, Prado MAM. Open science and data sharing in cognitive neuroscience with MouseBytes and MouseBytes. Sci Data 2023; 10:210. [PMID: 37059739 PMCID: PMC10104860 DOI: 10.1038/s41597-023-02106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
Open access to rodent cognitive data has lagged behind the rapid generation of large open-access datasets in other areas of neuroscience, such as neuroimaging and genomics. One contributing factor has been the absence of uniform standardization in experiments and data output, an issue that has particularly plagued studies in animal models. Touchscreen-automated cognitive testing of animal models allows standardized outputs that are compatible with open-access sharing. Touchscreen datasets can be combined with different neuro-technologies such as fiber photometry, miniscopes, optogenetics, and MRI to evaluate the relationship between neural activity and behavior. Here we describe a platform that allows deposition of these data into an open-access repository. This platform, called MouseBytes, is a web-based repository that enables researchers to store, share, visualize, and analyze cognitive data. Here we present the architecture, structure, and the essential infrastructure behind MouseBytes. In addition, we describe MouseBytes+, a database that allows data from complementary neuro-technologies such as imaging and photometry to be easily integrated with behavioral data in MouseBytes to support multi-modal behavioral analysis.
Collapse
Affiliation(s)
- Sara Memar
- BrainsCAN, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
- Robarts Research Institute, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
| | - Eric Jiang
- BrainsCAN, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Vania F Prado
- BrainsCAN, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Lisa M Saksida
- BrainsCAN, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Timothy J Bussey
- BrainsCAN, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
- Robarts Research Institute, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
| | - Marco A M Prado
- BrainsCAN, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
- Robarts Research Institute, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
10
|
Nava-Gómez L, Calero-Vargas I, Higinio-Rodríguez F, Vázquez-Prieto B, Olivares-Moreno R, Ortiz-Retana J, Aranda P, Hernández-Chan N, Rojas-Piloni G, Alcauter S, López-Hidalgo M. AGING-ASSOCIATED COGNITIVE DECLINE IS REVERSED BY D-SERINE SUPPLEMENTATION. eNeuro 2022; 9:ENEURO.0176-22.2022. [PMID: 35584913 PMCID: PMC9186414 DOI: 10.1523/eneuro.0176-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Brain aging is a natural process that involves structural and functional changes that lead to cognitive decline, even in healthy subjects. This detriment has been associated with N-methyl-D-aspartate receptor (NMDAR) hypofunction due to a reduction in the brain levels of D-serine, the endogenous NMDAR co-agonist. However, it is not clear if D-serine supplementation could be used as an intervention to reduce or reverse age-related brain alterations. In the present work, we aimed to analyze the D-serine effect on aging-associated alterations in cellular and large-scale brain systems that could support cognitive flexibility in rats. We found that D-serine supplementation reverts the age-related decline in cognitive flexibility, frontal dendritic spine density, and partially restored large-scale functional connectivity without inducing nephrotoxicity; instead, D-serine restored the thickness of the renal epithelial cells that were affected by age. Our results suggest that D-serine could be used as a therapeutic target to reverse age-related brain alterations.SIGNIFICANT STATEMENTAge-related behavioral changes in cognitive performance occur as a physiological process of aging. Then, it is important to explore possible therapeutics to decrease, retard or reverse aging effects on the brain. NMDA receptor hypofunction contributes to the aging-associated cognitive decline. In the aged brain, there is a reduction in the brain levels of the NMDAR co-agonist, D-Serine. However, it is unclear if chronic D-serine supplementation could revert the age-detriment in brain functions. Our results show that D-serine supplementation reverts the age-associated decrease in cognitive flexibility, functional brain connectivity, and neuronal morphology. Our findings raise the possibility that restoring the brain levels of D-serine could be used as a therapeutic target to recover brain alterations associated with aging.
