1
|
Parhizkar S, Bao X, Chen W, Rensing N, Chen Y, Kipnis M, Song S, Gent G, Tycksen E, Manis M, Lee C, Serrano JR, Bosch ME, Franke E, Yuede CM, Landsness EC, Wong M, Holtzman DM. Lemborexant ameliorates tau-mediated sleep loss and neurodegeneration in males in a mouse model of tauopathy. Nat Neurosci 2025:10.1038/s41593-025-01966-7. [PMID: 40425791 DOI: 10.1038/s41593-025-01966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/02/2025] [Indexed: 05/29/2025]
Abstract
Sleep disturbances are associated with the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and primary tauopathies. Here we demonstrate that administration of the dual orexin receptor antagonist lemborexant in the P301S/E4 mouse model of tauopathy improves tau-associated impairments in sleep-wake behavior. It also protects against chronic reactive microgliosis and brain atrophy in male P301S/E4 mice by preventing abnormal phosphorylation of tau. These neuroprotective effects in males were not observed after administration of the nonorexinergic drug zolpidem that similarly promoted nonrapid eye movement sleep. Furthermore, both genetic ablation of orexin receptor 2 and lemborexant treatment reduced wakefulness and decreased seeding and spreading of phosphorylated tau in the brain of wild-type mice. These findings raise the therapeutic potential of targeting sleep by orexin receptor antagonism to prevent abnormal tau phosphorylation and limit tau-induced damage.
Collapse
Affiliation(s)
- Samira Parhizkar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Bao
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas Rensing
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Michal Kipnis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sihui Song
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Grace Gent
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Melissa Manis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Choonghee Lee
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan E Bosch
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily Franke
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Carla M Yuede
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric C Landsness
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Wong
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y, Shi J. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther 2025; 10:74. [PMID: 40038239 PMCID: PMC11880366 DOI: 10.1038/s41392-024-02107-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/01/2024] [Accepted: 12/13/2024] [Indexed: 03/06/2025] Open
Abstract
The successful approval of peptide-based drugs can be attributed to a collaborative effort across multiple disciplines. The integration of novel drug design and synthesis techniques, display library technology, delivery systems, bioengineering advancements, and artificial intelligence have significantly expedited the development of groundbreaking peptide-based drugs, effectively addressing the obstacles associated with their character, such as the rapid clearance and degradation, necessitating subcutaneous injection leading to increasing patient discomfort, and ultimately advancing translational research efforts. Peptides are presently employed in the management and diagnosis of a diverse array of medical conditions, such as diabetes mellitus, weight loss, oncology, and rare diseases, and are additionally garnering interest in facilitating targeted drug delivery platforms and the advancement of peptide-based vaccines. This paper provides an overview of the present market and clinical trial progress of peptide-based therapeutics, delivery platforms, and vaccines. It examines the key areas of research in peptide-based drug development through a literature analysis and emphasizes the structural modification principles of peptide-based drugs, as well as the recent advancements in screening, design, and delivery technologies. The accelerated advancement in the development of novel peptide-based therapeutics, including peptide-drug complexes, new peptide-based vaccines, and innovative peptide-based diagnostic reagents, has the potential to promote the era of precise customization of disease therapeutic schedule.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wenjie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junyi Mao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yonghe Hu
- School of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Al-Jaf S, Soliman AY, El-Yazbi AF, Abd-Elrahman KS. Unveiling the Interplay: Neurovascular Coupling, Astrocytes and G Protein-Coupled Receptors in Alzheimer's Disease. ACS Pharmacol Transl Sci 2025; 8:271-285. [PMID: 39974631 PMCID: PMC11833731 DOI: 10.1021/acsptsci.4c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025]
Abstract
Astrocytes are a type of glial cell that are involved in actively modulating synaptic plasticity, neurotransmitter homeostasis, and neuroinflammatory responses. More importantly, they coordinate neuronal activity and cerebral blood flow (CBF) in what is known as neurovascular coupling (NVC). NVC is an essential mechanism that maintains the high energy demand the brain requires by supplying continuous and rapid supply of oxygen and nutrients through CBF. Impairment in NVC is one of the key events that triggers a spiral of occurrences that lead to the clinical advancement of Alzheimer's disease (AD). It is yet to be determined what the molecular manifestations of NVC impairment relate to; nonetheless, it is believed that alterations in G protein-coupled receptors (GPCRs) are responsible for exacerbating these effects. In this review, we summarize the current evidence supporting the involvement of GPCRs on astrocytes in NVC and the pathophysiology of AD. Additionally, we propose potential research directions to further elucidate the underlying mechanisms and evaluate the feasibility of targeting specific GPCRs as a therapeutic strategy to correct brain blood flow and memory impairments associated with AD.
