1
|
Zheng S, Yang L, Dai Q, Li X, Masuoka T, Lv J. Role of sirtuin 1 in depression‑induced coronary heart disease: Molecular pathways and therapeutic potential (Review). Biomed Rep 2025; 22:46. [PMID: 39882335 PMCID: PMC11775641 DOI: 10.3892/br.2025.1924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Depression and coronary heart disease (CHD) are two interconnected diseases that profoundly impact global health. Depression is both a complex psychiatric disorder and an established risk factor for CHD. Sirtuin 1 (SIRT1) is an enzyme that requires the cofactor nicotinamide adenine dinucleotide (NAD+) to perform its deacetylation function, and its involvement is crucial in reducing cardiovascular risks that are associated with depression. SIRT1 exerts its cardioprotective effects via modulating oxidative stress, inflammation and metabolic processes, all of which are central to the pathogenesis of CHD in individuals with depression. Through influencing these pathways, SIRT1 helps to reduce endothelial dysfunction, prevent the formation of atherosclerotic plaques and stabilize existing plaques, thereby decreasing the overall risk of CHD. The present review underscores the important role of SIRT1 in serving as a therapeutic intervention molecule for tackling cardiovascular complications stemming from depression. Furthermore, it highlights the need for further studies to clarify how SIRT1 influences both depression and CHD at the molecular level. The ultimate goal of this research will be to translate these findings into practical clinical intervention strategies.
Collapse
Affiliation(s)
- Shijie Zheng
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Linlin Yang
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Qiuting Dai
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Xiangyan Li
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Jianfeng Lv
- Department of Cardiology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443001, P.R. China
| |
Collapse
|
2
|
Shang X, Geng L, Wei HJ, Liu T, Che X, Li W, Liu Y, Shi XD, Li J, Teng X, Xu W. Analysis revealed the molecular mechanism of oxidative stress-autophagy-induced liver injury caused by high alkalinity: integrated whole hepatic transcriptome and metabolome. Front Immunol 2024; 15:1431224. [PMID: 39040116 PMCID: PMC11260628 DOI: 10.3389/fimmu.2024.1431224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction High-alkalinity water is a serious health hazard for fish and can cause oxidative stress and metabolic dysregulation in fish livers. However, the molecular mechanism of liver damage caused by high alkalinity in fish is unclear. Methods In this study, 180 carp were randomly divided into a control (C) group and a high-alkalinity (A25) group and were cultured for 56 days. High-alkalinity-induced liver injury was analysed using histopathological, whole-transcriptome, and metabolomic analyses. Results Many autophagic bodies and abundant mitochondrial membrane damage were observed in the A25 group. High alkalinity decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity and the total antioxidant capacity (T-AOC) and increased the malondialdehyde (MDA) content in liver tissues, causing oxidative stress in the liver. Transcriptome analysis revealed 61 differentially expressed microRNAs (miRNAs) and 4008 differentially expressed mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that mammalian target of rapamycin (mTOR), forkhead box O (FoxO), mitogen-activated protein kinase (MAPK), and the autophagy signalling pathway were the molecular mechanisms involved. High alkalinity causes oxidative stress and autophagy and results in autophagic damage in the liver. Bioinformatic predictions indicated that Unc-51 Like Kinase 2 (ULK2) was a potential target gene for miR-140-5p, demonstrating that high alkalinity triggered autophagy through the miR-140-5p-ULK2 axis. Metabolomic analysis revealed that the concentrations of cortisol 21-sulfate and beta-aminopropionitrile were significantly increased, while those of creatine and uracil were significantly decreased. Discussion The effects of high alkalinity on oxidative stress and autophagy injury in the liver were analysed using whole-transcriptome miRNA-mRNA networks and metabolomics approaches. Our study provides new insights into liver injury caused by highly alkaline water.