Collapse
Affiliation(s)
- L Nava-Gómez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Facultad de Medicina. UAQ
| | - I Calero-Vargas
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - F Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - B Vázquez-Prieto
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - R Olivares-Moreno
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - J Ortiz-Retana
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - P Aranda
- Facultad de Ciencias Naturales, UAQ
| | | | - G Rojas-Piloni
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - S Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - M López-Hidalgo
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla. UNAM
| |
Collapse
|
11
|
Adhikari A, Buchanan FKB, Fenton TA, Cameron DL, Halmai JANM, Copping NA, Fink KD, Silverman JL. Touchscreen Cognitive Deficits, Hyperexcitability, and Hyperactivity in Males and Females Using Two Models of Cdkl5 Deficiency. Hum Mol Genet 2022; 31:3032-3050. [PMID: 35445702 PMCID: PMC9476626 DOI: 10.1093/hmg/ddac091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Many neurodevelopmental disorders (NDDs) are the result of mutations on the X chromosome. One severe NDD resulting from mutations on the X chromosome is CDKL5 deficiency disorder (CDD). CDD is an epigenetic, X-linked NDD characterized by intellectual disability (ID), pervasive seizures and severe sleep disruption, including recurring hospitalizations. CDD occurs at a 4:1 ratio, with a female bias. CDD is driven by the loss of cyclin-dependent kinase-like 5 (CDKL5), a serine/threonine kinase that is essential for typical brain development, synapse formation and signal transmission. Previous studies focused on male subjects from animal models, likely to avoid the complexity of X mosaicism. For the first time, we report translationally relevant behavioral phenotypes in young adult (8–20 weeks) females and males with robust signal size, including impairments in learning and memory, substantial hyperactivity and increased susceptibility to seizures/reduced seizure thresholds, in both sexes, and in two models of CDD preclinical mice, one with a general loss-of-function mutation and one that is a patient-derived mutation.
Collapse
Affiliation(s)
- Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Fiona K B Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - David L Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Julian A N M Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Nycole A Copping
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| | - Kyle D Fink
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Neurology, University of California Davis School of Medicine, Sacramento, CA.,Stem Cell Program and Gene Therapy Center, University of California Davis School of Medicine, Sacramento, CA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA.,Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA
| |
Collapse
|
12
|
Hafez AK, Zimmerman AJ, Papageorgiou G, Chandrasekaran J, Amoah SK, Lin R, Lozano E, Pierotti C, Dell'Orco M, Hartley BJ, Alural B, Lalonde J, Esposito JM, Berretta S, Squassina A, Chillotti C, Voloudakis G, Shao Z, Fullard JF, Brennand KJ, Turecki G, Roussos P, Perlis RH, Haggarty SJ, Perrone-Bizzozero N, Brigman JL, Mellios N. A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning. Cell Rep 2022; 38:110282. [PMID: 35045295 PMCID: PMC8809079 DOI: 10.1016/j.celrep.2021.110282] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/28/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Although circular RNAs (circRNAs) are enriched in the brain, their relevance for brain function and psychiatric disorders is poorly understood. Here, we show that circHomer1 is inversely associated with relative HOMER1B mRNA isoform levels in both the orbitofrontal cortex (OFC) and stem-cell-derived neuronal cultures of subjects with psychiatric disorders. We further demonstrate that in vivo circHomer1 knockdown (KD) within the OFC can inhibit the synaptic expression of Homer1b mRNA. Furthermore, we show that circHomer1 directly binds to Homer1b mRNA and that Homer1b-specific KD increases synaptic circHomer1 levels and improves OFC-mediated behavioral flexibility. Importantly, double circHomer1 and Homer1b in vivo co-KD results in a complete rescue in circHomer1-associated alterations in both chance reversal learning and synaptic gene expression. Lastly, we uncover an RNA-binding protein that can directly bind to circHomer1 and promote its biogenesis. Taken together, our data provide mechanistic insights into the importance of circRNAs in brain function and disease.
Collapse
Affiliation(s)
- Alexander K Hafez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Amber J Zimmerman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Grigorios Papageorgiou
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Stephen K Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rixing Lin
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Evelyn Lozano
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Caroline Pierotti
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michela Dell'Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Brigham J Hartley
- Pamela Sklar Division of Psychiatric Genomics, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Begüm Alural
- Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmin Lalonde
- Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Georgios Voloudakis
- Pamela Sklar Division of Psychiatric Genomics, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Pamela Sklar Division of Psychiatric Genomics, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
| | - John F Fullard
- Pamela Sklar Division of Psychiatric Genomics, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn Institute for Data Science and Genomic Technology, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Roy H Perlis
- Harvard Medical School, Department of Psychiatry, Boston, MA, USA; Center for Experimental Drugs and Diagnostics, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen J Haggarty
- Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
13
|