Collapse
Affiliation(s)
- Sanarya Al-Jaf
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alaa Y. Soliman
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed F. El-Yazbi
- Faculty
of Pharmacy and Research and Innovation Hub, Alamein International University, Alamein, Matrouh 51718, Egypt
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Khaled S. Abd-Elrahman
- Department
of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian
Centre for Brain Health, The University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Medical Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
4
|
Chinnathambi S, Rangappa N, Chandrashekar M. Internalization of extracellular Tau oligomers in Alzheimer's disease. Adv Clin Chem 2025; 126:1-29. [PMID: 40185532 DOI: 10.1016/bs.acc.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
A key factor in the progression of Alzheimer's disease (AD) is internalization of extracellular Tau oligomers (ecTauOs) by neuroglial cells. Aberrant hyperphosphorylation of Tau results in their dissociation from microtubules and formation of toxic intracellular Tau oligomers (icTauOs). These are subsequently released to the extracellular space following neuronal dysfunction and death. Although receptor mediated internalization of these ecTauOs by other neurons, microglia and astrocytes can facilitate elimination, incomplete degradation thereof promotes inflammation, exacerbates pathologic spread and accelerates neurodegeneration. Targeting Tau oligomer degradation pathways, blocking internalization receptors, and mitigating neuroinflammation are proposed as therapeutic strategies to control Tau propagation and toxicity. This review highlights the urgent need for innovative approaches to prevent the spread of Tau pathology, emphasizing its implications for AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| | - Nagaraj Rangappa
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Chinnathambi S. Histone deacetylase's regulates Tau function in Alzheimer's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:339-361. [PMID: 39843140 DOI: 10.1016/bs.apcsb.2024.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease associated with dementia and neuronal impairments in brain. AD is characterized histopathologically by two hallmark lesions: abnormally phosphorylated Tau inside neurons as intracellular NFTs and extracellular accumulation of amyloid β peptide (Aβ). Furthermore, it is unable to clarify the distinction between the brief association between the development and build-up of Aβ and the commencement of illness. Additionally, a number of experimental findings suggest that symptoms related to Aβ may only manifest within the framework of anabatic Tauopathies. Tau, a natively unfolded protein, essentially involved in microtubule binding and assembly. Tau protein consists of truncated segment and the purpose of this truncated fragment is to initiate and promote the conversion of soluble Tau into aggregates. The most common aberrant posttranslational change found in Neuro Fibrillary Tangles is hyperphosphorylation, which is essentially composed of aggregated Tau. Tau phosphorylation and acetylation of Tau protein at the locations controlled by histone deacetylase 6 compete, which modulates Tau function. Considering the potential benefits of targeting HDAC6 in AD, we propose focusing on the role of HDAC6 in regulating Tau functions and the other targets are the therapeutic understanding of AD.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| |
Collapse
|
6
|
Xi Y, Abuduxiku M, Qu M. GRN knockdown regulates the expression and alternative splicing of genes associated with aphasia-related diseases in PC12 cells. Brain Res 2024; 1840:149031. [PMID: 38823507 DOI: 10.1016/j.brainres.2024.149031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Prior research has shown that granulin precursor (GRN, also termed PGRN) is closely linked to aphasia. However, there has been little research on the mechanism of action of GRN in post-stroke aphasia (PSA). METHODS In this study, RT-qPCR was used to identify variations in gene expression, while RNA sequencing (RNA-seq) was utilized to acquire transcriptional profiles. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were employed for bioinformatics analysis. RESULTS GRN was considerably more active in PSA subjects. After silencing the GRN, 197 transcripts had differential expression, and 237 alternative splicing events (ASEs) were substantially affected. The analysis of differentially expressed genes (DEGs) using GO and KEGG approaches showed that these genes have various molecular functions and are significantly enriched in metabolic signaling pathways. Regarding Alternative Splicing (AS), the GO and KEGG analyses revealed numerous functional genes involved in transcription and metabolism. CONCLUSIONS The knockdown of GRN has been shown to be associated with alterations in transcription, metabolism, and ASEs, potentially impacting transcriptional and metabolic pathways through its involvement in AS. Furthermore, GRN knockdown is associated with nervous system disease-related gene transcription and AS processes, as well as its involvement in G protein-coupled receptor (GPCR) and wingless/integrated (Wnt) signaling pathways, which impact the initiation and resolution of PSA.
Collapse
Affiliation(s)
- Yanling Xi
- Department of Rehabilitation Medicine, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, China
| | - Munire Abuduxiku
- Department of Rehabilitation Medicine, The Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, China
| | - Mei Qu
- Department of Rehabilitation Medicine, Shanghai Pudong New Area Guangming Hospital of Traditional Chinese Medicine, China.
| |
Collapse
|
7
|
Wang XX, Ji X, Lin J, Wong IN, Lo HH, Wang J, Qu L, Wong VKW, Chung SK, Law BYK. GPCR-mediated natural products and compounds: Potential therapeutic targets for the treatment of neurological diseases. Pharmacol Res 2024; 208:107395. [PMID: 39241934 DOI: 10.1016/j.phrs.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
G protein-coupled receptors (GPCRs), widely expressed in the human central nervous system (CNS), perform numerous physiological functions and play a significant role in the pathogenesis of diseases. Consequently, identifying key therapeutic GPCRs targets for CNS-related diseases is garnering immense interest in research labs and pharmaceutical companies. However, using GPCRs drugs for treating neurodegenerative diseases has limitations, including side effects and uncertain effective time frame. Recognizing the rich history of herbal treatments for neurological disorders like stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), modern pharmacological research is now focusing on the understanding of the efficacy of traditional Chinese medicinal herbs and compounds in modulating GPCRs and treatment of neurodegenerative conditions. This paper will offer a comprehensive, critical review of how certain natural products and compounds target GPCRs to treat neurological diseases. Conducting an in-depth study of herbal remedies and their efficacies against CNS-related disorders through GPCRs targeting will augment our strategies for treating neurological disorders. This will not only broaden our understanding of effective therapeutic methodologies but also identify the root causes of altered GPCRs signaling in the context of pathophysiological mechanisms in neurological diseases. Moreover, it would be informative for the creation of safer and more effective GPCR-mediated drugs, thereby establishing a foundation for future treatment of various neurological diseases.
Collapse
Affiliation(s)
- Xing Xia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jing Lin
- Department of Endocrinology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Jian Wang
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China; Faculty of Medicine, Macau University of Science and Technology, Macau SAR China.
