1
|
Deng YC, Liu JW, Ting HC, Kuo TC, Chiang CH, Lin EY, Harn HJ, Lin SZ, Chang CY, Chiou TW. n-Butylidenephthalide recovered calcium homeostasis to ameliorate neurodegeneration of motor neurons derived from amyotrophic lateral sclerosis iPSCs. PLoS One 2024; 19:e0311573. [PMID: 39509425 PMCID: PMC11542850 DOI: 10.1371/journal.pone.0311573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that causes muscle atrophy and primarily targets motor neurons (MNs). Approximately 20% of familial ALS cases are caused by gain-of-function mutations in superoxide dismutase 1 (SOD1), leading to MN degeneration and ion channel dysfunction. Previous studies have shown that n-Butylidenephthalide (BP) delays disease progression and prolongs survival in animal models of ALS. However, no studies have been conducted on models from human sources. Herein, we examined the protective efficacy of BP on MNs derived from induced pluripotent stem cells (iPSCs) of an ALS patient harboring the SOD1G85R mutation as well as on those derived from genetically corrected iPSCs (SOD1G85G). Our results demonstrated that the motor neurons differentiated from iPSC with SOD1G85R mutation exhibited characteristics of neuron degeneration (as indicated by the reduction of neurofilament expression) and ion channel dysfunction (in response to potassium chloride (KCl) and L-glutamate stimulation), in contrast to those derived from the gene corrected iPSC (SOD1G85G). Meanwhile, BP treatment effectively restored calcium ion channel function by reducing the expression of glutamate receptors including glutamate ionotropic receptor AMPA type subunit 3 (GluR3) and glutamate ionotropic receptor NMDA type subunit 1 (NMDAR1). Additionally, BP treatment activated autophagic pathway to attenuate neuron degeneration. Overall, this study supports the therapeutic effects of BP on ALS patient-derived neuron cells, and suggests that BP may be a promising candidate for future drug development.
Collapse
Affiliation(s)
- Yu-Chen Deng
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
- Everfront Biotech Inc., Taipei, Taiwan
| | | | - Hsiao-Chien Ting
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzu-Chen Kuo
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
| | - Chia-Hung Chiang
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
| | - En-Yi Lin
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chia-Yu Chang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Biochemical and Molecular Medical Sciences, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
2
|
Kim A, Lee DY, Sung JJ. Cdk5 inhibition in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis suppresses neurodegeneration and extends survival. J Neurochem 2024; 168:2908-2925. [PMID: 38934222 DOI: 10.1111/jnc.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Deregulated cyclin-dependent kinase 5 (Cdk5) activity closely correlates with hyperphosphorylated tau, a common pathology found in neurodegenerative diseases. Previous postmortem studies had revealed increased Cdk5 immunoreactivity in amyotrophic lateral sclerosis (ALS); hence, we investigated the effects of Cdk5 inhibition on ALS model mice and neurons in this study. For the in vitro study, motor neuron cell lines with wild-type superoxide dismutase 1 (SOD1) or SOD1G93A and primary neuronal cultures from SOD1G93A transgenic (TG) mice or non-TG mice were compared for the expression of proteins involved in tau pathology, neuroinflammation, apoptosis, and neuritic outgrowth by applying Cdk5-small interfering RNA or Cdk5-short hairpin RNA (shRNA). For the in vivo study, SOD1G93A mice and non-TG mice were intrathecally injected with adeno-associated virus 9 (AAV9)-scramble (SCR)-shRNA or AAV9-Cdk5-shRNA at the age of 5 weeks. Weight and motor function were measured three times per week from 60 days of age, longevity was evaluated, and the tissues were collected from 90-day-old or 120-day-old mice. Neurons with SOD1G93A showed increased phosphorylated tau, attenuated neuritic growth, mislocalization of SOD1, and enhanced neuroinflammation and apoptosis, all of which were reversed by Cdk5 inhibition. Weights did not show significant differences among non-TG and SOD1G93A mice with or without Cdk5 silencing. SOD1G93A mice treated with AAV9-Cdk5-shRNA showed significantly delayed disease onset, delayed rotarod failure, and prolonged survival compared with those treated with AAV9-SCR-shRNA. The brain and spinal cord of SOD1G93A mice intrathecally injected with AAV9-Cdk5-shRNA exhibited suppressed tau pathology, neuroinflammation, apoptosis, and an increased number of motor neurons compared to those of SOD1G93A mice injected with AAV9-SCR-shRNA. Cdk5 inhibition could be an important mechanism in the development of a new therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Ahwon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Neurology, Chungbuk National University Hospital, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Do-Yeon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Di Lazzaro V, Ranieri F, Bączyk M, de Carvalho M, Dileone M, Dubbioso R, Fernandes S, Kozak G, Motolese F, Ziemann U. Novel approaches to motoneuron disease/ALS treatment using non-invasive brain and spinal stimulation: IFCN handbook chapter. Clin Neurophysiol 2024; 158:114-136. [PMID: 38218077 DOI: 10.1016/j.clinph.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Non-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation. We also survey and discuss the trials that have been performed, and future perspectives.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy.