Collapse
Affiliation(s)
- Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Longwu Geng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Hai jun Wei
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Tianqi Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Xinghua Che
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Wang Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiao dan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Roh J, Jang JP, Oh T, Kim J, Lee B, Hong YS, Jang JH, Ko SK. Protective effect of hygrolansamycin C against corticosterone-induced toxicity and oxidative stress-mediated via autophagy and the MAPK signaling pathway. Pharmacol Rep 2024; 76:368-378. [PMID: 38498259 DOI: 10.1007/s43440-024-00572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Excessive stress, a major problem in modern societies, affects people of all ages worldwide. Corticosterone is one of the most abundant hormones secreted during stressful conditions and is associated with various dysfunctions in the body. In particular, we aimed to investigate the protective effects of hygrolansamycin C (HYGC) against corticosterone-induced cellular stress, a manifestation of excessive stress prevalent in contemporary societies. METHODS We isolated HYGC from Streptomyces sp. KCB17JA11 and subjected PC12 cells to corticosterone-induced stress. The effects of HYGC were assessed by measuring autophagy and the expression of mitogen-activated protein kinase (MAPK) phosphorylation-related genes. We used established cellular and molecular techniques to analyze protein levels and pathways. RESULTS HYGC effectively protected cells against corticosterone-induced injury. Specifically, it significantly reduced corticosterone-induced oxidative stress and inhibited the expression of autophagy-related proteins induced by corticosterone, which provided mechanistic insight into the protective effects of HYGC. At the signaling level, HYGC suppressed c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation and p38 activation. CONCLUSIONS HYGC is a promising candidate to counteract corticosterone-induced apoptosis and oxidative stress. Autophagy and MAPK pathway inhibition contribute to the protective effects of HYGC. Our findings highlight the potential of HYGC as a therapeutic agent for stress-related disorders and serve as a stepping stone for further exploration and development of stress management strategies.
Collapse
Affiliation(s)
- Jongtae Roh
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
| | - Taehoon Oh
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Jihong Kim
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Sung-Kyun Ko
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
4
|
Orhan C, Sahin E, Tuzcu M, Sahin N, Celik A, Ojalvo SP, Sylla S, Komorowski JR, Sahin K. Nicotinamide Riboside and Phycocyanin Oligopeptides Affect Stress Susceptibility in Chronic Corticosterone-Exposed Rats. Antioxidants (Basel) 2023; 12:1849. [PMID: 37891928 PMCID: PMC10604757 DOI: 10.3390/antiox12101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Phycocyanin oligopeptide (PC), a phytonutrient found in blue-green algae, has antioxidant and anti-inflammatory properties. This study explored the effects of NR, PC, and their combination on the telomere length as well as inflammatory and antioxidant status of rats under chronic stress conditions (CS). Forty-nine rats were allocated into seven groups: control, chronic stress (CS), CS with NR (26.44 mg/kg), a low dose of 2.64 mg/kg of PC (PC-LD), or a high dose of 26.44 mg/kg PC (PC-HD), NR + PC-LD, and NR + PC-HF. The rats were given daily corticosterone injections (40 mg/kg) to induce stress conditions, or NR and PC were orally administered for 21 days. NR and PC supplementation, particularly NR plus PC, increased the serum antioxidant enzyme activities, hepatic nicotinamide adenine (NAD+) content, and telomere length (p < 0.001 for all) compared to the CS group. The levels of serum malondialdehyde (MDA), liver interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), IL-1β, and IL-8 were reduced under the CS condition (p < 0.001). In addition, CS decreased the levels of hepatic telomere-related proteins and sirtuins (SIRT1 and 3), whereas administration of NR and PC or their combination to CS-exposed rats increased the levels of telomere-related proteins (e.g., POT1b, TRF1 and TRF2), SIRT3 and NAMPT (p < 0.05). In conclusion, NR and PC, especially their combination, can alleviate metabolic abnormalities by enhancing hepatic cytokines, SIRT3, NAMPT, and NAD+ levels in CS-exposed rats. More research is needed to further elucidate the potential health effects of the combination of NR and PC in humans.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey;
