1
|
Gosselin E, Bagur S, Bathellier B. Massive perturbation of sound representations by anesthesia in the auditory brainstem. SCIENCE ADVANCES 2024; 10:eado2291. [PMID: 39423272 PMCID: PMC11488538 DOI: 10.1126/sciadv.ado2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Anesthesia modifies sensory representations in the thalamo-cortical circuit but is considered to have a milder impact on peripheral sensory processing. Here, tracking the same neurons across wakefulness and isoflurane or ketamine medetomidine anesthesia, we show that the amplitude and sign of single neuron responses to sounds are massively modified by anesthesia in the cochlear nucleus of the brainstem, the first relay of the auditory system. The reorganization of activity is so profound that decoding of sound representation under anesthesia is not possible based on awake activity. However, population-level parameters, such as average tuning strength and population decoding accuracy, are weakly affected by anesthesia, explaining why its effect has previously gone unnoticed when comparing independently sampled neurons. Together, our results indicate that the functional organization of the auditory brainstem largely depends on the network state and is ill-defined under anesthesia. This demonstrates a remarkable sensitivity of an early sensory stage to anesthesia, which is bound to disrupt downstream processing.
Collapse
Affiliation(s)
- Etienne Gosselin
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Sophie Bagur
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| |
Collapse
|
2
|
Sanetra AM, Jeczmien-Lazur JS, Pradel K, Klich JD, Palus-Chramiec K, Janik ME, Bajkacz S, Izowit G, Nathan C, Piggins HD, Delogu A, Belle MD, Lewandowski MH, Chrobok L. A novel developmental critical period of orexinergic signaling in the primary visual thalamus. iScience 2024; 27:110352. [PMID: 39055917 PMCID: PMC11269934 DOI: 10.1016/j.isci.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The orexinergic system of the lateral hypothalamus plays crucial roles in arousal, feeding behavior, and reward modulation. Most research has focused on adult rodents, overlooking orexins' potential role in the nervous system development. This study, using electrophysiological and molecular tools, highlights importance of orexinergic signaling in the postnatal development of the rodent dorsolateral geniculate nucleus (DLG), a primary visual thalamic center. Orexin activation of DLG thalamocortical neurons occurs in a brief seven-day window around eye-opening, concurrent to transient OX2 receptor expression. Blocking OX2 receptors during this period reduces sensitivity of DLG neurons to green and blue light and lowers spontaneous firing rates in adulthood. This research reveals critical and temporally confined role of orexin signaling in postnatal brain development, emphasizing its contribution to experience-dependent refinement in the DLG and its long-term impact on visual function.
Collapse
Affiliation(s)
- Anna M. Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Jagoda S. Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
- Institute for Systems Physiology, University of Cologne, Cologne, Germany
| | - Jasmin D. Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcelina E. Janik
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Sylwia Bajkacz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
- The Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Christian Nathan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- University of Exeter Medical School, Hatherly Labs, Streatham Campus, Prince of Wales Road, Exeter, Devon, UK
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Health and Life Sciences, University of Bristol, Bristol, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mino D.C. Belle
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- University of Exeter Medical School, Hatherly Labs, Streatham Campus, Prince of Wales Road, Exeter, Devon, UK
| | - Marian H. Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Health and Life Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Wang K, Chen K, Wei Z, Wang T, Wei A, Gao X, Qin Y, Zhu Y, Ge Y, Cui B, Zhu M. Visual light flicker stimulation: enhancing alertness in sleep-deprived rats. Front Neurosci 2024; 18:1415614. [PMID: 38903600 PMCID: PMC11188382 DOI: 10.3389/fnins.2024.1415614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction In the evolving field of neurophysiological research, visual light flicker stimulation is recognized as a promising non-invasive intervention for cognitive enhancement, particularly in sleep-deprived conditions. Methods This study explored the effects of specific flicker frequencies (40 Hz and 20-30 Hz random flicker) on alertness recovery in sleep-deprived rats. We employed a multidisciplinary approach that included behavioral assessments with the Y-maze, in vivo electrophysiological recordings, and molecular analyses such as c-FOS immunohistochemistry and hormone level measurements. Results Both 40 Hz and 20-30 Hz flicker significantly enhanced behavioral performance in the Y-maze test, suggesting an improvement in alertness. Neurophysiological data indicated activation of neural circuits in key brain areas like the thalamus and hippocampus. Additionally, flicker exposure normalized cortisol and serotonin levels, essential for stress response and mood regulation. Notably, increased c-FOS expression in brain regions related to alertness and cognitive functions suggested heightened neural activity. Discussion These findings underscore the potential of light flicker stimulation not only to mitigate the effects of sleep deprivation but also to enhance cognitive functions. The results pave the way for future translational research into light-based therapies in human subjects, with possible implications for occupational health and cognitive ergonomics.