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Królowej Jadwigi Street 27/39, 61-871 Poznań, Poland
| | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine-JLA, Egas Moniz Study Centre, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal; Department of Neurosciences and Mental Health, CHULN, Lisbon, Portugal
| | - Michele Dileone
- Faculty of Health Sciences, UCLM Talavera de la Reina, Toledo, Spain; Neurology Department, Hospital Nuestra Señora del Prado, Talavera de la Reina, Toledo, Spain
| | - Raffaele Dubbioso
- Neurophysiology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Napoli, Italy
| | - Sofia Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016-Lisboa, Portugal
| | - Gabor Kozak
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Francesco Motolese
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Clark RM, Clark CM, Lewis KE, Dyer MS, Chuckowree JA, Hoyle JA, Blizzard CA, Dickson TC. Intranasal neuropeptide Y1 receptor antagonism improves motor deficits in symptomatic SOD1 ALS mice. Ann Clin Transl Neurol 2023; 10:1985-1999. [PMID: 37644692 PMCID: PMC10647012 DOI: 10.1002/acn3.51885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Neuropeptide Y (NPY) is a 36 amino acid peptide widely considered to provide neuroprotection in a range of neurodegenerative diseases. In the fatal motor neuron disease amyotrophic lateral sclerosis (ALS), recent evidence supports a link between NPY and ALS disease processes. The goal of this study was to determine the therapeutic potential and role of NPY in ALS, harnessing the brain-targeted intranasal delivery of the peptide, previously utilised to correct motor and cognitive phenotypes in other neurological conditions. METHODS To confirm the association with clinical disease characteristics, NPY expression was quantified in post-mortem motor cortex tissue of ALS patients and age-matched controls. The effect of NPY on ALS cortical pathophysiology was investigated using slice electrophysiology and multi-electrode array recordings of SOD1G93A cortical cultures in vitro. The impact of NPY on ALS disease trajectory was investigated by treating SOD1G93A mice intranasally with NPY and selective NPY receptor agonists and antagonists from pre-symptomatic and symptomatic phases of disease. RESULTS In the human post-mortem ALS motor cortex, we observe a significant increase in NPY expression, which is not present in the somatosensory cortex. In vitro, we demonstrate that NPY can ameliorate ALS hyperexcitability, while brain-targeted nasal delivery of NPY and a selective NPY Y1 receptor antagonist modified survival and motor deficits specifically within the symptomatic phase of the disease in the ALS SOD1G93A mouse. INTERPRETATION Taken together, these findings highlight the capacity for non-invasive brain-targeted interventions in ALS and support antagonism of NPY Y1Rs as a novel strategy to improve ALS motor function.