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Abdullah Celik
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Sara Perez Ojalvo
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Sarah Sylla
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - James R. Komorowski
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| |
Collapse
|
5
|
Kouhnavardi S, Cabatic M, Mañas-Padilla MC, Malabanan MA, Smani T, Cicvaric A, Muñoz Aranzalez EA, Koenig X, Urban E, Lubec G, Castilla-Ortega E, Monje FJ. miRNA-132/212 Deficiency Disrupts Selective Corticosterone Modulation of Dorsal vs. Ventral Hippocampal Metaplasticity. Int J Mol Sci 2023; 24:9565. [PMID: 37298523 PMCID: PMC10253409 DOI: 10.3390/ijms24119565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Cortisol is a potent human steroid hormone that plays key roles in the central nervous system, influencing processes such as brain neuronal synaptic plasticity and regulating the expression of emotional and behavioral responses. The relevance of cortisol stands out in the disease, as its dysregulation is associated with debilitating conditions such as Alzheimer's Disease, chronic stress, anxiety and depression. Among other brain regions, cortisol importantly influences the function of the hippocampus, a structure central for memory and emotional information processing. The mechanisms fine-tuning the different synaptic responses of the hippocampus to steroid hormone signaling remain, however, poorly understood. Using ex vivo electrophysiology and wild type (WT) and miR-132/miR-212 microRNAs knockout (miRNA-132/212-/-) mice, we examined the effects of corticosterone (the rodent's equivalent to cortisol in humans) on the synaptic properties of the dorsal and ventral hippocampus. In WT mice, corticosterone predominantly inhibited metaplasticity in the dorsal WT hippocampi, whereas it significantly dysregulated both synaptic transmission and metaplasticity at dorsal and ventral regions of miR-132/212-/- hippocampi. Western blotting further revealed significantly augmented levels of endogenous CREB and a significant CREB reduction in response to corticosterone only in miR-132/212-/- hippocampi. Sirt1 levels were also endogenously enhanced in the miR-132/212-/- hippocampi but unaltered by corticosterone, whereas the levels of phospo-MSK1 were only reduced by corticosterone in WT, not in miR-132/212-/- hippocampi. In behavioral studies using the elevated plus maze, miRNA-132/212-/- mice further showed reduced anxiety-like behavior. These observations propose miRNA-132/212 as potential region-selective regulators of the effects of steroid hormones on hippocampal functions, thus likely fine-tuning hippocampus-dependent memory and emotional processing.
Collapse
Affiliation(s)
- Shima Kouhnavardi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maureen Cabatic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Marife-Astrid Malabanan
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, 41013 Seville, Spain
| | - Ana Cicvaric
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Edison Alejandro Muñoz Aranzalez
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ernst Urban
- Department for Pharmaceutical Sciences, Josef-Holaubek-Platz 2, 2D 303, 1090 Vienna, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Chen W, Mehlkop O, Scharn A, Nolte H, Klemm P, Henschke S, Steuernagel L, Sotelo-Hitschfeld T, Kaya E, Wunderlich CM, Langer T, Kononenko NL, Giavalisco P, Brüning JC. Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation. Cell Metab 2023; 35:786-806.e13. [PMID: 37075752 PMCID: PMC10173804 DOI: 10.1016/j.cmet.2023.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.