Licheri V, Chandrasekaran J, Bird CW, Valenzuela CF, Brigman JL. Sex-specific effect of prenatal alcohol exposure on N-methyl-D-aspartate receptor function in orbitofrontal cortex pyramidal neurons of mice. Alcohol Clin Exp Res 2021; 45:1994-2005. [PMID: 34523139 PMCID: PMC8602746 DOI: 10.1111/acer.14697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alcohol consumption during pregnancy can produce behavioral and cognitive deficits that persist into adulthood. These include impairments in executive functions, learning, planning, and cognitive flexibility. We have previously shown that moderate prenatal alcohol exposure (PAE) significantly impairs reversal learning, a measure of flexibility mediated across species by different brain areas that include the orbital frontal cortex (OFC). Reversal learning is likewise impaired by genetic or pharmacological inactivation of GluN2B subunit-containing N-methyl-D-aspartate receptors (NMDARs). In the current study, we tested the hypothesis that moderate PAE persistently alters the number and function of GluN2B subunit-containing NMDARs in OFC pyramidal neurons of adult mice. METHODS We used a rodent model of fetal alcohol spectrum disorders and left offspring undisturbed until adulthood. Using whole-cell, patch-clamp recordings, we assessed NMDAR function in slices from 90- to 100-day-old male and female PAE and control mice. Pharmacologically isolated NMDA receptor-mediated evoked excitatory postsynaptic currents (NMDA-eEPSCs) were recorded in the absence and presence of the GluN2B antagonist, Ro25-6981(1 µM). In a subset of littermates, we evaluated the level of GluN2B protein expression in the synaptic fraction using Western blotting technique. RESULTS Our results indicate that PAE females show significantly larger (~23%) NMDA-eEPSC amplitudes than controls, while PAE induced a significant decrease (~17%) in NMDA-eEPSC current density of pyramidal neurons recorded in slices from male mice. NMDA-eEPSC decay time was not affected in PAE-exposed mice from either sex. The contribution of GluN2B subunit-containing NMDARs to the eEPSCs was not significantly altered by PAE. Moreover, there were no significant changes in protein expression in the synaptic fraction of either PAE males or females. CONCLUSIONS These findings suggest that low-to-moderate PAE modulates NMDAR function in pyramidal neurons in a sex-specific manner, although we did not find evidence that the effect is mediated by dysfunction of synaptic GluN2B subunit-containing NMDARs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico
School of Medicine, Albuquerque NM, USA
| | | | - Clark W. Bird
- Department of Neurosciences, University of New Mexico
School of Medicine, Albuquerque NM, USA
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico
School of Medicine, Albuquerque NM, USA
- New Mexico Alcohol Research Center, UNM Health Sciences
Center, Albuquerque NM, USA
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico
School of Medicine, Albuquerque NM, USA
- New Mexico Alcohol Research Center, UNM Health Sciences
Center, Albuquerque NM, USA
| |
Collapse
|
14
|
Dannenhoffer CA, Robertson MM, Macht VA, Mooney SM, Boettiger CA, Robinson DL. Chronic alcohol exposure during critical developmental periods differentially impacts persistence of deficits in cognitive flexibility and related circuitry. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:117-173. [PMID: 34696872 DOI: 10.1016/bs.irn.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cognitive flexibility in decision making depends on prefrontal cortical function and is used by individuals to adapt to environmental changes in circumstances. Cognitive flexibility can be measured in the laboratory using a variety of discrete, translational tasks, including those that involve reversal learning and/or set-shifting ability. Distinct components of flexible behavior rely upon overlapping brain circuits, including different prefrontal substructures that have separable impacts on decision making. Cognitive flexibility is impaired after chronic alcohol exposure, particularly during development when the brain undergoes rapid maturation. This review examines how cognitive flexibility, as indexed by reversal and set-shifting tasks, is impacted by chronic alcohol exposure in adulthood, adolescent, and prenatal periods in humans and animal models. We also discuss areas for future study, including mechanisms that may contribute to the persistence of cognitive deficits after developmental alcohol exposure and the compacting consequences from exposure across multiple critical periods.
Collapse
Affiliation(s)
- C A Dannenhoffer
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - M M Robertson
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States
| | - Victoria A Macht
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - S M Mooney
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - C A Boettiger
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
15
|
Zhao X, Tran H, DeRosa H, Roderick RC, Kentner AC. Hidden talents: Poly (I:C)-induced maternal immune activation improves mouse visual discrimination performance and reversal learning in a sex-dependent manner. GENES BRAIN AND BEHAVIOR 2021; 20:e12755. [PMID: 34056840 DOI: 10.1111/gbb.12755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
While there is a strong focus on the negative consequences of maternal immune activation (MIA) on developing brains, very little attention is directed towards potential advantages of early life challenges. In this study, we utilized a polyinosine-polycytidylic acid (poly(I:C)) MIA model to test visual pairwise discrimination (PD) and reversal learning (RL) in mice using touchscreen technology. Significant sex differences emerged in that MIA reduced the latency for males to make a correct choice in the PD task while females reached criterion sooner, made fewer errors, and utilized fewer correction trials in RL compared to saline controls. These surprising improvements were accompanied by the sex-specific upregulation of several genes critical to cognitive functioning, indicative of compensatory plasticity in response to MIA. In contrast, when exposed to a 'two-hit' stress model (MIA + loss of the social component of environmental enrichment [EE]), mice did not display anhedonia but required an increased number of PD and RL correction trials. These animals also had significant reductions of CamK2a mRNA in the prefrontal cortex. Appropriate functioning of synaptic plasticity, via mediators such as this protein kinase and others, are critical for behavioral flexibility. Although EE has been implicated in, delaying the appearance of symptoms associated with certain brain disorders, these findings are in line with evidence that it also makes individuals more vulnerable to its loss. Overall, with the right 'dose', early life stress exposure can confer at least some functional advantages, which are lost when the number or magnitude of these exposures become too great.