Collapse
Affiliation(s)
- Rosemary M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Courtney M. Clark
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Katherine E.A. Lewis
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Marcus S. Dyer
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Jyoti A. Chuckowree
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Joshua A. Hoyle
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Catherine A. Blizzard
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmania7000Australia
| | - Tracey C. Dickson
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| |
Collapse
|
5
|
Yoshikawa M, Aizawa S, Oppenheim RW, Milligan C. Neurovascular unit pathology is observed very early in disease progression in the mutant SOD1G93A mouse model of amyotrophic lateral sclerosis. Exp Neurol 2022; 353:114084. [DOI: 10.1016/j.expneurol.2022.114084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
|
6
|
Fiskum V, Sandvig A, Sandvig I. Silencing of Activity During Hypoxia Improves Functional Outcomes in Motor Neuron Networks in vitro. Front Integr Neurosci 2021; 15:792863. [PMID: 34975426 PMCID: PMC8716921 DOI: 10.3389/fnint.2021.792863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of hypoxia, or reduced oxygen supply, to brain tissue can be disastrous, leading to extensive loss of function. Deoxygenated tissue becomes unable to maintain healthy metabolism, which leads to increased production of reactive oxygen species (ROS) and loss of calcium homoeostasis, with damaging downstream effects. Neurons are a highly energy demanding cell type, and as such they are highly sensitive to reductions in oxygenation and some types of neurons such as motor neurons are even more susceptible to hypoxic damage. In addition to the immediate deleterious effects hypoxia can have on neurons, there can be delayed effects which lead to increased risk of developing neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), even if no immediate consequences are apparent. Furthermore, impairment of the function of various hypoxia-responsive factors has been shown to increase the risk of developing several neurodegenerative disorders. Longitudinal assessment of electrophysiological network activity is underutilised in assessing the effects of hypoxia on neurons and how their activity and communication change over time following a hypoxic challenge. This study utilised multielectrode arrays and motor neuron networks to study the response to hypoxia and the subsequent development of the neuronal activity over time, as well as the effect of silencing network activity during the hypoxic challenge. We found that motor neuron networks exposed to hypoxic challenge exhibited a delayed fluctuation in multiple network activity parameters compared to normoxic networks. Silencing of activity during the hypoxic challenge leads to maintained bursting activity, suggesting that functional outcomes are better maintained in these networks and that there are activity-dependent mechanisms involved in the network damage following hypoxia.
Collapse
Affiliation(s)
- Vegard Fiskum
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Differential NPY-Y1 Receptor Density in the Motor Cortex of ALS Patients and Familial Model of ALS. Brain Sci 2021; 11:brainsci11080969. [PMID: 34439588 PMCID: PMC8393413 DOI: 10.3390/brainsci11080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Destabilization of faciliatory and inhibitory circuits is an important feature of corticomotor pathology in amyotrophic lateral sclerosis (ALS). While GABAergic inputs to upper motor neurons are reduced in models of the disease, less understood is the involvement of peptidergic inputs to upper motor neurons in ALS. The neuropeptide Y (NPY) system has been shown to confer neuroprotection against numerous pathogenic mechanisms implicated in ALS. However, little is known about how the NPY system functions in the motor system. Herein, we investigate post-synaptic NPY signaling on upper motor neurons in the rodent and human motor cortex, and on cortical neuron populations in vitro. Using immunohistochemistry, we show the increased density of NPY-Y1 receptors on the soma of SMI32-positive upper motor neurons in post-mortem ALS cases and SOD1G93A excitatory cortical neurons in vitro. Analysis of receptor density on Thy1-YFP-H-positive upper motor neurons in wild-type and SOD1G93A mouse tissue revealed that the distribution of NPY-Y1 receptors was changed on the apical processes at early-symptomatic and late-symptomatic disease stages. Together, our data demonstrate the differential density of NPY-Y1 receptors on upper motor neurons in a familial model of ALS and in ALS cases, indicating a novel pathway that may be targeted to modulate upper motor neuron activity.