Collapse
Affiliation(s)
- Kun Wang
- Military Medical Sciences Academy, Tianjin, China
- Medical Support Technology Research Department, Systems Engineering Institute, Tianjin, China
| | - Kang Chen
- Military Medical Sciences Academy, Tianjin, China
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Zilin Wei
- Military Medical Sciences Academy, Tianjin, China
| | - Tianhui Wang
- Military Medical Sciences Academy, Tianjin, China
| | - Aili Wei
- Military Medical Sciences Academy, Tianjin, China
| | - Xiujie Gao
- Military Medical Sciences Academy, Tianjin, China
| | - Yingkai Qin
- Military Medical Sciences Academy, Tianjin, China
| | - Yingwen Zhu
- Military Medical Sciences Academy, Tianjin, China
| | - Yi Ge
- Logistic Support Department of Central Military Commission, Beijing, China
| | - Bo Cui
- Military Medical Sciences Academy, Tianjin, China
| | - Mengfu Zhu
- Medical Support Technology Research Department, Systems Engineering Institute, Tianjin, China
| |
Collapse
|
4
|
Izowit G, Walczak M, Drwięga G, Solecki W, Błasiak T. Brain state-dependent responses of midbrain dopaminergic neurons to footshock under urethane anaesthesia. Eur J Neurosci 2024; 59:1536-1557. [PMID: 38233998 DOI: 10.1111/ejn.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
For a long time, it has been assumed that dopaminergic (DA) neurons in both the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNc) uniformly respond to rewarding and aversive stimuli by either increasing or decreasing their activity, respectively. This response was believed to signal information about the perceived stimuli's values. The identification of VTA&SNc DA neurons that are excited by both rewarding and aversive stimuli has led to the categorisation of VTA&SNc DA neurons into two subpopulations: one signalling the value and the other signalling the salience of the stimuli. It has been shown that the general state of the brain can modulate the electrical activity of VTA&SNc DA neurons, but it remains unknown whether this factor may also influence responses to aversive stimuli, such as a footshock (FS). To address this question, we have recorded the responses of VTA&SNc DA neurons to FSs across cortical activation and slow wave activity brain states in urethane-anaesthetised rats. Adding to the knowledge of aversion signalling by midbrain DA neurons, we report that significant proportion of VTA&SNc DA neurons can change their responses to an aversive stimulus in a brain state-dependent manner. The majority of these neurons decreased their activity in response to FS during cortical activation but switched to increasing it during slow wave activity. It can be hypothesised that this subpopulation of DA neurons may be involved in the 'dual signalling' of both the value and the salience of the stimuli, depending on the general state of the brain.