Collapse
Affiliation(s)
- Xin Zhao
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Hieu Tran
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Holly DeRosa
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Ryland C Roderick
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Hervig ME, Fiddian L, Piilgaard L, Božič T, Blanco-Pozo M, Knudsen C, Olesen SF, Alsiö J, Robbins TW. Dissociable and Paradoxical Roles of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning. Cereb Cortex 2021; 30:1016-1029. [PMID: 31343680 PMCID: PMC7132932 DOI: 10.1093/cercor/bhz144] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/17/2019] [Accepted: 06/08/2019] [Indexed: 11/14/2022] Open
Abstract
Much evidence suggests that reversal learning is mediated by cortico-striatal circuitries with the orbitofrontal cortex (OFC) playing a prominent role. The OFC is a functionally heterogeneous region, but potential differential roles of lateral (lOFC) and medial (mOFC) portions in visual reversal learning have yet to be determined. We investigated the effects of pharmacological inactivation of mOFC and lOFC on a deterministic serial visual reversal learning task for rats. For reference, we also targeted other areas previously implicated in reversal learning: prelimbic (PrL) and infralimbic (IL) prefrontal cortex, and basolateral amygdala (BLA). Inactivating mOFC and lOFC produced opposite effects; lOFC impairing, and mOFC improving, performance in the early, perseverative phase specifically. Additionally, mOFC inactivation enhanced negative feedback sensitivity, while lOFC inactivation diminished feedback sensitivity in general. mOFC and lOFC inactivation also affected novel visual discrimination learning differently; lOFC inactivation paradoxically improved learning, and mOFC inactivation had no effect. We also observed dissociable roles of the OFC and the IL/PrL. Whereas the OFC inactivation affected only perseveration, IL/PrL inactivation improved learning overall. BLA inactivation did not affect perseveration, but improved the late phase of reversal learning. These results support opponent roles of the rodent mOFC and lOFC in deterministic visual reversal learning.
Collapse
Affiliation(s)
- M E Hervig
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark.,Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Bispebjerg, Copenhagen NV, Denmark
| | - L Fiddian
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - L Piilgaard
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - T Božič
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - M Blanco-Pozo
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - C Knudsen
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - S F Olesen
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - J Alsiö
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - T W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Kangas BD, Iturra-Mena AM, Robble MA, Luc OT, Potter D, Nickels S, Bergman J, Carlezon WA, Pizzagalli DA. Concurrent electrophysiological recording and cognitive testing in a rodent touchscreen environment. Sci Rep 2021; 11:11665. [PMID: 34083596 PMCID: PMC8175731 DOI: 10.1038/s41598-021-91091-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/18/2021] [Indexed: 02/04/2023] Open
Abstract
Challenges in therapeutics development for neuropsychiatric disorders can be attributed, in part, to a paucity of translational models capable of capturing relevant phenotypes across clinical populations and laboratory animals. Touch-sensitive procedures are increasingly used to develop innovative animal models that better align with testing conditions used in human participants. In addition, advances in electrophysiological techniques have identified neurophysiological signatures associated with characteristics of neuropsychiatric illness. The present studies integrated these methodologies by developing a rat flanker task with electrophysiological recordings based on reverse-translated protocols used in human electroencephalogram (EEG) studies of cognitive control. Various touchscreen-based stimuli were evaluated for their ability to efficiently gain stimulus control and advance to flanker test sessions. Optimized stimuli were then examined for their elicitation of prototypical visual evoked potentials (VEPs) across local field potential (LFP) wires and EEG skull screws. Of the stimuli evaluated, purple and green photographic stimuli were associated with efficient training and expected flanker interference effects. Orderly stimulus-locked outcomes were also observed in VEPs across LFP and EEG recordings. These studies along with others verify the feasibility of concurrent electrophysiological recordings and rodent touchscreen-based cognitive testing and encourage future use of this integrated approach in therapeutics development.