Collapse
Affiliation(s)
- Weiyi Chen
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Oliver Mehlkop
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Alexandra Scharn
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Paul Klemm
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sinika Henschke
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Lukas Steuernagel
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Tamara Sotelo-Hitschfeld
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Ecem Kaya
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Claudia Maria Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Natalia L Kononenko
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Jens Claus Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
7
|
Sevoflurane Improves Hemorrhagic Shock and Resuscitation-Induced Cognitive Impairments and Mitochondrial Dysfunctions through SIRT1-Mediated Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9771743. [PMID: 35528522 PMCID: PMC9068312 DOI: 10.1155/2022/9771743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Cerebral ischemia reperfusion injury (IRI) induced by hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Previous studies indicated the neuroprotective effect of sevoflurane postconditioning (SP) in cerebral IRI. However, the mechanisms still remain elusive. Cerebral IRI models with SP were established by using HSR with C57BL/6 mice (male, 3-month-old) in vivo and by using oxygen glucose deprivation and reoxygenation (OGD/R) with HT22 cells in vitro. Postoperative cognition was evaluated by the Morris water maze, novel object recognition, and elevated plus maze tests. The role of SIRT1 was determined by using siRNA, a sensitive inhibitor (EX527), or an overexpression shRNA-GFP lentivirus. IRI caused significant disabilities of spatial learning and memory associated with enhanced cerebral infarct and neuronal apoptosis, which were effectively attenuated by SP. IRI also made a significant decrease of SIRT1 accompanied by oxidative stress, mitochondria dysfunction, and inactivated autophagy. SP or genetically overexpressing SIRT1 significantly suppressed defective autophagy, mitochondrial oxidative injury, and neuronal death caused by HSR or OGD/R. However, genetic suppression or pharmacological inhibition of SIRT1 significantly reversed the impact of SP treatment on mitochondrial DNA transcription ability and autophagy. Our results demonstrate that the loss of SIRT1 causes a sequential chain of mitochondrial dysfunction, defective autophagy, and neuronal apoptosis after IRI in the preclinical stroke models. Sevoflurane postconditioning treatment could effectively attenuate pathophysiological signatures induced by noxious stimuli, which maybe mediated by SIRT1.
Collapse
|
8
|
Zhao Q, Liu G, Yin X, Fan X, Yang Y. Exploration the potential mechanism of the SIRT1 and its target gene FOXO1/PPARGC1A in uteropelvic junction obstruction. Transl Androl Urol 2022; 10:4192-4205. [PMID: 34984185 PMCID: PMC8661252 DOI: 10.21037/tau-21-752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 11/06/2022] Open
Abstract
Background Uteropelvic junction obstruction (UPJO) is a common surgical condition, which refers to the blockage of urine flowing through kidney into proximal upper ureter. However, the underlying mechanism of UPJO is poorly understood, especially the regulated and targeted genes of sirtuin 1 in UPJO. Methods We sequenced three renal tissues on the obstructed side of independent children with <20% differential renal function (DRF) and three samples with >40% DRF. Gene expression values were obtained and compared for differentially expressed genes (DEGs). Protein-protein interaction (PPI) analysis was conducted to identify the overlapping proteins of DEGs and Sirtuin 1 (SIRT1). The co-expression genes of overlapped genes were computed using Pearson correlation coefficient. The potential role of SIRT1 gene in UPJO was explored by resequencing 3 microarray data from RNA interference (RNAi) SIRT1 lines of renal tubular epithelial (NRK52E) cells in rat and three control datasets were sequenced again. The DEGs were obtained as parallel. GO/KEGG enrichment analysis and co-expression network were conducted to explore the underlying mechanism, particularly shared pathways or function in GO/KEGG enrichment analysis results. Results A total of 427 up-regulated genes and 1,099 down-regulated genes were identified among 3 mRNA-seq of renal tissue on the obstructed side of the independent children with <20% DRF and 3 samples with >40% DRF. According to prediction using the Search Tool for Retrieval of Interacting Genes/Proteins, 2 PPIs, FOXO1 and PPARGC1A, were identified among 2,524 DEGs, predicted as targets of SIRT1. Gene set enrichment analysis (GSEA) of their co-expression genes showed they may co-participate in biological activities including fatty acid degradation, regulation of signal transduction by p53 mediator. Moreover, GSEA results of DEGs was confirmed through RNAi SIRT1 lines of rat renal tubular epithelial (NRK52E) cells. Conclusions UPJO may cause