1
|
Ualiyeva S, Lemire E, Wong C, Perniss A, Boyd A, Avilés EC, Minichetti DG, Maxfield A, Roditi R, Matsumoto I, Wang X, Deng W, Barrett NA, Buchheit KM, Laidlaw TM, Boyce JA, Bankova LG, Haber AL. A nasal cell atlas reveals heterogeneity of tuft cells and their role in directing olfactory stem cell proliferation. Sci Immunol 2024; 9:eabq4341. [PMID: 38306414 PMCID: PMC11127180 DOI: 10.1126/sciimmunol.abq4341] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/08/2023] [Indexed: 02/04/2024]
Abstract
The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evan Lemire
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alexander Perniss
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Amelia Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Evelyn C. Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA; currently at Faculty of Biological Sciences, Pontificia Universidad Católica de Chile
| | - Dante G. Minichetti
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Alice Maxfield
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | - Rachel Roditi
- Division of Otolaryngology-Head and Neck Surgery, Brigham and Women’s Hospital and Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA
| | | | - Xin Wang
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Wenjiang Deng
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Nora A. Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Kathleen M. Buchheit
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Tanya M. Laidlaw
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Joshua A. Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Lora G. Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham & Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
2
|
AlMatrouk A, Lemons K, Ogura T, Lin W. Modification of the Peripheral Olfactory System by Electronic Cigarettes. Compr Physiol 2021; 11:2621-2644. [PMID: 34661289 DOI: 10.1002/cphy.c210007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electronic cigarettes (e-cigs) are used by millions of adolescents and adults worldwide. Commercial e-liquids typically contain flavorants, propylene glycol, and vegetable glycerin with or without nicotine. These chemical constituents are detected and evaluated by chemosensory systems to guide and modulate vaping behavior and product choices of e-cig users. The flavorants in e-liquids are marketing tools. They evoke sensory percepts of appealing flavors through activation of chemical sensory systems to promote the initiation and sustained use of e-cigs. The vast majority of flavorants in e-liquids are volatile odorants, and as such, the olfactory system plays a dominant role in perceiving these molecules that enter the nasal cavity either orthonasally or retronasally during vaping. In addition to flavorants, e-cig aerosol contains a variety of by-products generated through heating the e-liquids, including odorous irritants, toxicants, and heavy metals. These harmful substances can directly and adversely impact the main olfactory epithelium (MOE). In this article, we first discuss the olfactory contribution to e-cig flavor perception. We then provide information on MOE cell types and their major functions in olfaction and epithelial maintenance. Olfactory detection of flavorants, nicotine, and odorous irritants and toxicants are also discussed. Finally, we discuss the cumulated data on modification of the MOE by flavorant exposure and toxicological impacts of formaldehyde, acrolein, and heavy metals. Together, the information presented in this overview may provide insight into how e-cig exposure may modify the olfactory system and adversely impact human health through the alteration of the chemosensory factor driving e-cig use behavior and product selections. © 2021 American Physiological Society. Compr Physiol 11:2621-2644, 2021.
Collapse
Affiliation(s)
- Abdullah AlMatrouk
- General Department of Criminal Evidence, Forensic Laboratories, Ministry of Interior, Farwaniyah, Kuwait.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Kayla Lemons
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BMC Genomics 2021; 22:224. [PMID: 33781205 PMCID: PMC8007386 DOI: 10.1186/s12864-021-07528-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice (Mus musculus). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells compared to olfactory sensory neurons. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07528-y.