Collapse
Affiliation(s)
- Brian D. Kangas
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Ann M. Iturra-Mena
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Mykel A. Robble
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Oanh T. Luc
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - David Potter
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Stefanie Nickels
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Jack Bergman
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - William A. Carlezon
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Diego A. Pizzagalli
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| |
Collapse
|
18
|
Pascual Cuadrado D, Wierczeiko A, Hewel C, Gerber S, Lutz B. Dichotomic Hippocampal Transcriptome After Glutamatergic vs. GABAergic Deletion of the Cannabinoid CB1 Receptor. Front Synaptic Neurosci 2021; 13:660718. [PMID: 33897403 PMCID: PMC8060565 DOI: 10.3389/fnsyn.2021.660718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Brain homeostasis is the dynamic equilibrium whereby physiological parameters are kept actively within a specific range. The homeostatic range is not fixed and may change throughout the individual's lifespan, or may be transiently modified in the presence of severe perturbations. The endocannabinoid system has emerged as a safeguard of homeostasis, e.g., it modulates neurotransmission and protects neurons from prolonged or excessively strong activation. We used genetically engineered mouse lines that lack the cannabinoid type-1 receptor (CB1) either in dorsal telencephalic glutamatergic or in forebrain GABAergic neurons to create new allostatic states, resulting from alterations in the excitatory/inhibitory (E/I) balance. Previous studies with these two mouse lines have shown dichotomic results in the context of behavior, neuronal morphology, and electrophysiology. Thus, we aimed at analyzing the transcriptomic profile of the hippocampal CA region from these mice in the basal condition and after a mild behavioral stimulation (open field). Our results provide insights into the gene networks that compensate chronic E/I imbalances. Among these, there are differentially expressed genes involved in neuronal and synaptic functions, synaptic plasticity, and the regulation of behavior. Interestingly, some of these genes, e.g., Rab3b, Crhbp, and Kcnn2, and related pathways showed a dichotomic expression, i.e., they are up-regulated in one mutant line and down-regulated in the other one. Subsequent interrogation on the source of the alterations at transcript level were applied using exon-intron split analysis. However, no strong directions toward transcriptional or post-transcriptional regulation comparing both mouse lines were observed. Altogether, the dichotomic gene expression observed and their involved signaling pathways are of interest because they may act as “switches” to modulate the directionality of neural homeostasis, which then is relevant for pathologies, such as stress-related disorders and epilepsy.
Collapse
Affiliation(s)
- Diego Pascual Cuadrado
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Wierczeiko
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany
| | - Charlotte Hewel
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany
| |
Collapse
|
19
|
Alcohol exposure in utero disrupts cortico-striatal coordination required for behavioral flexibility. Neuropharmacology 2021; 188:108471. [PMID: 33618902 DOI: 10.1016/j.neuropharm.2021.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Deficits in behavioral flexibility are a hallmark of multiple psychiatric, neurological, and substance use disorders. These deficits are often marked by decreased function of the prefrontal cortex (PFC); however, the genesis of such executive deficits remains understudied. Here we report how the most preventable cause of developmental disability, in utero exposure to alcohol, alters cortico-striatal circuit activity leading to impairments in behavioral flexibility in adulthood. We utilized a translational touch-screen task coupled with in vivo electrophysiology in adult mice to examine single unit and coordinated activity of the lateral orbital frontal cortex (OFC) and dorsolateral striatum (DS) during flexible behavior. Prenatal alcohol exposure (PAE) decreased OFC, and increased DS, single unit activity during reversal learning and altered the number of choice responsive neurons in both regions. PAE also decreased coordinated activity within the OFC and DS as measured by oscillatory field activity and altered spike-field coupling. Furthermore, PAE led to sustained connectivity between regions past what was seen in control animals. These findings suggest that PAE causes altered coordination within and between the OFC and DS, promoting maladaptive perseveration. Our model suggests that in optimally functioning mice OFC disengages the DS and updates the newly changed reward contingency, whereas in PAE animals, aberrant and persistent OFC to DS signaling drives behavioral inflexibility during early reversal sessions. Together, these findings demonstrate how developmental exposure alters circuit-level activity leading to behavioral deficits and suggest a critical role for coordination of neural timing during behaviors requiring executive function.