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao SAR China.
| |
Collapse
|
8
|
Chinnathambi S, Adithyan A, Chandrashekar M. Lipid role in synapse and nuclear envelope-associated endocytic pathways in Tauopathy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:387-409. [PMID: 39843142 DOI: 10.1016/bs.apcsb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Lipids play an essential role in synaptic function, significantly impacting synaptic physiology through their dynamic nature and signaling capabilities. Membrane lipids, including cholesterol, phospholipids, and gangliosides, are crucial for synaptic organization and function. They act as structural integrators and signaling molecules, guiding vesicle intracellular movement and regulating enzyme activity to support neuronal activity. The lipid compositions of pre-synaptic and post-synaptic membranes influence vesicle generation and receptor mobility, highlighting their active involvement in synaptic processes. Astrocytes also contribute to synaptic health by upholding the blood-brain barrier, regulating ion levels, and providing metabolic support. Lipid-mediated processes control synaptic plasticity and development, with astrocytes playing a crucial role in glutamate homeostasis. Amyloid-beta and Tau proteins are key in Alzheimer's disease (AD), where synaptic disruption leads to cognitive deficits. Clathrin-mediated endocytosis (CME) and caveolin-mediated endocytosis are critical pathways for lipid-mediated synaptic function, with disruptions in these pathways contributing to AD pathogenesis.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Anusree Adithyan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
9
|
Chinnathambi S, Velmurugan G, Suresh S, Adithyan A, Chandrashekar M. Nuclear Tau accumulation in Alzheimer's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:323-337. [PMID: 39843139 DOI: 10.1016/bs.apcsb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity. The interaction between Tau and NUPs highlights a potential mechanism underlying NPC dysfunction in AD pathogenesis. Pathological Tau hinders the import and export of nucleus through RAN mediated cascades. Nuclear Tau aggregates colocalize with membrane less organelles called nuclear speckles, which are involved in pre-mRNA splicing, and modify their dynamics, composition, and structure. Additionally, SRRM2 and other nuclear speckle proteins including MSUT2 and PABPN1 mislocalize to cytosolic Tau aggregates, and causes propagation of Tau aggregates. Research highlights, Extracellular Tau Oligomers induce significant nuclear invagination. They act as a key player in the transformation of healthy neurons into sick neurons in AD. The mechanism behind this phenomenon depends on intracellular Tau and is linked to changes in chromatin structure, nucleocytoplasmic transport, and gene transcription. This review highlights the vital roles of nuclear Tau protein in the context of nuclear pore complex functioning and, modulation of nuclear speckles in Alzheimer's diseases. Addressing these pathways is essential for formulating focused therapeutics intended to alleviate Tau-induced neurodegeneration.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| | - Gowshika Velmurugan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Swathi Suresh
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Anusree Adithyan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
10
|
Chidambaram H, Desale SE, Chinnathambi S. Interaction of Tau with G-Protein-Coupled Purinergic P2Y12 Receptor by Molecular Docking and Molecular Dynamic Simulation. Methods Mol Biol 2024; 2754:33-54. [PMID: 38512659 DOI: 10.1007/978-1-0716-3629-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Alzheimer's disease, a progressive neurological disorder, is characterized by the accumulation of neurofibrillary tangles and senile plaques by Tau and amyloid-β, respectively, in the brain microenvironment. The misfolded protein aggregates interact with several components of neuronal and glial cells such as membrane lipids, receptors, transporters, enzymes, cytoskeletal proteins, etc. Under pathological conditions, Tau interacts with several G-protein-coupled receptors (GPCRs), which undergoes either receptor signaling or desensitization followed by internalization of the protein complex. The purinergic GPCR, P2Y12 which is expressed in microglial cells, plays a key role in its activation and migration. Microglial cells sense and migrate to the site of injury aided by P2Y12 receptor that interacts with ADP released from damaged cells. P2Y12 receptor also interacts with misfolded Tau accumulated at the extracellular space and promotes receptor-mediated internalization. Immunocolocalization and co-immunoprecipitation studies demonstrated the interaction of Tau species with the P2Y12 receptor. Later, in-silico analyses were carried out with the repeat domain of Tau (TauRD), which has been identified as the interacting partner of P2Y12 receptor by in-vitro studies. Molecular docking and molecular dynamics simulation studies show the stability and the type of interaction in TauRD-receptor complex. Tau interaction with P2Y12 receptor plays a significant role in maintaining the active state of microglia which could lead to neuroinflammation and neuronal damage in AD brain. Hence, blocking P2Y12-Tau interaction and P2Y12-mediated Tau internalization in microglial cells could be possible therapeutic strategies in downregulating the severity of neuroinflammation in AD.
Collapse
Affiliation(s)
- Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| |
Collapse
|
11
|
Wang C, Cui Y, Xu T, Zhou Y, Yang R, Wang T. New insights into glycogen synthase kinase-3: A common target for neurodegenerative diseases. Biochem Pharmacol 2023; 218:115923. [PMID: 37981175 DOI: 10.1016/j.bcp.2023.115923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a highly conserved protein serine/threonine kinase that plays a central role in a wide variety of cellular processes to coordinate catabolic and anabolic pathways and regulate cell growth and fate. There is increasing evidence showing that abnormal glycogen synthase kinase 3 (GSK-3) is associated with the pathogenesis and progression of many disorders, such as cancer, diabetes, psychiatric diseases, and neurodegenerative diseases. In this review, we summarize recent findings about the regulatory role of GSK-3 in the occurrence and development of multiple neurodegenerative diseases, mainly focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The aim of this study is to provide new insight into the shared working mechanism of GSK-3 as a therapeutic target of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Chengfeng Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China
| | - Yu Cui
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Tong Xu
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong 266071, China; Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China; Department of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266000, China.
| | - Rong Yang
- Department of Otorhinolaryngology Head and Neck, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong 266021, China.