Collapse
|
8
|
Giagnorio E, Malacarne C, Mantegazza R, Bonanno S, Marcuzzo S. MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. J Cell Sci 2021; 134:269129. [PMID: 34137441 DOI: 10.1242/jcs.258349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of both upper and lower motor neurons (MNs). The main clinical features of ALS are motor function impairment, progressive muscle weakness, muscle atrophy and, ultimately, paralysis. Intrinsic skeletal muscle deterioration plays a crucial role in the disease and contributes to ALS progression. Currently, there are no effective treatments for ALS, highlighting the need to obtain a deeper understanding of the molecular events underlying degeneration of both MNs and muscle tissue, with the aim of developing successful therapies. Muscle tissue is enriched in a group of microRNAs called myomiRs, which are effective regulators of muscle homeostasis, plasticity and myogenesis in both physiological and pathological conditions. After providing an overview of ALS pathophysiology, with a focus on the role of skeletal muscle, we review the current literature on myomiR network dysregulation as a contributing factor to myogenic perturbations and muscle atrophy in ALS. We argue that, in view of their critical regulatory function at the interface between MNs and skeletal muscle fiber, myomiRs are worthy of further investigation as potential molecular targets of therapeutic strategies to improve ALS symptoms and counteract disease progression.
Collapse
Affiliation(s)
- Eleonora Giagnorio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Claudia Malacarne
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| |
Collapse
|
9
|
Vucic S, Pavey N, Haidar M, Turner BJ, Kiernan MC. Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neurosci Lett 2021; 759:136039. [PMID: 34118310 DOI: 10.1016/j.neulet.2021.136039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/04/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Cortical hyperexcitability is an early and intrinsic feature of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS).. Importantly, cortical hyperexcitability appears to be associated with motor neuron degeneration, possibly via an anterograde glutamate-mediated excitotoxic process, thereby forming a pathogenic basis for ALS. The presence of cortical hyperexcitability in ALS patients may be readily determined by transcranial magnetic stimulation (TMS), a neurophysiological tool that provides a non-invasive and painless method for assessing cortical function. Utilising the threshold tracking TMS technique, cortical hyperexcitability has been established as a robust diagnostic biomarker that distinguished ALS from mimicking disorders at early stages of the disease process. The present review discusses the pathophysiological and diagnostic utility of cortical hyperexcitability in ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Western Clinical School, University of Sydney, Sydney, Australia.
| | - Nathan Pavey
- Western Clinical School, University of Sydney, Sydney, Australia
| | - Mouna Haidar
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscieace and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney and Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
10
|
Heiney K, Huse Ramstad O, Fiskum V, Christiansen N, Sandvig A, Nichele S, Sandvig I. Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation. Front Comput Neurosci 2021; 15:611183. [PMID: 33643017 PMCID: PMC7902700 DOI: 10.3389/fncom.2021.611183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that the brain optimizes its capacity for computation by self-organizing to a critical point. The dynamical state of criticality is achieved by striking a balance such that activity can effectively spread through the network without overwhelming it and is commonly identified in neuronal networks by observing the behavior of cascades of network activity termed "neuronal avalanches." The dynamic activity that occurs in neuronal networks is closely intertwined with how the elements of the network are connected and how they influence each other's functional activity. In this review, we highlight how studying criticality with a broad perspective that integrates concepts from physics, experimental and theoretical neuroscience, and computer science can provide a greater understanding of the mechanisms that drive networks to criticality and how their disruption may manifest in different disorders. First, integrating graph theory into experimental studies on criticality, as is becoming more common in theoretical and modeling studies, would provide insight into the kinds of network structures that support criticality in networks of biological neurons. Furthermore, plasticity mechanisms play a crucial role in shaping these neural structures, both in terms of homeostatic maintenance and learning. Both network structures and plasticity have been studied fairly extensively in theoretical models, but much work remains to bridge the gap between theoretical and experimental findings. Finally, information theoretical approaches can tie in more concrete evidence of a network's computational capabilities. Approaching neural dynamics with all these facets in mind has the potential to provide a greater understanding of what goes wrong in neural disorders. Criticality analysis therefore holds potential to identify disruptions to healthy dynamics, granted that robust methods and approaches are considered.