Collapse
|
20
|
Luo J, Tan JM, Nithianantharajah J. A molecular insight into the dissociable regulation of associative learning and motivation by the synaptic protein neuroligin-1. BMC Biol 2020; 18:118. [PMID: 32921313 PMCID: PMC7646379 DOI: 10.1186/s12915-020-00848-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background In a changing environment, a challenge for the brain is to flexibly guide adaptive behavior towards survival. Complex behavior and the underlying neural computations emerge from the structural components of the brain across many levels: circuits, cells, and ultimately the signaling complex of proteins at synapses. In line with this logic, dynamic modification of synaptic strength or synaptic plasticity is widely considered the cellular level implementation for adaptive behavior such as learning and memory. Predominantly expressed at excitatory synapses, the postsynaptic cell-adhesion molecule neuroligin-1 (Nlgn1) forms trans-synaptic complexes with presynaptic neurexins. Extensive evidence supports that Nlgn1 is essential for NMDA receptor transmission and long-term potentiation (LTP), both of which are putative synaptic mechanisms underlying learning and memory. Here, employing a comprehensive battery of touchscreen-based cognitive assays, we asked whether impaired NMDA receptor transmission and LTP in mice lacking Nlgn1 does in fact disrupt decision-making. To this end, we addressed two key decision problems: (i) the ability to learn and exploit the associative structure of the environment and (ii) balancing the trade-off between potential rewards and costs, or positive and negative utilities of available actions. Results We found that the capacity to acquire complex associative structures and adjust learned associations was intact. However, loss of Nlgn1 alters motivation leading to a reduced willingness to overcome effort cost for reward and an increased willingness to exert effort to escape an aversive situation. We suggest Nlgn1 may be important for balancing the weighting on positive and negative utilities in reward-cost trade-off. Conclusions Our findings update canonical views of this key synaptic molecule in behavior and suggest Nlgn1 may be essential for regulating distinct cognitive processes underlying action selection. Our data demonstrate that learning and motivational computations can be dissociated within the same animal model, from a detailed behavioral dissection. Further, these results highlight the complexities in mapping synaptic mechanisms to their behavioral consequences, and the future challenge to elucidate how complex behavior emerges through different levels of neural hardware.
Collapse
Affiliation(s)
- Jiaqi Luo
- Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jessica M Tan
- Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
21
|
Kantak KM. Adolescent-onset vs. adult-onset cocaine use: Impact on cognitive functioning in animal models and opportunities for translation. Pharmacol Biochem Behav 2020; 196:172994. [PMID: 32659242 DOI: 10.1016/j.pbb.2020.172994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
Animal models are poised to make key contributions to the study of cognitive deficits associated with chronic cocaine use in people. Advantages of animal models include use of a longitudinal experimental design that can control for drug use history and onset-age, sex, drug consumption, and abstinence duration. Twenty-two studies were reviewed (13 in adult male rats, 5 in adolescent vs. adult male rats, 3 in adult male monkeys, and 1 in adult female monkeys), and it was demonstrated repeatedly that male animals with adult-onset cocaine self-administration exposure had impairments in sustained attention, decision making, stimulus-reward learning, working memory, and cognitive flexibility, but not habit learning and spatial learning and memory. These findings have translational relevance because adult cocaine users exhibit a similar range of cognitive deficits. In the limited number of studies available, male rats self-administering cocaine during adolescence were less susceptible than adults to impairment in cognitive flexibility, stimulus-reward learning, and decision making, but were more susceptible than adults to impairment in working memory, a finding also reported in the few studies performed in early-onset cocaine users. These findings suggest that animal models can help fill an unmet need for investigating important but yet-to-be-fully-addressed research questions in people. Research priorities include further investigation of differences between adolescents and adults as well as between males and females following chronic cocaine self-administration. A comprehensive understanding of the broad range of cognitive consequences of chronic cocaine use and the role of developmental plasticity can be of value for improving neuropsychological recovery efforts.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, United States of America.
| |
Collapse
|
22
|
Maxwell JR, Zimmerman AJ, Pavlik N, Newville JC, Carlin K, Robinson S, Brigman JL, Northington FJ, Jantzie LL. Neonatal Hypoxic-Ischemic Encephalopathy Yields Permanent Deficits in Learning Acquisition: A Preclinical Touchscreen Assessment. Front Pediatr 2020; 8:289. [PMID: 32582593 PMCID: PMC7291343 DOI: 10.3389/fped.2020.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) remains a common problem world-wide for infants born at term. The impact of HIE on long-term outcomes, especially into adulthood, is not well-described. To facilitate identification of biobehavioral biomarkers utilizing a translational platform, we sought to investigate the impact of HIE on executive function and cognitive outcomes into adulthood utilizing a murine model of HIE. HIE mice (unilateral common carotid artery occlusion to induce ischemia, followed by hypoxia with a FiO2 of 0.08 for 45 min) and control mice were tested on discrimination and reversal touchscreen tasks (using their noses) shown to be sensitive to loss of basal ganglia or cortical function, respectively. We hypothesized that the HIE injury would result in deficits in reversal learning, revealing complex cognitive and executive functioning impairments. Following HIE, mice had a mild discrimination impairment as measured by incorrect responses but were able to learn the paradigm to similar levels as controls. During reversal, HIE mice required significantly more total trials, errors and correction trials across the paradigm. Analysis of specific stages showed that reversal impairments in HIE were driven by significant increases in all measured parameters during the late learning, striatal-mediated portion of the task. Together, these results support the concept that HIE occurring during the neonatal period results in abnormal neurodevelopment that persists into adulthood, which can impact efficient associated learning. Further, these data show that utilization of an established model of HIE coupled with touchscreen learning provides valuable information for screening therapeutic interventions that could mitigate these deficits to improve the long-term outcomes of this vulnerable population.