| | - Ting Wang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| |
Collapse
|
12
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
13
|
Ababei DC, Bild V, Macadan I, Vasincu A, Rusu RN, Blaj M, Stanciu GD, Lefter RM, Bild W. Therapeutic Implications of Renin-Angiotensin System Modulators in Alzheimer's Dementia. Pharmaceutics 2023; 15:2290. [PMID: 37765259 PMCID: PMC10538010 DOI: 10.3390/pharmaceutics15092290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The Renin-Angiotensin System (RAS) has attracted considerable interest beyond its traditional cardiovascular role due to emerging data indicating its potential involvement in neurodegenerative diseases, including Alzheimer's dementia (AD). This review investigates the therapeutic implications of RAS modulators, specifically focusing on angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and renin inhibitors in AD. ACEIs, commonly used for hypertension, show promise in AD by reducing angiotensin (Ang) II levels. This reduction is significant as Ang II contributes to neuroinflammation, oxidative stress, and β-amyloid (Aβ) accumulation, all implicated in AD pathogenesis. ARBs, known for vasodilation, exhibit neuroprotection by blocking Ang II receptors, improving cerebral blood flow and cognitive decline in AD models. Renin inhibitors offer a novel approach by targeting the initial RAS step, displaying anti-inflammatory and antioxidant effects that mitigate AD degeneration. Preclinical studies demonstrate RAS regulation's favorable impact on neuroinflammation, neuronal damage, cognitive function, and Aβ metabolism. Clinical trials on RAS modulators in AD are limited, but with promising results, ARBs being more effective that ACEIs in reducing cognitive decline. The varied roles of ACEIs, ARBs, and renin inhibitors in RAS modulation present a promising avenue for AD therapeutic intervention, requiring further research to potentially transform AD treatment strategies.
Collapse
Affiliation(s)
- Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 8 Carol I Avenue, 700506 Iasi, Romania; (R.-M.L.); (W.B.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (D.-C.A.); (A.V.); (R.-N.R.)
| | - Mihaela Blaj
- Department of Anaesthesiology and Intensive Therapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Radu-Marian Lefter
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 8 Carol I Avenue, 700506 Iasi, Romania; (R.-M.L.); (W.B.)
| | - Walther Bild
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 8 Carol I Avenue, 700506 Iasi, Romania; (R.-M.L.); (W.B.)
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
14
|
Sánchez JD, Alcántara AR, González JF, Sánchez-Montero JM. Advances in the discovery of heterocyclic-based drugs against Alzheimer's disease. Expert Opin Drug Discov 2023; 18:1413-1428. [PMID: 37800875 DOI: 10.1080/17460441.2023.2264766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Alzheimer's disease is a multifactorial neurodegenerative disorder characterized by beta-amyloid accumulation and tau protein hyperphosphorylation. The disease involves interconnected mechanisms, which can be clustered into two target-packs based on the affected proteins. Pack-1 focuses on beta-amyloid accumulation, oxidative stress, and metal homeostasis dysfunction, and Pack-2 involves tau protein, calcium homeostasis, and neuroinflammation. Against this background heterocyclic system, there is a powerful source of pharmacophores to develop effective small drugs to treat multifactorial diseases like Alzheimer's. AREAS COVERED This review highlights the most promising heterocyclic systems as potential hit candidates with multi-target capacity for the development of new drugs targeting Alzheimer's disease. The selection of these heterocyclic systems was based on two crucial factors: their synthetic versatility and their well-documented biological properties of therapeutic potential in neurodegenerative diseases. EXPERT OPINION The synthesis of small drugs against Alzheimer's disease requires a multifactorial approach that targets the key pathological proteins. In this context, the utilization of heterocyclic systems, with well-established synthetic processes and facile functionalization, becomes a crucial element in the design phases. Furthermore, the selection of hit heterocyclic should be guided by a full understanding of their biological activities. Thus, the identification of promising heterocyclic scaffolds with known biological effects increases the potential to develop effective molecules against Alzheimer's disease.
Collapse
Affiliation(s)
- Juan D Sánchez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan F González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Sánchez-Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Ribeiro-dos-Santos A, de Brito LM, de Araújo GS. The fusiform gyrus exhibits differential gene-gene co-expression in Alzheimer's disease. Front Aging Neurosci 2023; 15:1138336. [PMID: 37255536 PMCID: PMC10225579 DOI: 10.3389/fnagi.2023.1138336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023] Open
Abstract
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease clinically characterized by the presence of β-amyloid plaques and tau deposits in various regions of the brain. However, the underlying factors that contribute to the development of AD remain unclear. Recently, the fusiform gyrus has been identified as a critical brain region associated with mild cognitive impairment, which may increase the risk of AD development. In our study, we performed gene co-expression and differential co-expression network analyses, as well as gene-expression-based prediction, using RNA-seq transcriptome data from post-mortem fusiform gyrus tissue samples collected from both cognitively healthy individuals and those with AD. We accessed differential co-expression networks in large cohorts such as ROSMAP, MSBB, and Mayo, and conducted over-representation analyses of gene pathways and gene ontology. Our results comprise four exclusive gene hubs in co-expression modules of Alzheimer's Disease, including FNDC3A, MED23, NRIP1, and PKN2. Further, we identified three genes with differential co-expressed links, namely FAM153B, CYP2C8, and CKMT1B. The differential co-expressed network showed moderate predictive performance for AD, with an area under the curve ranging from 0.71 to 0.76 (+/- 0.07). The over-representation analysis identified enrichment for Toll-Like Receptors Cascades and signaling pathways, such as G protein events, PIP2 hydrolysis and EPH-Epherin mechanism, in the fusiform gyrus. In conclusion, our findings shed new light on the molecular pathophysiology of AD by identifying new genes and biological pathways involved, emphasizing the crucial role of gene regulatory networks in the fusiform gyrus.