Collapse
Affiliation(s)
- Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Magdalena Walczak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| | - Gniewosz Drwięga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Cracow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Cracow, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
5
|
Marciante AB, Seven YB, Kelly MN, Perim RR, Mitchell GS. Magnitude and Mechanism of Phrenic Long-term Facilitation Shift Between Daily Rest Versus Active Phase. FUNCTION 2023; 4:zqad041. [PMID: 37753182 PMCID: PMC10519274 DOI: 10.1093/function/zqad041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 09/28/2023] Open
Abstract
Plasticity is a fundamental property of the neural system controlling breathing. One key example of respiratory motor plasticity is phrenic long-term facilitation (pLTF), a persistent increase in phrenic nerve activity elicited by acute intermittent hypoxia (AIH). pLTF can arise from distinct cell signaling cascades initiated by serotonin versus adenosine receptor activation, respectively, and interact via powerful cross-talk inhibition. Here, we demonstrate that the daily rest/active phase and the duration of hypoxic episodes within an AIH protocol have profound impact on the magnitude and mechanism of pLTF due to shifts in serotonin/adenosine balance. Using the historical "standard" AIH protocol (3, 5-min moderate hypoxic episodes), we demonstrate that pLTF magnitude is unaffected by exposure in the midactive versus midrest phase, yet the mechanism driving pLTF shifts from serotonin-dominant (midrest) to adenosine-dominant (midactive). This mechanistic "flip" results from combined influences of hypoxia-evoked adenosine release and daily fluctuations in basal spinal adenosine. Since AIH evokes less adenosine with shorter (15, 1-min) hypoxic episodes, midrest pLTF is amplified due to diminished adenosine constraint on serotonin-driven plasticity; in contrast, elevated background adenosine during the midactive phase suppresses serotonin-dominant pLTF. These findings demonstrate the importance of the serotonin/adenosine balance in regulating the amplitude and mechanism of AIH-induced pLTF. Since AIH is emerging as a promising therapeutic modality to restore respiratory and nonrespiratory movements in people with spinal cord injury or ALS, knowledge of how time-of-day and hypoxic episode duration impact the serotonin/adenosine balance and the magnitude and mechanism of pLTF has profound biological, experimental, and translational implications.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Raphael R Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Zhou R, Xie X, Wang J, Ma B, Hao X. Why do children with autism spectrum disorder have abnormal visual perception? Front Psychiatry 2023; 14:1087122. [PMID: 37255685 PMCID: PMC10225551 DOI: 10.3389/fpsyt.2023.1087122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with severe impairment in social functioning. Visual information processing provides nonverbal cues that support social interactions. ASD children exhibit abnormalities in visual orientation, continuous visual exploration, and visual-spatial perception, causing social dysfunction, and mechanisms underlying these abnormalities remain unclear. Transmission of visual information depends on the retina-lateral geniculate nucleus-visual cortex pathway. In ASD, developmental abnormalities occur in rapid expansion of the visual cortex surface area with constant thickness during early life, causing abnormal transmission of the peak of the visual evoked potential (P100). We hypothesized that abnormal visual perception in ASD are related to the abnormal visual information transmission and abnormal development of visual cortex in early life, what's more, explored the mechanisms of abnormal visual symptoms to provide suggestions for future research.
Collapse
Affiliation(s)
- Rongyi Zhou
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinyue Xie
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaojiao Wang
- Henan Provincial People's Hospital, Henan Institute of Ophthalmology, Zhengzhou, China
| | - Bingxiang Ma
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Hao
- Renmin University of China, Beijing, China
| |
Collapse
|
7
|
Jeczmien-Lazur JS, Sanetra AM, Pradel K, Izowit G, Chrobok L, Palus-Chramiec K, Piggins HD, Lewandowski MH. Metabolic cues impact non-oscillatory intergeniculate leaflet and ventral lateral geniculate nucleus: standard versus high-fat diet comparative study. J Physiol 2023; 601:979-1016. [PMID: 36661095 DOI: 10.1113/jp283757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.