abnormal phenotypic changes of renal tubular epithelial cells through SIRT1/FOXO1 mediated protein transport, establishment of protein localization, and intracellular transport. In addition, UPJO is involved in regulation of signal transduction, regulation of intracellular estrogen receptor signaling pathways, and nucleoprotein localization through SIRT1/PPARGC1A-mediated p53 mediators, causing abnormal phenotypic changes in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ge Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Zhuang A, Chai P, Wang S, Zuo S, Yu J, Jia S, Ge S, Jia R, Zhou Y, Shi W, Xu X, Ruan J, Fan X. Metformin promotes histone deacetylation of optineurin and suppresses tumour growth through autophagy inhibition in ocular melanoma. Clin Transl Med 2022; 12:e660. [PMID: 35075807 PMCID: PMC8787022 DOI: 10.1002/ctm2.660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To explore the therapeutic potential and the underlying mechanism of metformin, an adenosine monophosphate-activated kinase (AMPK) activator, in ocular melanoma. METHODS CCK8, transwell, and colony formation assays were performed to detect the proliferation and migration ability of ocular melanoma cells. A mouse orthotopic xenograft model was built to detect ocular tumor growth in vivo. Western blot, immunofluorescence, and electron microscopy were adopted to evaluate the autophagy levels of ocular melanoma cells, and high-throughput proteomics and CUT & Tag assays were performed to analyze the candidate for autophagy alteration. RESULTS Here, we revealed for the first time that a relatively low dose of metformin induced significant tumorspecific inhibition of the proliferation and migration of ocular melanoma cells both in vitro and in vivo. Intriguingly, we found that metformin significantly attenuated autophagic influx in ocular melanoma cells. Through high-throughput proteomics analysis, we revealed that optineurin (OPTN), which is a key candidate for autophagosome formation and maturation, was significantly downregulated after metformin treatment. Moreover, excessive OPTN expression was associated with an unfavorable prognosis of patients. Most importantly, we found that a histone deacetylase, SIRT1, was significantly upregulated after AMPK activation, resulting in histone deacetylation in the OPTN promoter. CONCLUSIONS Overall, we revealed for the first time that metformin significantly inhibited the progression of ocular melanoma, and verified that metformin acted as an autophagy inhibitor through histone deacetylation of OPTN. This study provides novel insights into metformin - guided suppression of ocular melanoma and the potential mechanism underlying the dual role of metformin in autophagy regulation.
Collapse
Affiliation(s)
- Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Peiwei Chai
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shaoyun Wang
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Sipeng Zuo
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shichong Jia
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yixiong Zhou
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Wodong Shi
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaofang Xu
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jing Ruan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
10
|
Gao S, Tang YY, Jiang L, Lan F, Li X, Zhang P, Zou W, Chen YJ, Tang XQ. H 2S Attenuates Sleep Deprivation-Induced Cognitive Impairment by Reducing Excessive Autophagy via Hippocampal Sirt-1 in WISTAR RATS. Neurochem Res 2021; 46:1941-1952. [PMID: 33914232 DOI: 10.1007/s11064-021-03314-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Sleep deprivation (SD) is widespread in society causing serious damage to cognitive function. Hydrogen sulfide (H2S), the third gas signal molecule, plays important regulatory role in learning and memory functions. Inhibition of excessive autophagy and upregulation of silent information regulator 1 (Sirt-1) have been reported to prevent cognitive dysfunction. Therefore, this present work was to address whether H2S attenuates the cognitive impairment induced by SD in Wistar rats and whether the underlying mechanisms involve in inhibition of excessive autophagy and upregulation of Sirt-1. After treatment with SD for 72 h, the cognitive function of Wistar rats was evaluated by Y-maze, new object recognition, object location, and Morris water maze tests. The results shown that SD-caused cognitive impairment was reversed by treatment with NaHS (a donor of H2S). NaHS also prevented SD-induced hippocampal excessive autophagy, as evidenced by the decrease in autophagosomes, the down-regulation of Beclin1, and the up-regulation of p62 in the hippocampus of SD-exposed Wistar rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the inhibitory roles of NaHS in SD-induced cognitive impairment and excessive hippocampal autophagy in Wistar rats. Taken together, our results suggested that H2S improves the cognitive function of SD-exposed rats by inhibiting excessive hippocampal autophagy in a hippocampal Sirt-1-dependent way.