Collapse
Affiliation(s)
- Arthur Ribeiro-dos-Santos
- Programa de Pós-graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Leonardo Miranda de Brito
- Programa de Pós-graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
| | - Gilderlanio Santana de Araújo
- Programa de Pós-graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
16
|
Chinnathambi S, Das R, Desale SE. Tau aggregates improve the purinergic receptor P2Y12-associated podosome rearrangements in microglial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119477. [PMID: 37061007 DOI: 10.1016/j.bbamcr.2023.119477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is associated with protein misfolding, plaque accumulation, neuronal dysfunction, synaptic loss, and cognitive decline. The pathological cascade of AD includes the intracellular Tau hyperphosphorylation and its subsequent aggregation, extracellular Amyloid-β plaque formation and microglia-mediated neuroinflammation. The extracellular release of aggregated Tau is sensed by surveilling microglia through the involvement of various cell surface receptors. Among all, purinergic P2Y12R signaling is involved in microglial chemotaxis towards the damaged neurons. Microglial migration is highly linked with membrane-associated actin remodeling leading to the phagocytosis of extracellular Tau species. Here, we studied the formation of various actin structures such as podosome, lamellipodia and filopodia, in response to extracellular Tau monomers and aggregates. Microglial podosomes are colocalized with actin nucleator protein WASP, Arp2 and TKS5 adaptor protein during Tau-mediated migration. Moreover, the P2Y12 receptors were associated with F-actin-rich podosome structures, which signify the potential of Tau aggregates in microglial chemotaxis through the involvement of actin remodeling.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Hosur Road, Bangalore 560029, Karnataka, India.
| | - Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation. Biomed Pharmacother 2023; 161:114474. [PMID: 36878051 DOI: 10.1016/j.biopha.2023.114474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly characterized by progressive cognitive dysfunction and memory impairment. Recent studies have shown that regulating silent information regulator 1 (SIRT1) expression has a significant neuroprotective effect, and SIRT1 may become a new therapeutic target for AD. Natural molecules are an important source of drug development for use in AD therapy and may regulate a wide range of biological events by regulating SIRT1 as well as other SIRT1-mediated signaling pathways. This review aims to summarize the correlation between SIRT1 and AD and to identify in vivo and in vitro studies investigating the anti-AD properties of natural molecules as modulators of SIRT1 and SIRT1-mediated signaling pathways. A literature search was conducted for studies published between January 2000 and October 2022 using various literature databases, including Web of Science, PubMed, Google Scholar, Science Direct, and EMBASE. Natural molecules, such as resveratrol, quercetin, icariin, bisdemethoxycurcumin, dihydromyricetin, salidroside, patchouli, sesamin, rhein, ligustilide, tetramethoxyflavanone, 1-theanine, schisandrin, curcumin, betaine, pterostilbene, ampelopsin, schisanhenol, and eriodictyol, have the potential to modulate SIRT1 and SIRT1 signaling pathways, thereby combating AD. The natural molecules modulating SIRT1 discussed in this review provide a potentially novel multi-mechanistic therapeutic strategy for AD. However, future clinical trials need to be conducted to further investigate their beneficial properties and to determine the safety and efficacy of SIRT1 natural activators against AD.
Collapse
|
18
|
He Z, Zhang H, Li X, Tu S, Wang Z, Han S, Du X, Shen L, Li N, Liu Q. The protective effects of Esculentoside A through AMPK in the triple transgenic mouse model of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154555. [PMID: 36610160 DOI: 10.1016/j.phymed.2022.154555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neurofibrillary tangles comprising hyperphosphorylated tau are vital factors associated with the pathogenesis of Alzheimer's disease (AD). The elimination or reduction of hyperphosphorylated and abnormally aggregated tau is a valuable measure in AD therapy. Esculentoside A (EsA), isolated from Phytolacca esculenta, exhibits pharmacotherapeutic efficacy in mice with amyloid beta-induced AD. However, whether EsA affects tau pathology and its specific mechanism of action in AD mice remains unclear. PURPOSE To investigate the roles and mechanisms of EsA in cognitive decline and tau pathology in a triple transgenic AD (3 × Tg-AD) mouse model. METHODS EsA (5 and 10 mg/kg) was administered via intraperitoneal injection to 8-month-old AD mice for eight consecutive weeks. Y-maze and novel object recognition tasks were used to evaluate the cognitive abilities of mice. Potential signaling pathways and targets in EsA-treated AD mice were assessed using quantitative proteomic analysis. The NFT levels and hippocampal synapse numbers were investigated using Gallyas-Braak silver staining and transmission electron microscopy, respectively. Western blotting and immunofluorescence assays were used to measure the expression of tau-associated proteins. RESULTS EsA administration attenuated memory and recognition deficits and synaptic damage in AD mice. Isobaric tags for relative and absolute quantitation proteomic analysis of the mouse hippocampus revealed that EsA modulated the expression of some critical proteins, including brain-specific angiogenesis inhibitor 3, galectin-1, and Ras-related protein 24, whose biological roles are relevant to synaptic function and autophagy. Further research revealed that EsA upregulated AKT/GSK3β activity, in turn, inhibited tau hyperphosphorylation and promoted autophagy to clear abnormally phosphorylated tau. In hippocampus-derived primary neurons, inhibiting AMP-activated protein kinase (AMPK) activity through dorsomorphin could eliminate the effect of EsA, as revealed by increased tau hyperphosphorylation, downregulated activity AKT/GSK3β, and blocked autophagy. CONCLUSIONS To our knowledge, this study is the first to demonstrate that EsA attenuates cognitive decline by targeting the pathways of both tau hyperphosphorylation and autophagic clearance in an AMPK-dependent manner and it shows a high reference value in AD pharmacotherapy research.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Sixin Tu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
19
|
Guo Y, Yang YX, Zhang YR, Huang YY, Chen KL, Chen SD, Dong PQ, Yu JT. Genome-wide association study of brain tau deposition as measured by 18F-flortaucipir positron emission tomography imaging. Neurobiol Aging 2022; 120:128-136. [DOI: 10.1016/j.neurobiolaging.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
|
20
|
Wang Y, Yuan P, Ding L, Zhu J, Qi X, Zhang Y, Li Y, Xia X, Zheng JC. Circulating extracellular vesicle-containing microRNAs reveal potential pathogenesis of Alzheimer's disease. Front Cell Neurosci 2022; 16:955511. [PMID: 36339820 PMCID: PMC9630335 DOI: 10.3389/fncel.2022.955511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) remains unknown till today, hindering the research and development of AD therapeutics and diagnostics. Circulating extracellular vesicles (EVs) can be utilized as a new window to spy upon AD pathogenesis. Altered microRNA profiles were noted in both the cerebrospinal fluid (CSF)- and blood-isolated EVs of AD patients, implying the outstanding potential of circulating EV-containing miRNAs (CEmiRs) to serve as important regulators in AD pathogenesis. Although several CEmiRs were found to play a part in AD, the association of globally altered miRNA profiles in patients' serum-derived EVs with AD pathogenesis remains unclear. In this study, we first investigated the miRNA profile in serum-derived EVs from AD, mild cognitive impairment (MCI) patients, and healthy individuals. We observed differential expression patterns of CEmiRs and classified them into 10 clusters. We identified the predicted targets of these differentially expressed CEmiRs (DECEmiRs) and analyzed their biological functions and interactions. Our study revealed the temporal regulation of complex and precise signaling networks on AD pathogenesis, shedding light on the development of novel therapeutic strategies, including multi-target drug combination for AD treatment.