Collapse
Affiliation(s)
- B Dnate' Baxter
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Eric D Larson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laetitia Merle
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paul Feinstein
- The Graduate Center Biochemistry, Biology and CUNY-Neuroscience-Collaborative Programs and Biological Sciences Department, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Arianna Gentile Polese
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Andrew N Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christy S Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James Hassell
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Doug Shepherd
- Department of Pharmacology, University of Colorado Anschutz Medical Campus and Center for Biological Physics and Department of Physics, Arizona State University, Tempe, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Ni F, Ogura T, Lin W. Electronic Cigarette Liquid Constituents Induce Nasal and Tracheal Sensory Irritation in Mice in Regionally Dependent Fashion. Nicotine Tob Res 2021; 22:S35-S44. [PMID: 33320249 PMCID: PMC7737480 DOI: 10.1093/ntr/ntaa174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/01/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Electronic cigarettes (e-cigs) are currently used by millions of adults and adolescents worldwide. Major respiratory symptoms, such as coughing reported by e-cig users, including patients with e-cig, or vaping, product use-associated lung injury (EVALI), indicate e-cig constituent-induced sensory irritation. However, e-cig constituent-induced nociceptive activity in nasal and tracheal respiratory epithelia (RE) and neuronal activation in the trigeminal ganglia and brainstem nuclei, which receive airway chemosensory inputs have not been examined and compared. Comparisons of physiological responses between freebase nicotine and nicotine salts are also missing. AIMS AND METHODS Event-related potential (ERP) was recorded electrophysiologically to assess mouse nasal and tracheal RE chemosensory responses to various flavorings, nicotine, including freebase and nicotine salts, e-liquid mixtures, and tussigenic stimuli. Also, mice were subjected to inhalation exposure to aerosol of a vanilla-flavored e-liquid or air (control), and the activated-trigeminal nociceptive neurons and brainstem neurons were examined using immunohistochemistry. RESULTS Individual constituents and mixtures of e-liquids, capsaicin, and citric and acetic acids evoked significantly larger ERP in the nose than in the trachea with the exception of menthol. ERP responses to freebase nicotine were significantly larger than protonated nicotine. Four nicotine salts (benzoate, lactate, levulinate, and salicylate) induced similar responses. Compared with air-exposed mice, e-liquid aerosol-exposed mice showed a significant increase in numbers of activated trigeminal nociceptive neurons and brainstem neurons in the spinal trigeminal nucleus, paratrigeminal nucleus, and nucleus tractus solitarius. CONCLUSIONS E-liquid constituents region-dependently stimulate airway nociceptive chemosensory systems, and freebase nicotine is more potent than protonated nicotine. IMPLICATIONS Neural abnormalities have been implicated in the development of nasal and respiratory illnesses. The higher sensitivity of the nasal nociceptive chemosensory system to nicotine and flavorings may indicate a health risk for e-liquid aerosol-induced upper airway illnesses via neurogenic alteration and warrants further investigation.
Collapse
Affiliation(s)
- Fenge Ni
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD
| |
Collapse
|
5
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511400 DOI: 10.1101/2020.05.14.096016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice ( Mus musculus ). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium.
Collapse
|
6
|
Liu S, Cao H, Guo D, Jiang Y, Yin H, Zhu J, Duan Q, Seleh-Zo EDM, Li G, An X, Cao B. Pou2F3 silencing enhanced the proliferation of mammary epithelial cells in dairy goat via PI3K/AKT/mTOR signaling pathway. Anim Biotechnol 2020; 33:321-329. [PMID: 32730101 DOI: 10.1080/10495398.2020.1798974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pou2F3 (POU class 2 homeobox 3) is found to be ubiquitously expressed in multiple epidermal layer cells to mediating proliferation. Although some POU factors exert a crucial regulation in mammary epithelial cells (MECs), the biological function of Pou2F3 is unclear. In this study, we aimed to investigate the endogenous potential effects of Pou2F3 on the proliferation and the roles of PI3K/AKT/mTOR signaling pathway in MECs. We used small interfering RNA to silence Pou2F3 expression. The interfering efficiency of Pou2F3 was confirmed by using RT-qPCR and Western blot. The cell viability and proliferation were indicated by Cell Counting Kit-8 and EdU assays. Flow cytometry was performed to evaluate the cell apoptosis in MECs. These results demonstrated that Pou2F3 potently suppressed the proliferation and induced the apoptosis of MECs. Consistently, the primary protein expressions of PI3K/AKT/mTOR signaling pathway were examined by Western blot. Pou2F3 silencing significantly increased the phosphorylation of PI3K, AKT and mTOR expressions. Moreover, Pou2F3 silencing reduced the ratio of BCL-2/BAX protein expression. Our findings show that Pou2F3 silencing can induce the proliferation of MECs and decrease the cell apoptosis, which suggest that Pou2F3 may serve as a potential upstream regulator of PI3K/AKT/mTOR signaling pathway in MECs.
Collapse
Affiliation(s)
- Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dan Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yue Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Hao Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Junru Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Quyu Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | | | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|