Collapse
Affiliation(s)
- Kristine Heiney
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicholas Christiansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Holistic Systems, Simula Metropolitan, Oslo, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
Ranieri F, Mariotto S, Dubbioso R, Di Lazzaro V. Brain Stimulation as a Therapeutic Tool in Amyotrophic Lateral Sclerosis: Current Status and Interaction With Mechanisms of Altered Cortical Excitability. Front Neurol 2021; 11:605335. [PMID: 33613416 PMCID: PMC7892772 DOI: 10.3389/fneur.2020.605335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
In the last 20 years, several modalities of neuromodulation, mainly based on non-invasive brain stimulation (NIBS) techniques, have been tested as a non-pharmacological therapeutic approach to slow disease progression in amyotrophic lateral sclerosis (ALS). In both sporadic and familial ALS cases, neurophysiological studies point to motor cortical hyperexcitability as a possible priming factor in neurodegeneration, likely related to dysfunction of both excitatory and inhibitory mechanisms. A trans-synaptic anterograde mechanism of excitotoxicity is thus postulated, causing upper and lower motor neuron degeneration. Specifically, motor neuron hyperexcitability and hyperactivity are attributed to intrinsic cell abnormalities related to altered ion homeostasis and to impaired glutamate and gamma aminobutyric acid gamma-aminobutyric acid (GABA) signaling. Several neuropathological mechanisms support excitatory and synaptic dysfunction in ALS; additionally, hyperexcitability seems to drive DNA-binding protein 43-kDA (TDP-43) pathology, through the upregulation of unusual isoforms directly contributing to ASL pathophysiology. Corticospinal excitability can be suppressed or enhanced using NIBS techniques, namely, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), as well as invasive brain and spinal stimulation. Experimental evidence supports the hypothesis that the after-effects of NIBS are mediated by long-term potentiation (LTP)-/long-term depression (LTD)-like mechanisms of modulation of synaptic activity, with different biological and physiological mechanisms underlying the effects of tDCS and rTMS and, possibly, of different rTMS protocols. This potential has led to several small trials testing different stimulation interventions to antagonize excitotoxicity in ALS. Overall, these studies suggest a possible efficacy of neuromodulation in determining a slight reduction of disease progression, related to the type, duration, and frequency of treatment, but current evidence remains preliminary. Main limitations are the small number and heterogeneity of recruited patients, the limited "dosage" of brain stimulation that can be delivered in the hospital setting, the lack of a sufficient knowledge on the excitatory and inhibitory mechanisms targeted by specific stimulation interventions, and the persistent uncertainty on the key pathophysiological processes leading to motor neuron loss. The present review article provides an update on the state of the art of neuromodulation in ALS and a critical appraisal of the rationale for the application/optimization of brain stimulation interventions, in the light of their interaction with ALS pathophysiological mechanisms.
Collapse
Affiliation(s)
- Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
12
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|
13
|
Werner CT, Williams CJ, Fermelia MR, Lin DT, Li Y. Circuit Mechanisms of Neurodegenerative Diseases: A New Frontier With Miniature Fluorescence Microscopy. Front Neurosci 2019; 13:1174. [PMID: 31736701 PMCID: PMC6834692 DOI: 10.3389/fnins.2019.01174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), are devastating age-associated brain disorders. Significant efforts have been made to uncover the molecular and cellular pathogenic mechanisms that underlie NDDs. However, our understanding of the neural circuit mechanisms that mediate NDDs and associated symptomatic features have been hindered by technological limitations. Our inability to identify and track individual neurons longitudinally in subcortical brain regions that are preferentially targeted in NDDs has left gaping holes in our knowledge of NDDs. Recent development and advancement of the miniature fluorescence microscope (miniscope) has opened up new avenues for examining spatially and temporally coordinated activity from hundreds of cells in deep brain structures in freely moving rodents. In the present mini-review, we examine the capabilities of current and future miniscope tools and discuss the innovative applications of miniscope imaging techniques that can push the boundaries of our understanding of neural circuit mechanisms of NDDs into new territories.
Collapse
Affiliation(s)
- Craig T Werner
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | | | - Mercedes R Fermelia
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|