Collapse
Affiliation(s)
- Yi Wang
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xinrui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Huang Y, Rafael Guimarães T, Todd N, Ferguson C, Weiss KM, Stauffer FR, McDermott B, Hurtle BT, Saito T, Saido TC, MacDonald ML, Homanics GE, Thathiah A. G protein-biased GPR3 signaling ameliorates amyloid pathology in a preclinical Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2022; 119:e2204828119. [PMID: 36161942 PMCID: PMC9546571 DOI: 10.1073/pnas.2204828119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Biased G protein-coupled receptor (GPCR) ligands, which preferentially activate G protein or β-arrestin signaling pathways, are leading to the development of drugs with superior efficacy and reduced side effects in heart disease, pain management, and neuropsychiatric disorders. Although GPCRs are implicated in the pathophysiology of Alzheimer's disease (AD), biased GPCR signaling is a largely unexplored area of investigation in AD. Our previous work demonstrated that GPR3-mediated β-arrestin signaling modulates amyloid-β (Aβ) generation in vitro and that Gpr3 deficiency ameliorates Aβ pathology in vivo. However, Gpr3-deficient mice display several adverse phenotypes, including elevated anxiety-like behavior, reduced fertility, and memory impairment, which are potentially associated with impaired G protein signaling. Here, we generated a G protein-biased GPR3 mouse model to investigate the physiological and pathophysiological consequences of selective elimination of GPR3-mediated β-arrestin signaling in vivo. In contrast to Gpr3-deficient mice, G protein-biased GPR3 mice do not display elevated anxiety levels, reduced fertility, or cognitive impairment. We further determined that G protein-biased signaling reduces soluble Aβ levels and leads to a decrease in the area and compaction of amyloid plaques in the preclinical AppNL-G-F AD mouse model. The changes in amyloid pathology are accompanied by robust microglial and astrocytic hypertrophy, which suggest a protective glial response that may limit amyloid plaque development in G protein-biased GPR3 AD mice. Collectively, these studies indicate that GPR3-mediated G protein and β-arrestin signaling produce discrete and separable effects and provide proof of concept for the development of safer GPCR-targeting therapeutics with more directed pharmacological action for AD.
Collapse
Affiliation(s)
- Yunhong Huang
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
| | - Thais Rafael Guimarães
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA,15260
| | - Nicholas Todd
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- Graduate Program in Molecular Pharmacology, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Carolyn Ferguson
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Kathryn M. Weiss
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
| | - Fiona R. Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
| | - Breanne McDermott
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
| | - Bryan T. Hurtle
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA,15260
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, 467-8601, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, PA,15260
| | - Gregg E. Homanics
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260
- University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, 15260
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Amantha Thathiah
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA,15260
- University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, 15260
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15260
- Center for Protein Conformational Diseases, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA,15260
| |
Collapse
|
22
|
Dubey T, Chinnathambi S. Photodynamic treatment modulates various GTPase and cellular signalling pathways in Tauopathy. Small GTPases 2022; 13:183-195. [PMID: 34138681 PMCID: PMC9707546 DOI: 10.1080/21541248.2021.1940722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The application of photo-excited dyes for treatment is known as photodynamic therapy (PDT). PDT is known to target GTPase proteins in cells, which are the key proteins of diverse signalling cascades which ultimately modulate cell proliferation and death. Cytoskeletal proteins play critical roles in maintaining cell integrity and cell division. Whereas, it was also observed that in neuronal cells PDT modulated actin and tubulin resulting in increased neurite growth and filopodia. Recent studies supported the role of PDT in dissolving the extracellular amyloid beta aggregates and intracellular Tau aggregates, which indicated the potential role of PDT in neurodegeneration. The advancement in the field of PDT led to its clinical approval in treatment of cancers, brain tumour, and dermatological acne. Although several question need to be answered for application of PDT in neuronal cells, but the primary studies gave a hint that it can emerge as potential therapy in neural cells.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
23
|
Chidambaram H, Das R, Chinnathambi S. G-Protein coupled Purinergic P2Y12 receptor interacts and internalizes TauRD-mediated by membrane-associated actin cytoskeleton remodelling in microglia. Eur J Cell Biol 2022; 101:151201. [DOI: 10.1016/j.ejcb.2022.151201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
|
24
|
Feng J, Song G, Shen Q, Chen X, Wang Q, Guo S, Zhang M. Protect Effects of Seafood-Derived Plasmalogens Against Amyloid-Beta (1-42) Induced Toxicity via Modulating the Transcripts Related to Endocytosis, Autophagy, Apoptosis, Neurotransmitter Release and Synaptic Transmission in SH-SY5Y Cells. Front Aging Neurosci 2021; 13:773713. [PMID: 34899276 PMCID: PMC8662987 DOI: 10.3389/fnagi.2021.773713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
To investigate the underlying mechanisms of decreased plasmalogens (Pls) levels in neurodegenerative diseases, here the effects of seafood-derived Pls on undifferentiated and differentiated human SH-SY5Y neuroblastoma cells exposed to amyloid-β1-42 was analyzed. Transcriptional profiles indicated that a total of 6,581 differentially expressed genes (DEGs) were significantly identified among different experimental groups, and KEGG analysis indicated that these DEGs were related to AD, endocytosis, synaptic vesicle cycle, autophagy and cellular apoptosis. After Pls treatment, the striking expression changes of ADORA2A, ATP6V1C2, CELF6, and SLC18A2 mRNA strongly suggest that Pls exerts a beneficial role in alleviating AD pathology partly by modulating the neurotransmitter release and synaptic transmission at the transcriptional level. Besides these, GPCRs are also broadly involved in Pls-signaling in neuronal cells. These results provide evidence for supporting the potential use of Pls as an effective therapeutic approach for AD.