Collapse
Affiliation(s)
- Shan Gao
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yi-Yun Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Li Jiang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Fang Lan
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Xiang Li
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Ping Zhang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China.
| | - Wei Zou
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yong-Jun Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China.
| |
Collapse
|
11
|
Rasha F, Mims BM, Castro-Piedras I, Barnes BJ, Grisham MB, Rahman RL, Pruitt K. The Versatility of Sirtuin-1 in Endocrinology and Immunology. Front Cell Dev Biol 2020; 8:589016. [PMID: 33330467 PMCID: PMC7717970 DOI: 10.3389/fcell.2020.589016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Sirtuins belong to the class III family of NAD-dependent histone deacetylases (HDAC) and are involved in diverse physiological processes that range from regulation of metabolism and endocrine function to coordination of immunity and cellular responses to stress. Sirtuin-1 (SIRT1) is the most well-studied family member and has been shown to be critically involved in epigenetics, immunology, and endocrinology. The versatile roles of SIRT1 include regulation of energy sensing metabolic homeostasis, deacetylation of histone and non-histone proteins in numerous tissues, neuro-endocrine regulation via stimulation of hypothalamus-pituitary axes, synthesis and maintenance of reproductive hormones via steroidogenesis, maintenance of innate and adaptive immune system via regulation of T- and B-cell maturation, chronic inflammation and autoimmune diseases. Moreover, SIRT1 is an appealing target in various disease contexts due to the promise of pharmacological and/or natural modulators of SIRT1 activity within the context of endocrine and immune-related disease models. In this review we aim to provide a broad overview on the role of SIRT1 particularly within the context of endocrinology and immunology.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brianyell McDaniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Betsy J. Barnes
- Laboratory of Autoimmune and Cancer Research, Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Molecular Medicine and Department of Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
12
|
Pierone BC, Pereira CA, Garcez ML, Kaster MP. Stress and signaling pathways regulating autophagy: From behavioral models to psychiatric disorders. Exp Neurol 2020; 334:113485. [PMID: 32987001 DOI: 10.1016/j.expneurol.2020.113485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023]
Abstract
Autophagy is a process of degradation and recycling of cytoplasmatic components by the lysosomes. In the central nervous system (CNS), autophagy is involved in cell surveillance, neuroinflammation, and neuroplasticity. Neuropsychiatric conditions are associated with functional disturbances at molecular and cellular levels, causing significant impairments in cell homeostasis. Additionally, emerging evidence supports that dysfunctions in autophagy contribute to the pathophysiology of neurological diseases. However, the studies on autophagy in psychiatric disorders are highly heterogeneous and have several limitations, mainly to assess causality and determine the autophagy flux in animals and human samples. Besides, the role of this mechanism in non-neuronal cells in the CNS is only recently being explored. Thus, this review summarizes and discusses the changes in the autophagy pathway in animal models of psychiatric disorders and the limitations underlying the significant findings. Moreover, we compared these findings with clinical studies. Understanding the involvement of autophagy in psychiatric conditions, and the limitation of our current models may contribute to the development of more effective research approaches and possibly pharmacological therapies.
Collapse
Affiliation(s)
- Bruna C Pierone
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Caibe A Pereira
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Michelle L Garcez
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|