Collapse
Affiliation(s)
- Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Amber J. Zimmerman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Nathaniel Pavlik
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
| | - Jessie C. Newville
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Katherine Carlin
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Frances J. Northington
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
23
|
Hervig ME, Piilgaard L, Božič T, Alsiö J, Robbins TW. Glutamatergic and Serotonergic Modulation of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning. ACTA ACUST UNITED AC 2020; 13:438-458. [PMID: 33613854 PMCID: PMC7872199 DOI: 10.1037/pne0000221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
Adapting behavior to a dynamic environment requires both steadiness when the environment is stable and behavioral flexibility in response to changes. Much evidence suggests that cognitive flexibility, which can be operationalized in reversal learning tasks, is mediated by cortico-striatal circuitries, with the orbitofrontal cortex (OFC) playing a prominent role. The OFC is a functionally heterogeneous region, and we have previously reported differential roles of lateral (lOFC) and medial (mOFC) regions in a touchscreen serial visual reversal learning task for rats using pharmacological inactivation. Here, we investigated the effects of pharmacological overactivation of these regions using a glutamate transporter 1 (GLT-1) inhibitor, dihydrokainate (DHK), which increases extracellular glutamate by blocking its reuptake. We also tested the impact of antagonism of the serotonin 2A receptor (5-HT2AR), which modulates glutamate action, in the mOFC and lOFC on the same task. Overactivation induced by DHK produced dissociable effects in the mOFC and lOFC, with more prominent effects in the mOFC, specifically improving performance in the early, perseveration phase. Intra-lOFC DHK increased the number of omitted responses without affecting errors. In contrast, blocking the 5-HT2AR in the lOFC impaired reversal learning overall, while mOFC 5-HT2AR blockade had no effect. These results further support dissociable roles of the rodent mOFC and lOFC in deterministic visual reversal learning and indicate that modulating glutamate transmission through blocking the GLT-1 and the 5-HT2AR have different roles in these two structures. This study further supports dissociable roles of specific orbitofrontal subregions, as well as glutamatergic and serotonergic transmission in these subregions, in cognitive flexibility. This knowledge will add to the understanding of specific neural mechanisms underlying inflexible behaviour across psychiatric disorders.
Collapse
Affiliation(s)
- Mona E Hervig
- Department of Psychology, University of Cambridge, and Department of Neuroscience, University of Copenhagen
| | - Louise Piilgaard
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| | - Tadej Božič
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| |
Collapse
|
24
|
Dumont JR, Salewski R, Beraldo F. Critical mass: The rise of a touchscreen technology community for rodent cognitive testing. GENES BRAIN AND BEHAVIOR 2020; 20:e12650. [PMID: 32141694 DOI: 10.1111/gbb.12650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The rise in the number of users and institutions utilizing the rodent touchscreen technology for cognitive testing over the past decade has prompted the need for knowledge mobilization and community building. To address the needs of the growing touchscreen community, the first international touchscreen symposium was hosted at Western University. Attendees from around the world attended talks from expert neuroscientists using touchscreens to examine a vast array of questions regarding cognition and the nervous system. In addition to the symposium, a subset of attendees was invited to partake in a hands-on training course where they received touchscreen training covering both hardware and software components. Beyond the two touchscreen events, virtual platforms have been developed to further support touchscreen users: (a) Mousebytes.ca, which includes a data repository of rodent touchscreen tasks, and (b) Touchscreencognition.org, an online community with numerous training and community resources, perhaps most notably a forum where members can ask and answer questions. The advantages of the rodent touchscreen technology for cognitive neuroscience research has allowed neuroscientists from diverse backgrounds to test specific cognitive processes using well-validated and standardized apparatus, contributing to its rise in popularity and its relevance to modern neuroscience research. The commitment of the touchscreen community to data, task development and information sharing not only ensures an expansive future of the use of rodent touchscreen technology but additionally, quality research that will increase translation from preclinical studies to clinical successes.