Collapse
Affiliation(s)
- Junli Feng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Gongshuai Song
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Shen
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Xi Chen
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Qingcheng Wang
- Department of Cardiology, Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Shunyuan Guo
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Manman Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Desale SE, Chidambaram H, Chinnathambi S. G-protein coupled receptor, PI3K and Rho signaling pathways regulate the cascades of Tau and amyloid-β in Alzheimer's disease. MOLECULAR BIOMEDICINE 2021; 2:17. [PMID: 35006431 PMCID: PMC8607389 DOI: 10.1186/s43556-021-00036-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease characterized by the presence of amyloid-β plaques in the extracellular environment and aggregates of Tau protein that forms neurofibrillary tangles (NFTs) in neuronal cells. Along with these pathological proteins, the disease shows neuroinflammation, neuronal death, impairment in the immune function of microglia and synaptic loss, which are mediated by several important signaling pathways. The PI3K/Akt-mediated survival-signaling pathway is activated by many receptors such as G-protein coupled receptors (GPCRs), triggering receptor expressed on myeloid cells 2 (TREM2), and lysophosphatidic acid (LPA) receptor. The signaling pathway not only increases the survival of neurons but also regulates inflammation, phagocytosis, cellular protection, Tau phosphorylation and Aβ secretion as well. In this review, we focused on receptors, which activate PI3K/Akt pathway and its potential to treat Alzheimer's disease. Among several membrane receptors, GPCRs are the major drug targets for therapy, and GPCR signaling pathways are altered during Alzheimer's disease. Several GPCRs are involved in the pathogenic progression, phosphorylation of Tau protein by activation of various cellular kinases and are involved in the amyloidogenic pathway of amyloid-β synthesis. Apart from various GPCR signaling pathways, GPCR regulating/ interacting proteins are involved in the pathogenesis of Alzheimer's disease. These include several small GTPases, Ras homolog enriched in brain, GPCR associated sorting proteins, β-arrestins, etc., that play a critical role in disease progression and has been elaborated in this review.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
26
|
Jeong HH, Chandrakantan A, Adler AC. Obstructive Sleep Apnea and Dementia-Common Gene Associations through Network-Based Identification of Common Driver Genes. Genes (Basel) 2021; 12:genes12040542. [PMID: 33918603 PMCID: PMC8069301 DOI: 10.3390/genes12040542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Obstructive Sleep Apnea (OSA) occurs in 7% of the adult population. The relationship between neurodegenerative diseases such as dementia and sleep disorders have long attracted clinical attention; however, no comprehensive data exists elucidating common gene expression between the two diseases. The objective of this study was to (1) demonstrate the practicability and feasibility of utilizing a systems biology approach called network-based identification of common driver genes (NICD) to identify common genomic features between two associated diseases and (2) utilize this approach to identify genes associated with both OSA and dementia. Methods: This study utilized 2 public databases (PCNet, DisGeNET) and a permutation assay in order to identify common genes between two co-morbid but mutually exclusive diseases. These genes were then linked to their mechanistic pathways through Enrichr, producing a list of genes that were common between the two different diseases. Results: 42 common genes were identified between OSA and dementia which were primarily linked to the G-coupled protein receptor (GPCR) and olfactory pathways. No single nucleotide polymorphisms (SNPs) were identified. Conclusions: This study demonstrates the viability of using publicly available databases and permutation assays along with canonical pathway linkage to identify common gene drivers as potential mechanistic targets for comorbid diseases.
Collapse
Affiliation(s)
- Hyun-Hwan Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (H.-H.J.); (A.C.)
| | - Arvind Chandrakantan
- Department of Anesthesiology & Pediatrics, Texas Children’s Hospital, Houston, TX 77030, USA;
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (H.-H.J.); (A.C.)
| | - Adam C. Adler
- Department of Anesthesiology & Pediatrics, Texas Children’s Hospital, Houston, TX 77030, USA;
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
27
|
A review on α-mangostin as a potential multi-target-directed ligand for Alzheimer's disease. Eur J Pharmacol 2021; 897:173950. [PMID: 33607107 DOI: 10.1016/j.ejphar.2021.173950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive memory loss, declining language skills and other cognitive disorders. AD has brought great mental and economic burden to patients, families and society. However due to the complexity of AD's pathology, drugs developed for the treatment of AD often fail in clinical or experimental trials. The main problems of current anti-AD drugs are low efficacy due to mono-target method or side effects, especially high hepatotoxicity. To tackle these two main problems, multi-target-directed ligand (MTDL) based on "one molecule, multiple targets" has been studied. MTDLs can regulate multiple biological targets at the same time, so it has shown higher efficacy, better safety. As a natural active small molecule, α-mangostin (α-M) has shown potential multi-factor anti-AD activities in a series of studies, furthermore it also has a certain hepatoprotective effect. The good availability of α-M also provides support for its application in clinical research. In this work, multiple activities of α-M related to AD therapy were reviewed, which included anti-cholinesterase, anti-amyloid-cascade, anti-inflammation, anti-oxidative stress, low toxicity, hepatoprotective effects and drug formulation. It shows that α-M is a promising candidate for the treatment of AD.