Collapse
Affiliation(s)
- Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
8
|
Orlowska-Feuer P, Ebrahimi AS, Zippo AG, Petersen RS, Lucas RJ, Storchi R. Look-up and look-down neurons in the mouse visual thalamus during freely moving exploration. Curr Biol 2022; 32:3987-3999.e4. [PMID: 35973431 PMCID: PMC9616738 DOI: 10.1016/j.cub.2022.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 12/28/2022]
Abstract
Visual information reaches cortex via the thalamic dorsal lateral geniculate nucleus (dLGN). dLGN activity is modulated by global sleep/wake states and arousal, indicating that it is not simply a passive relay station. However, its potential for more specific visuomotor integration is largely unexplored. We addressed this question by developing robust 3D video reconstruction of mouse head and body during spontaneous exploration paired with simultaneous neuronal recordings from dLGN. Unbiased evaluation of a wide range of postures and movements revealed a widespread coupling between neuronal activity and few behavioral parameters. In particular, postures associated with the animal looking up/down correlated with activity in >50% neurons, and the extent of this effect was comparable with that induced by full-body movements (typically locomotion). By contrast, thalamic activity was minimally correlated with other postures or movements (e.g., left/right head and body torsions). Importantly, up/down postures and full-body movements were largely independent and jointly coupled to neuronal activity. Thus, although most units were excited during full-body movements, some expressed highest firing when the animal was looking up ("look-up" neurons), whereas others expressed highest firing when the animal was looking down ("look-down" neurons). These results were observed in the dark, thus representing a genuine behavioral modulation, and were amplified in a lit arena. Our results demonstrate that the primary visual thalamus, beyond global modulations by sleep/awake states, is potentially involved in specific visuomotor integration and reveal two distinct couplings between up/down postures and neuronal activity.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK
| | - Aghileh S Ebrahimi
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK
| | - Antonio G Zippo
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Via Raoul Follereau, 3, 20854 Vedano al Lambro, Italy
| | - Rasmus S Petersen
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK
| | - Robert J Lucas
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK
| | - Riccardo Storchi
- University of Manchester, Faculty of Biology, Medicine and Health, School of Biological Science, Division of Neuroscience and Experimental Psychology, Oxford Road, M139PL Manchester, UK.
| |
Collapse
|
9
|
Chrobok L, Belle MDC, Myung J. From Fast Oscillations to Circadian Rhythms: Coupling at Multiscale Frequency Bands in the Rodent Subcortical Visual System. Front Physiol 2021; 12:738229. [PMID: 34899375 PMCID: PMC8662821 DOI: 10.3389/fphys.2021.738229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
The subcortical visual system (SVS) is a unique collection of brain structures localised in the thalamus, hypothalamus and midbrain. The SVS receives ambient light inputs from retinal ganglion cells and integrates this signal with internal homeostatic demands to influence physiology. During this processing, a multitude of oscillatory frequency bands coalesces, with some originating from the retinas, while others are intrinsically generated in the SVS. Collectively, these rhythms are further modulated by the day and night cycle. The multiplexing of these diverse frequency bands (from circadian to infra-slow and gamma oscillations) makes the SVS an interesting system to study coupling at multiscale frequencies. We review the functional organisation of the SVS, and the various frequencies generated and processed by its neurons. We propose a perspective on how these different frequency bands couple with one another to synchronise the activity of the SVS to control physiology and behaviour.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Jihwan Myung
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| |
Collapse
|
10
|
Jeczmien-Lazur JS, Orlowska-Feuer P, Kustron A, Lewandowski MH. Short Wavelengths Contribution to Light-induced Responses and Irradiance Coding in the Rat Dorsal Lateral Geniculate Nucleus - An In vivo Electrophysiological Approach. Neuroscience 2021; 468:220-234. [PMID: 34146632 DOI: 10.1016/j.neuroscience.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
The dorsal lateral geniculate nucleus (dLGN) is the main neuronal station en route to higher visual areas. It receives information about environmental light from retinal photoreceptors whose sensitivity peaks are distributed across a visible spectrum. Here, using electrophysiological multichannel recordings in vivo combined with different light stimulations, we investigated short wavelength contribution to the dLGN responses to light and irradiance coding. The results showed that the majority of dLGN cells responded evenly to almost all wavelengths from the 340 to 490 nm spectrum; however, some cells representing extremes of unimodal distribution of Blue-UV index were specialised in the reception of blue or UV light. Moreover, by using alternate yellow and monochromatic light stimuli from blue - UV range, we also assessed the relative spectral contribution to rat dLGN responses to light. Finally, we observed no clear changes in the irradiance coding property of short wavelength-deficient light stimuli, however we noticed a distortion of the coding curves manifested by a significant drop in measure of fit after using short wavelength blocking filter. In conclusion, our data provide the first electrophysiological report on dLGN short wavelength-induced responses under changing light conditions and suggest the presence of colour opponent cells in the rat dLGN.