Collapse
Affiliation(s)
- Julie R Dumont
- BrainsCAN, University of Western Ontario, London, Ontario, Canada
| | - Ryan Salewski
- BrainsCAN, University of Western Ontario, London, Ontario, Canada
| | - Flavio Beraldo
- BrainsCAN, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
25
|
Jantzie LL, Maxwell JR, Newville JC, Yellowhair TR, Kitase Y, Madurai N, Ramachandra S, Bakhireva LN, Northington FJ, Gerner G, Tekes A, Milio LA, Brigman JL, Robinson S, Allan A. Prenatal opioid exposure: The next neonatal neuroinflammatory disease. Brain Behav Immun 2020; 84:45-58. [PMID: 31765790 PMCID: PMC7010550 DOI: 10.1016/j.bbi.2019.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 01/19/2023] Open
Abstract
The rates of opioid use disorder during pregnancy have more than quadrupled in the last decade, resulting in numerous infants suffering exposure to opioids during the perinatal period, a critical period of central nervous system (CNS) development. Despite increasing use, the characterization and definition of the molecular and cellular mechanisms of the long-term neurodevelopmental impacts of opioid exposure commencing in utero remains incomplete. Thus, in consideration of the looming public health crisis stemming from the multitude of infants with prenatal opioid exposure entering school age, we undertook an investigation of the effects of perinatal methadone exposure in a novel preclinical model. Specifically, we examined the effects of opioids on the developing brain to elucidate mechanisms of putative neural cell injury, to identify diagnostic biomarkers and to guide clinical studies of outcome and follow-up. We hypothesized that methadone would induce a pronounced inflammatory profile in both dams and their pups, and be associated with immune system dysfunction, sustained CNS injury, and altered cognition and executive function into adulthood. This investigation was conducted using a combination of cellular, molecular, biochemical, and clinically translatable biomarker, imaging and cognitive assessment platforms. Data reveal that perinatal methadone exposure increases inflammatory cytokines in the neonatal peripheral circulation, and reprograms and primes the immune system through sustained peripheral immune hyperreactivity. In the brain, perinatal methadone exposure not only increases chemokines and cytokines throughout a crucial developmental period, but also alters microglia morphology consistent with activation, and upregulates TLR4 and MyD88 mRNA. This increase in neuroinflammation coincides with reduced myelin basic protein and altered neurofilament expression, as well as reduced structural coherence and significantly decreased fractional anisotropy on diffusion tensor imaging. In addition to this microstructural brain injury, adult rats exposed to methadone in the perinatal period have significant impairment in associative learning and executive control as assessed using touchscreen technology. Collectively, these data reveal a distinct systemic and neuroinflammatory signature associated with prenatal methadone exposure, suggestive of an altered CNS microenvironment, dysregulated developmental homeostasis, complex concurrent neural injury, and imaging and cognitive findings consistent with clinical literature. Further investigation is required to define appropriate therapies targeted at the neural injury and improve the long-term outcomes for this exceedingly vulnerable patient population.
Collapse
Affiliation(s)
- Lauren L. Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Kennedy Krieger Institute, Baltimore, MD.,Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM.,Correspondence: Lauren L. Jantzie, PhD, Johns Hopkins University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, 600 N. Wolfe Street, CMSC Building Room 6-104A, Baltimore, MD 21287,
| | - Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Jessie C. Newville
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, NM.,Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Tracylyn R. Yellowhair
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yuma Kitase
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nethra Madurai
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sindhu Ramachandra
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ludmila N. Bakhireva
- Substance Use Research and Education (SURE) Center, University of New Mexico College of Pharmacy, Albuquerque, NM
| | | | - Gwendolyn Gerner
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Aylin Tekes
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorraine A. Milio
- Department of Obstetrics & Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrea Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
| |
Collapse
|
26
|
Marquardt K, Cavanagh JF, Brigman JL. Alcohol exposure in utero disrupts cortico-striatal coordination required for behavioral flexibility. Neuropharmacology 2019; 162:107832. [PMID: 31678398 DOI: 10.1016/j.neuropharm.2019.107832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
Abstract
Deficits in behavioral flexibility are a hallmark of multiple psychiatric, neurological, and substance use disorders. These deficits are often marked by decreased function of the prefrontal cortex (PFC); however, the genesis of such executive deficits remains understudied. Here we report how the most preventable cause of developmental disability, in utero exposure to alcohol, alters cortico-striatal circuit activity leading to impairments in behavioral flexibility in adulthood. We utilized a translational touch-screen task coupled with in vivo electrophysiology in adult mice to examine single unit and coordinated activity of the lateral orbital frontal cortex (OFC) and dorsolateral striatum (DS) during flexible behavior. Prenatal alcohol exposure (PAE) decreased OFC, and increased DS, single unit activity during reversal learning and altered the number of choice responsive neurons in both regions. PAE also decreased coordinated activity within the OFC and DS as measured by oscillatory field activity and altered spike-field coupling. Furthermore, PAE led to sustained connectivity between regions past what was seen in control animals. These findings suggest that PAE causes altered coordination within and between the OFC and DS, promoting maladaptive perseveration. Our model suggests that in optimally functioning mice OFC disengages the DS and updates the newly changed reward contingency, whereas in PAE animals, aberrant and persistent OFC to DS signaling drives behavioral inflexibility during early reversal sessions. Together, these findings demonstrate how developmental exposure alters circuit-level activity leading to behavioral deficits and suggest a critical role for coordination of neural timing during behaviors requiring executive function.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|