Collapse
|
28
|
Gu JL, Liu F. Tau in Alzheimer's Disease: Pathological Alterations and an Attractive Therapeutic Target. Curr Med Sci 2021; 40:1009-1021. [PMID: 33428128 DOI: 10.1007/s11596-020-2282-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with two major hallmarks: extracellular amyloid plaques made of amyloid-β (Aβ) and intracellular neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau. The number of NFTs correlates positively with the severity of dementia in AD patients. However, there is still no efficient therapy available for AD treatment and prevention so far. A deeper understanding of AD pathogenesis has identified novel strategies for the generation of specific therapies over the past few decades. Several studies have suggested that the prion-like seeding and spreading of tau pathology in the brain may be a key driver of AD. Tau protein is considered as a promising candidate target for the development of therapeutic interventions due to its considerable pathological role in a variety of neurodegenerative disorders. Abnormal tau hyperphosphorylation plays a detrimental pathological role, eventually leading to neurodegeneration. In the present review, we describe the recent research progresses in the pathological mechanisms of tau protein in AD and briefly discuss tau-based therapeutic strategies.
Collapse
Affiliation(s)
- Jian-Lan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, 226001, China. .,Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Nantong, 226001, China.
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| |
Collapse
|
29
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
30
|
Chidambaram H, Das R, Chinnathambi S. Interaction of Tau with the chemokine receptor, CX3CR1 and its effect on microglial activation, migration and proliferation. Cell Biosci 2020; 10:109. [PMID: 32944223 PMCID: PMC7493323 DOI: 10.1186/s13578-020-00474-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that leads to progressive loss of memory and dementia. The pathological hallmarks of AD include extracellular accumulation of amyloid-β peptides forming senile plaques and intracellular accumulation of Tau oligomers and filamentous species. Tau is a microtubule-binding protein that stabilizes tubulin to form microtubules under physiological condition. In AD/ pathological condition, Tau detaches from microtubules and aggregates to form oligomers of different sizes and filamentous species such as paired helical filaments. Microglia are the resident brain macrophages that are involved in the phagocytosis of microbes, cellular debris, misfolded and aggregated proteins. Chemokine receptor, CX3CR1 is mostly expressed on microglia and is involved in maintaining the microglia in a quiescent state by binding to its ligand, fractalkine (CX3CL1), which is expressed in neurons as both soluble or membrane-bound state. Hence, under physiological conditions, the CX3CR1/CX3CL1 axis plays a significant role in maintaining the central nervous system (CNS) homeostasis. Further, CX3CR1/CX3CL1 signalling is involved in the synthesis of anti-inflammatory cytokines and also has a significant role in cytoskeletal rearrangement, migration, apoptosis and proliferation. In AD brain, the expression level of fractalkine is reduced, and hence Tau competes to interact with its receptor, CX3CR1. In microglia, phagocytosis and internalization of extracellular Tau species occurs in the presence of a chemokine receptor, CX3CR1 which binds directly to Tau and promotes its internalization. In this review, the pathophysiological roles of CX3CR1/fractalkine signalling in microglia and neurons at different stages of Alzheimer's disease and the possible role of CX3CR1/Tau signalling has been widely discussed.
Collapse
Affiliation(s)
- Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India
- Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| |
Collapse
|
31
|
Das R, Chinnathambi S. Actin-mediated Microglial Chemotaxis via G-Protein Coupled Purinergic Receptor in Alzheimer's Disease. Neuroscience 2020; 448:325-336. [PMID: 32941933 DOI: 10.1016/j.neuroscience.2020.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly associated with aging, oxidative stress and genetic mutations. There are two pathological proteins involved in AD; Amyloid-β peptide and microtubule-associated protein Tau (MAPT). The β- and γ-secretase enzyme cleaves the Amyloid precursor protein, which results in the formation of extracellular plaques in brain. While, Tau undergoes hyperphosphorylation and other post-translational modifications (PTMs), which eventually generates Tau oligomers, and intracellular neurofibrillary tangles (NFTs) in neurons. Moreover, the brain-resident glia and infiltrated macrophages elevate the level of CNS inflammation, which trigger the oxidative damage of neuronal circuits by reactive oxygen species (ROS) and Nitric oxide (NO). Microglia is the primary immune cell in the CNS, which is continuously surveilling the neuronal synapses and pathogen invasion. Microglia in the resting state is called 'Ramified', which possess long surveilling extensions with a small cell body. But, upon activation, microglia retracts the cellular extensions and transform into round migratory cells, called as 'Amoeboid' state. Activated microglia undergoes actin remodeling by forming lamellipodia and filopodia, which directs the migratory axis while podosomes formed are involved in extracellular matrix degradation for invasion. Protein-aggregates in malfunctioning synapses and in CNS milieu can be detected by microglia, which results in its activation and migration. Subsequently, the phagocytosis of synapses leads to the inflammatory burst and memory loss. The extracellular nucleotides released from damaged neurons and the cytokine-chemokine gradients allow the neighboring microglia and macrophages to migrate-infiltrate at the site of neuronal-damage. The ionotropic (P2XR) and metabotropic (P2YR) purinergic receptor recognize extracellular ATP/ADP, which propagates through the intracellular calcium signaling, chemotaxis, phagocytosis and inflammation. The P2Y receptors give 'find me' or 'eat me' signals to microglia to either migrate or phagocytose cellular debris. Further, the actin cytoskeleton helps microglia to mediate directed chemotaxis and neuronal repair during neurodegeneration. Hence, we aim to emphasize the connection between purinergic signaling and actin-driven mechanical movements of microglia for migration and inflammation in AD.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| |
Collapse
|