Collapse
Affiliation(s)
- Jagoda Stanislawa Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Orlowska-Feuer
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Krakow, Krakow, Poland.
| | - Anna Kustron
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
11
|
Orlowska-Feuer P, Smyk MK, Alwani A, Lewandowski MH. Neuronal Responses to Short Wavelength Light Deficiency in the Rat Subcortical Visual System. Front Neurosci 2021; 14:615181. [PMID: 33488355 PMCID: PMC7815651 DOI: 10.3389/fnins.2020.615181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
The amount and spectral composition of light changes considerably during the day, with dawn and dusk being the most crucial moments when light is within the mesopic range and short wavelength enriched. It was recently shown that animals use both cues to adjust their internal circadian clock, thereby their behavior and physiology, with the solar cycle. The role of blue light in circadian processes and neuronal responses is well established, however, an unanswered question remains: how do changes in the spectral composition of light (short wavelengths blocking) influence neuronal activity? In this study we addressed this question by performing electrophysiological recordings in image (dorsal lateral geniculate nucleus; dLGN) and non-image (the olivary pretectal nucleus; OPN, the suprachiasmatic nucleus; SCN) visual structures to determine neuronal responses to spectrally varied light stimuli. We found that removing short-wavelength from the polychromatic light (cut off at 525 nm) attenuates the most transient ON and sustained cells in the dLGN and OPN, respectively. Moreover, we compared the ability of different types of sustained OPN neurons (either changing or not their response profile to filtered polychromatic light) to irradiance coding, and show that both groups achieve it with equal efficacy. On the other hand, even very dim monochromatic UV light (360 nm; log 9.95 photons/cm2/s) evokes neuronal responses in the dLGN and SCN. To our knowledge, this is the first electrophysiological experiment supporting previous behavioral findings showing visual and circadian functions disruptions under short wavelength blocking environment. The current results confirm that neuronal activity in response to polychromatic light in retinorecipient structures is affected by removing short wavelengths, however, with type and structure – specific action. Moreover, they show that rats are sensitive to even very dim UV light.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Kraków, Kraków, Poland.,Department of Neurophysiology and Chronobiology, Jagiellonian University in Kraków, Kraków, Poland
| | - Magdalena Kinga Smyk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Kraków, Kraków, Poland.,Department of Neurophysiology and Chronobiology, Jagiellonian University in Kraków, Kraków, Poland
| | - Anna Alwani
- Department of Neurophysiology and Chronobiology, Jagiellonian University in Kraków, Kraków, Poland
| | | |
Collapse
|
12
|
Orlowska-Feuer P, Smyk MK, Palus-Chramiec K, Dyl K, Lewandowski MH. Orexin A as a modulator of dorsal lateral geniculate neuronal activity: a comprehensive electrophysiological study on adult rats. Sci Rep 2019; 9:16729. [PMID: 31723155 PMCID: PMC6853907 DOI: 10.1038/s41598-019-53012-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Orexins (OXA, OXB) are hypothalamic peptides playing crucial roles in arousal, feeding, social and reward-related behaviours. A recent study on juvenile rats suggested their involvement in vision modulation due to their direct action on dorsal lateral geniculate (dLGN) neurons. The present study aimed to verify whether a similar action of OXA can be observed in adulthood. Thus, in vivo and in vitro electrophysiological recordings on adult Wistar rats across light-dark and cortical cycles were conducted under urethane anaesthesia. OXA influenced ~28% of dLGN neurons recorded in vivo by either excitation or suppression of neuronal firing. OXA-responsive neurons did not show any spatial distribution nor represent a coherent group of dLGN cells, and responded to OXA similarly across the light-dark cycle. Interestingly, some OXA-responsive neurons worked in a cortical state-dependent manner, especially during the dark phase, and 'preferred' cortical activation over slow-wave activity induced by urethane. The corresponding patch clamp study confirmed these results by showing that < 20% of dLGN neurons were excited by OXA under both light regimes. The results suggest that OXA is involved in the development of the visual system rather than in visual processes and further implicate OXA in the mediation of circadian and arousal-related activity.
Collapse
Affiliation(s)
- Patrycja Orlowska-Feuer
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Krakow, Krakow, Poland.
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| | - Magdalena Kinga Smyk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University in Krakow, Krakow, Poland
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Dyl
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|